2011-02-17 20:48:12 +00:00
|
|
|
/*
|
2005-09-18 13:28:42 +00:00
|
|
|
*
|
2009-04-20 15:06:46 +00:00
|
|
|
* $Id$
|
2005-09-18 13:28:42 +00:00
|
|
|
*
|
2008-04-16 22:40:48 +00:00
|
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
2005-09-18 13:28:42 +00:00
|
|
|
*
|
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
|
* as published by the Free Software Foundation; either version 2
|
2008-04-16 22:40:48 +00:00
|
|
|
* of the License, or (at your option) any later version.
|
2005-09-18 13:28:42 +00:00
|
|
|
*
|
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
|
*
|
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
|
* along with this program; if not, write to the Free Software Foundation,
|
2010-02-12 13:34:04 +00:00
|
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
2005-09-18 13:28:42 +00:00
|
|
|
*
|
|
|
|
|
* The Original Code is Copyright (C) 2004-2005 by Blender Foundation
|
|
|
|
|
* All rights reserved.
|
|
|
|
|
*
|
|
|
|
|
* The Original Code is: all of this file.
|
|
|
|
|
*
|
|
|
|
|
* Contributor(s): none yet.
|
|
|
|
|
*
|
2008-04-16 22:40:48 +00:00
|
|
|
* ***** END GPL LICENSE BLOCK *****
|
2005-09-18 13:28:42 +00:00
|
|
|
*/
|
|
|
|
|
#ifndef DNA_OBJECT_FLUIDSIM_H
|
|
|
|
|
#define DNA_OBJECT_FLUIDSIM_H
|
|
|
|
|
|
2011-02-17 20:48:12 +00:00
|
|
|
/** \file DNA_object_fluidsim.h
|
|
|
|
|
* \ingroup DNA
|
|
|
|
|
*/
|
|
|
|
|
|
Sorry for the big commit, but I've been fixing many of these
issues in parallel... So this commit contains: an update of
the solver (e.g. moving objects), integration of blender IPOs,
improved rendering (motion blur, smoothed normals) and a first particle
test. In more detail:
Solver update:
- Moving objects using a relatively simple model, and not yet fully optimized - ok
for box falling into water, water in a moving glass might cause trouble. Simulation
times are influenced by overall no. of triangles of the mesh, scaling meshes up a lot
might also cause slowdowns.
- Additional obstacle settings: noslip (as before), free slip (move along wall freely)
and part slip (mix of both).
- Obstacle settings also added for domain boundaries now, the six walls of the domain are
obstacles after all as well
- Got rid of templates, should make compiling for e.g. macs more convenient,
for linux there's not much difference. Finally got rid of parser (and some other code
parts), the simulation now uses the internal API to transfer data.
- Some unnecessary file were removed, the GUI now needs 3 settings buttons...
This should still be changed (maybe by adding a new panel for domain objects).
IPOs:
- Animated params: viscosity, time and gravity for domains. In contrast
to normal time IPO for Blender objects, the fluidsim one scales the time
step size - so a constant 1 has no effect, values towards 0 slow it down,
larger ones speed the simulation up (-> longer time steps, more compuations).
The viscosity IPO is also only a factor for the selected viscosity (again, 1=no effect).
- For objects that are enabled for fluidsim, a new IPO type shows up. Inflow
objects can use the velocity channels to animate the inflow. Obstacles, in/outflow
objects can be switched on (Active IPO>0) and off (<0) during the simulation.
- Movement, rotation and scaling of those 3 types is exported from the normal
Blender channels (Loc,dLoc,etc.).
Particles:
- This is still experimental, so it might be deactivated for a
release... It should at some point be used to model smaller splashes,
depending on the the realworld size and the particle generation
settings particles are generated during simulation (stored in _particles_X.gz
files).
- These are loaded by enabling the particle field for an arbitrary object,
which should be given a halo material. For each frame, similar to the mesh
loading, the particle system them loads the simulated particle positions.
- For rendering, I "abused" the part->rt field - I couldnt find any use
for it in the code and it seems to work fine. The fluidsim particles
store their size there.
Rendering:
- The fluidims particles use scaled sizes and alpha values to give a more varied
appearance. In convertblender.c fluidsim particle systems use the p->rt field
to scale up the size and down the alpha of "smaller particles". Setting the
influence fields in the fluidims settings to 0 gives equally sized particles
with same alpha everywhere. Higher values cause larger differences.
- Smoothed normals: for unmodified fluid meshes (e.g. no subdivision) the normals
computed by the solver are used. This is basically done by switching off the
normal recalculation in convertblender.c (the function calc_fluidsimnormals
handles other mesh inits instead of calc_vertexnormals).
This could also be used to e.g. modify mesh normals in a modifier...
- Another change is that fluidsim meshes load the velocities computed
during the simulation for image based motion blur. This is inited in
load_fluidsimspeedvectors for the vector pass (they're loaded during the
normal load in DerivedMesh readBobjgz). Generation and loading can be switched
off in the settings. Vector pass currently loads the fluidism meshes 3 times,
so this should still be optimized.
Examples:
- smoothed normals versus normals from subdividing once:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_1smoothnorms.png
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_2subdivnorms.png
- fluidsim particles, size/alpha influence 0:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_3particlesnorm.png
size influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_4particlessize.png
size & alpha influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_5particlesalpha.png
- the standard drop with motion blur and particles:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t2new.mpg
(here's how it looks without
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t1old.mpg)
- another inflow animation (moving, switched on/off) with a moving obstacle
(and strong mblur :)
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t3ipos.mpg
Things still to fix:
- rotating & scaling domains causes wrong speed vectors
- get rid of SDL code for threading, use pthreads as well?
- update wiki documentation
- cool effects for rendering would be photon maps for caustics,
and motion blur for particles :)
2006-02-27 11:45:42 +00:00
|
|
|
#include "DNA_ID.h"
|
2005-09-18 13:28:42 +00:00
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
|
extern "C" {
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
struct Mesh;
|
Sorry for the big commit, but I've been fixing many of these
issues in parallel... So this commit contains: an update of
the solver (e.g. moving objects), integration of blender IPOs,
improved rendering (motion blur, smoothed normals) and a first particle
test. In more detail:
Solver update:
- Moving objects using a relatively simple model, and not yet fully optimized - ok
for box falling into water, water in a moving glass might cause trouble. Simulation
times are influenced by overall no. of triangles of the mesh, scaling meshes up a lot
might also cause slowdowns.
- Additional obstacle settings: noslip (as before), free slip (move along wall freely)
and part slip (mix of both).
- Obstacle settings also added for domain boundaries now, the six walls of the domain are
obstacles after all as well
- Got rid of templates, should make compiling for e.g. macs more convenient,
for linux there's not much difference. Finally got rid of parser (and some other code
parts), the simulation now uses the internal API to transfer data.
- Some unnecessary file were removed, the GUI now needs 3 settings buttons...
This should still be changed (maybe by adding a new panel for domain objects).
IPOs:
- Animated params: viscosity, time and gravity for domains. In contrast
to normal time IPO for Blender objects, the fluidsim one scales the time
step size - so a constant 1 has no effect, values towards 0 slow it down,
larger ones speed the simulation up (-> longer time steps, more compuations).
The viscosity IPO is also only a factor for the selected viscosity (again, 1=no effect).
- For objects that are enabled for fluidsim, a new IPO type shows up. Inflow
objects can use the velocity channels to animate the inflow. Obstacles, in/outflow
objects can be switched on (Active IPO>0) and off (<0) during the simulation.
- Movement, rotation and scaling of those 3 types is exported from the normal
Blender channels (Loc,dLoc,etc.).
Particles:
- This is still experimental, so it might be deactivated for a
release... It should at some point be used to model smaller splashes,
depending on the the realworld size and the particle generation
settings particles are generated during simulation (stored in _particles_X.gz
files).
- These are loaded by enabling the particle field for an arbitrary object,
which should be given a halo material. For each frame, similar to the mesh
loading, the particle system them loads the simulated particle positions.
- For rendering, I "abused" the part->rt field - I couldnt find any use
for it in the code and it seems to work fine. The fluidsim particles
store their size there.
Rendering:
- The fluidims particles use scaled sizes and alpha values to give a more varied
appearance. In convertblender.c fluidsim particle systems use the p->rt field
to scale up the size and down the alpha of "smaller particles". Setting the
influence fields in the fluidims settings to 0 gives equally sized particles
with same alpha everywhere. Higher values cause larger differences.
- Smoothed normals: for unmodified fluid meshes (e.g. no subdivision) the normals
computed by the solver are used. This is basically done by switching off the
normal recalculation in convertblender.c (the function calc_fluidsimnormals
handles other mesh inits instead of calc_vertexnormals).
This could also be used to e.g. modify mesh normals in a modifier...
- Another change is that fluidsim meshes load the velocities computed
during the simulation for image based motion blur. This is inited in
load_fluidsimspeedvectors for the vector pass (they're loaded during the
normal load in DerivedMesh readBobjgz). Generation and loading can be switched
off in the settings. Vector pass currently loads the fluidism meshes 3 times,
so this should still be optimized.
Examples:
- smoothed normals versus normals from subdividing once:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_1smoothnorms.png
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_2subdivnorms.png
- fluidsim particles, size/alpha influence 0:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_3particlesnorm.png
size influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_4particlessize.png
size & alpha influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_5particlesalpha.png
- the standard drop with motion blur and particles:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t2new.mpg
(here's how it looks without
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t1old.mpg)
- another inflow animation (moving, switched on/off) with a moving obstacle
(and strong mblur :)
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t3ipos.mpg
Things still to fix:
- rotating & scaling domains causes wrong speed vectors
- get rid of SDL code for threading, use pthreads as well?
- update wiki documentation
- cool effects for rendering would be photon maps for caustics,
and motion blur for particles :)
2006-02-27 11:45:42 +00:00
|
|
|
struct Ipo;
|
|
|
|
|
struct MVert;
|
2005-09-18 13:28:42 +00:00
|
|
|
|
|
|
|
|
typedef struct FluidsimSettings {
|
2009-09-15 03:54:13 +00:00
|
|
|
struct FluidsimModifierData *fmd; /* for fast RNA access */
|
2005-09-18 13:28:42 +00:00
|
|
|
/* domain,fluid or obstacle */
|
|
|
|
|
short type;
|
2005-10-10 06:59:47 +00:00
|
|
|
/* display advanced options in fluid sim tab (on=1,off=0)*/
|
|
|
|
|
short show_advancedoptions;
|
2005-09-18 13:28:42 +00:00
|
|
|
|
|
|
|
|
/* domain object settings */
|
|
|
|
|
/* resolutions */
|
|
|
|
|
short resolutionxyz;
|
|
|
|
|
short previewresxyz;
|
|
|
|
|
/* size of the domain in real units (meters along largest resolution x,y,z extent) */
|
|
|
|
|
float realsize;
|
|
|
|
|
/* show original meshes, preview or final sim */
|
|
|
|
|
short guiDisplayMode;
|
|
|
|
|
short renderDisplayMode;
|
|
|
|
|
|
|
|
|
|
/* fluid properties */
|
|
|
|
|
float viscosityValue;
|
|
|
|
|
short viscosityMode;
|
|
|
|
|
short viscosityExponent;
|
|
|
|
|
/* gravity strength */
|
|
|
|
|
float gravx,gravy,gravz;
|
2010-03-25 06:27:25 +00:00
|
|
|
/* anim start end time (in seconds) */
|
2005-09-18 13:28:42 +00:00
|
|
|
float animStart, animEnd;
|
2010-03-25 06:27:25 +00:00
|
|
|
/* bake start end time (in blender frames) */
|
|
|
|
|
int bakeStart, bakeEnd;
|
2005-09-18 13:28:42 +00:00
|
|
|
/* g star param (LBM compressibility) */
|
|
|
|
|
float gstar;
|
|
|
|
|
/* activate refinement? */
|
|
|
|
|
int maxRefine;
|
|
|
|
|
|
|
|
|
|
/* fluid object type settings */
|
|
|
|
|
/* gravity strength */
|
|
|
|
|
float iniVelx,iniVely,iniVelz;
|
|
|
|
|
|
|
|
|
|
/* store pointer to original mesh (for replacing the current one) */
|
|
|
|
|
struct Mesh *orgMesh;
|
2005-11-23 12:49:22 +00:00
|
|
|
/* pointer to the currently loaded fluidsim mesh */
|
|
|
|
|
struct Mesh *meshSurface;
|
|
|
|
|
/* a mesh to display the bounding box used for simulation */
|
|
|
|
|
struct Mesh *meshBB;
|
2005-11-09 07:56:26 +00:00
|
|
|
|
|
|
|
|
/* store output path, and file prefix for baked fluid surface */
|
|
|
|
|
/* strlens; 80= FILE_MAXFILE, 160= FILE_MAXDIR */
|
2005-11-23 12:49:22 +00:00
|
|
|
char surfdataPath[240];
|
|
|
|
|
|
|
|
|
|
/* store start coords of axis aligned bounding box together with size */
|
|
|
|
|
/* values are inited during derived mesh display */
|
|
|
|
|
float bbStart[3], bbSize[3];
|
Sorry for the big commit, but I've been fixing many of these
issues in parallel... So this commit contains: an update of
the solver (e.g. moving objects), integration of blender IPOs,
improved rendering (motion blur, smoothed normals) and a first particle
test. In more detail:
Solver update:
- Moving objects using a relatively simple model, and not yet fully optimized - ok
for box falling into water, water in a moving glass might cause trouble. Simulation
times are influenced by overall no. of triangles of the mesh, scaling meshes up a lot
might also cause slowdowns.
- Additional obstacle settings: noslip (as before), free slip (move along wall freely)
and part slip (mix of both).
- Obstacle settings also added for domain boundaries now, the six walls of the domain are
obstacles after all as well
- Got rid of templates, should make compiling for e.g. macs more convenient,
for linux there's not much difference. Finally got rid of parser (and some other code
parts), the simulation now uses the internal API to transfer data.
- Some unnecessary file were removed, the GUI now needs 3 settings buttons...
This should still be changed (maybe by adding a new panel for domain objects).
IPOs:
- Animated params: viscosity, time and gravity for domains. In contrast
to normal time IPO for Blender objects, the fluidsim one scales the time
step size - so a constant 1 has no effect, values towards 0 slow it down,
larger ones speed the simulation up (-> longer time steps, more compuations).
The viscosity IPO is also only a factor for the selected viscosity (again, 1=no effect).
- For objects that are enabled for fluidsim, a new IPO type shows up. Inflow
objects can use the velocity channels to animate the inflow. Obstacles, in/outflow
objects can be switched on (Active IPO>0) and off (<0) during the simulation.
- Movement, rotation and scaling of those 3 types is exported from the normal
Blender channels (Loc,dLoc,etc.).
Particles:
- This is still experimental, so it might be deactivated for a
release... It should at some point be used to model smaller splashes,
depending on the the realworld size and the particle generation
settings particles are generated during simulation (stored in _particles_X.gz
files).
- These are loaded by enabling the particle field for an arbitrary object,
which should be given a halo material. For each frame, similar to the mesh
loading, the particle system them loads the simulated particle positions.
- For rendering, I "abused" the part->rt field - I couldnt find any use
for it in the code and it seems to work fine. The fluidsim particles
store their size there.
Rendering:
- The fluidims particles use scaled sizes and alpha values to give a more varied
appearance. In convertblender.c fluidsim particle systems use the p->rt field
to scale up the size and down the alpha of "smaller particles". Setting the
influence fields in the fluidims settings to 0 gives equally sized particles
with same alpha everywhere. Higher values cause larger differences.
- Smoothed normals: for unmodified fluid meshes (e.g. no subdivision) the normals
computed by the solver are used. This is basically done by switching off the
normal recalculation in convertblender.c (the function calc_fluidsimnormals
handles other mesh inits instead of calc_vertexnormals).
This could also be used to e.g. modify mesh normals in a modifier...
- Another change is that fluidsim meshes load the velocities computed
during the simulation for image based motion blur. This is inited in
load_fluidsimspeedvectors for the vector pass (they're loaded during the
normal load in DerivedMesh readBobjgz). Generation and loading can be switched
off in the settings. Vector pass currently loads the fluidism meshes 3 times,
so this should still be optimized.
Examples:
- smoothed normals versus normals from subdividing once:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_1smoothnorms.png
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_2subdivnorms.png
- fluidsim particles, size/alpha influence 0:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_3particlesnorm.png
size influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_4particlessize.png
size & alpha influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_5particlesalpha.png
- the standard drop with motion blur and particles:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t2new.mpg
(here's how it looks without
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t1old.mpg)
- another inflow animation (moving, switched on/off) with a moving obstacle
(and strong mblur :)
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t3ipos.mpg
Things still to fix:
- rotating & scaling domains causes wrong speed vectors
- get rid of SDL code for threading, use pthreads as well?
- update wiki documentation
- cool effects for rendering would be photon maps for caustics,
and motion blur for particles :)
2006-02-27 11:45:42 +00:00
|
|
|
|
|
|
|
|
/* animated params */
|
|
|
|
|
struct Ipo *ipo;
|
|
|
|
|
|
|
|
|
|
/* additional flags depending on the type, lower short contains flags
|
|
|
|
|
* to check validity, higher short additional flags */
|
2006-03-29 07:35:54 +00:00
|
|
|
short typeFlags;
|
2006-05-11 08:09:02 +00:00
|
|
|
/* switch off velocity genration, volume init type for fluid/obstacles (volume=1,shell=2,both=3) */
|
|
|
|
|
char domainNovecgen,volumeInitType;
|
Sorry for the big commit, but I've been fixing many of these
issues in parallel... So this commit contains: an update of
the solver (e.g. moving objects), integration of blender IPOs,
improved rendering (motion blur, smoothed normals) and a first particle
test. In more detail:
Solver update:
- Moving objects using a relatively simple model, and not yet fully optimized - ok
for box falling into water, water in a moving glass might cause trouble. Simulation
times are influenced by overall no. of triangles of the mesh, scaling meshes up a lot
might also cause slowdowns.
- Additional obstacle settings: noslip (as before), free slip (move along wall freely)
and part slip (mix of both).
- Obstacle settings also added for domain boundaries now, the six walls of the domain are
obstacles after all as well
- Got rid of templates, should make compiling for e.g. macs more convenient,
for linux there's not much difference. Finally got rid of parser (and some other code
parts), the simulation now uses the internal API to transfer data.
- Some unnecessary file were removed, the GUI now needs 3 settings buttons...
This should still be changed (maybe by adding a new panel for domain objects).
IPOs:
- Animated params: viscosity, time and gravity for domains. In contrast
to normal time IPO for Blender objects, the fluidsim one scales the time
step size - so a constant 1 has no effect, values towards 0 slow it down,
larger ones speed the simulation up (-> longer time steps, more compuations).
The viscosity IPO is also only a factor for the selected viscosity (again, 1=no effect).
- For objects that are enabled for fluidsim, a new IPO type shows up. Inflow
objects can use the velocity channels to animate the inflow. Obstacles, in/outflow
objects can be switched on (Active IPO>0) and off (<0) during the simulation.
- Movement, rotation and scaling of those 3 types is exported from the normal
Blender channels (Loc,dLoc,etc.).
Particles:
- This is still experimental, so it might be deactivated for a
release... It should at some point be used to model smaller splashes,
depending on the the realworld size and the particle generation
settings particles are generated during simulation (stored in _particles_X.gz
files).
- These are loaded by enabling the particle field for an arbitrary object,
which should be given a halo material. For each frame, similar to the mesh
loading, the particle system them loads the simulated particle positions.
- For rendering, I "abused" the part->rt field - I couldnt find any use
for it in the code and it seems to work fine. The fluidsim particles
store their size there.
Rendering:
- The fluidims particles use scaled sizes and alpha values to give a more varied
appearance. In convertblender.c fluidsim particle systems use the p->rt field
to scale up the size and down the alpha of "smaller particles". Setting the
influence fields in the fluidims settings to 0 gives equally sized particles
with same alpha everywhere. Higher values cause larger differences.
- Smoothed normals: for unmodified fluid meshes (e.g. no subdivision) the normals
computed by the solver are used. This is basically done by switching off the
normal recalculation in convertblender.c (the function calc_fluidsimnormals
handles other mesh inits instead of calc_vertexnormals).
This could also be used to e.g. modify mesh normals in a modifier...
- Another change is that fluidsim meshes load the velocities computed
during the simulation for image based motion blur. This is inited in
load_fluidsimspeedvectors for the vector pass (they're loaded during the
normal load in DerivedMesh readBobjgz). Generation and loading can be switched
off in the settings. Vector pass currently loads the fluidism meshes 3 times,
so this should still be optimized.
Examples:
- smoothed normals versus normals from subdividing once:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_1smoothnorms.png
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_2subdivnorms.png
- fluidsim particles, size/alpha influence 0:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_3particlesnorm.png
size influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_4particlessize.png
size & alpha influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_5particlesalpha.png
- the standard drop with motion blur and particles:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t2new.mpg
(here's how it looks without
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t1old.mpg)
- another inflow animation (moving, switched on/off) with a moving obstacle
(and strong mblur :)
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t3ipos.mpg
Things still to fix:
- rotating & scaling domains causes wrong speed vectors
- get rid of SDL code for threading, use pthreads as well?
- update wiki documentation
- cool effects for rendering would be photon maps for caustics,
and motion blur for particles :)
2006-02-27 11:45:42 +00:00
|
|
|
|
|
|
|
|
/* boundary "stickiness" for part slip values */
|
|
|
|
|
float partSlipValue;
|
2006-05-11 08:09:02 +00:00
|
|
|
|
|
|
|
|
/* number of tracers to generate */
|
|
|
|
|
int generateTracers;
|
|
|
|
|
/* particle generation - on if >0, then determines amount (experimental...) */
|
2006-03-29 07:35:54 +00:00
|
|
|
float generateParticles;
|
|
|
|
|
/* smooth fluid surface? */
|
|
|
|
|
float surfaceSmoothing;
|
- bugfixes
#4742 exported normals are now correct
#4821 & 4956 for complex movements in/outflows can now also
use the animated mesh option
- new features
* isosurface subdivision: directly
creates a finer surface mesh from the simulation data.
this increases simulation time and harddisk usage, though, so
be careful - usually values of 2-4 should be enough.
* fluidsim particles: extended model for particle
simulation and generation. When isosurface subdivision is enabled,
the particles are now included in the surface generation,
giving a better impression of a single connected surface.
Note - the particles are only included in the final surface
mesh, so the preview surface shows none of the particle
effects.
* particle loading: different types of particles can now be selected for
display: drops, floats and tracers. This is a bit obsolete
due to the extensions mentioned above, but might still be useful.
Floats are just particles floating on the fluid surface, could
be used for e.g. foam.
* moving objects impact factor: this is another tweaking option,
as the handling of moving objects is still not conserving
mass. setting this to zero simply deletes the fluid, 1 is
the default, while larger values cause a stronger
impact. For tweaking the simulation: if fluid disappears, try
increasing this value, and if too much is appearing reduce it.
You can even use negative values for some strange results :)
- more code cleanup, e.g. removed config file writing in fluidsim.c,
added additional safety checks for particles & fluidsim domains (these
currently dont work together). I also removed the "build particles"
debug message in effects.c (seemed to be unnecessary?).
Some more info on the new features:
Here are two test animations showing the difference between
using the particle generation with isosurface subdivision.
This is how it would look with the old solver version:
http://www10.informatik.uni-erlangen.de/~sinithue/blender/fluid6_fl6manc4_1noparts.mpg
and this with the new one:
http://www10.informatik.uni-erlangen.de/~sinithue/blender/fluid6_fl6manc4_2wparts.mpg
Both simulations use a resolution of 64, however, the version with particles
takes significantly longer (almost twice as long).
The .blend file for a similar setup can be found here:
http://www10.informatik.uni-erlangen.de/~sinithue/blender/fluid6_testmanc4.blend
(Minor Tips for this file: dont enable subdivions of characters until rendering,
thus leave off for simulation, as it uses the rendering settings! For making
nice pictures switch on subdivion, and OSA.)
And here's a picture of old vs. new (for webpage or so):
http://www10.informatik.uni-erlangen.de/~sinithue/blender/fluid6_manc4compare.png
2006-11-05 16:30:29 +00:00
|
|
|
/* number of surface subdivisions*/
|
|
|
|
|
int surfaceSubdivs;
|
2008-07-28 21:52:37 +00:00
|
|
|
int flag; /* GUI flags */
|
2006-05-11 08:09:02 +00:00
|
|
|
|
Sorry for the big commit, but I've been fixing many of these
issues in parallel... So this commit contains: an update of
the solver (e.g. moving objects), integration of blender IPOs,
improved rendering (motion blur, smoothed normals) and a first particle
test. In more detail:
Solver update:
- Moving objects using a relatively simple model, and not yet fully optimized - ok
for box falling into water, water in a moving glass might cause trouble. Simulation
times are influenced by overall no. of triangles of the mesh, scaling meshes up a lot
might also cause slowdowns.
- Additional obstacle settings: noslip (as before), free slip (move along wall freely)
and part slip (mix of both).
- Obstacle settings also added for domain boundaries now, the six walls of the domain are
obstacles after all as well
- Got rid of templates, should make compiling for e.g. macs more convenient,
for linux there's not much difference. Finally got rid of parser (and some other code
parts), the simulation now uses the internal API to transfer data.
- Some unnecessary file were removed, the GUI now needs 3 settings buttons...
This should still be changed (maybe by adding a new panel for domain objects).
IPOs:
- Animated params: viscosity, time and gravity for domains. In contrast
to normal time IPO for Blender objects, the fluidsim one scales the time
step size - so a constant 1 has no effect, values towards 0 slow it down,
larger ones speed the simulation up (-> longer time steps, more compuations).
The viscosity IPO is also only a factor for the selected viscosity (again, 1=no effect).
- For objects that are enabled for fluidsim, a new IPO type shows up. Inflow
objects can use the velocity channels to animate the inflow. Obstacles, in/outflow
objects can be switched on (Active IPO>0) and off (<0) during the simulation.
- Movement, rotation and scaling of those 3 types is exported from the normal
Blender channels (Loc,dLoc,etc.).
Particles:
- This is still experimental, so it might be deactivated for a
release... It should at some point be used to model smaller splashes,
depending on the the realworld size and the particle generation
settings particles are generated during simulation (stored in _particles_X.gz
files).
- These are loaded by enabling the particle field for an arbitrary object,
which should be given a halo material. For each frame, similar to the mesh
loading, the particle system them loads the simulated particle positions.
- For rendering, I "abused" the part->rt field - I couldnt find any use
for it in the code and it seems to work fine. The fluidsim particles
store their size there.
Rendering:
- The fluidims particles use scaled sizes and alpha values to give a more varied
appearance. In convertblender.c fluidsim particle systems use the p->rt field
to scale up the size and down the alpha of "smaller particles". Setting the
influence fields in the fluidims settings to 0 gives equally sized particles
with same alpha everywhere. Higher values cause larger differences.
- Smoothed normals: for unmodified fluid meshes (e.g. no subdivision) the normals
computed by the solver are used. This is basically done by switching off the
normal recalculation in convertblender.c (the function calc_fluidsimnormals
handles other mesh inits instead of calc_vertexnormals).
This could also be used to e.g. modify mesh normals in a modifier...
- Another change is that fluidsim meshes load the velocities computed
during the simulation for image based motion blur. This is inited in
load_fluidsimspeedvectors for the vector pass (they're loaded during the
normal load in DerivedMesh readBobjgz). Generation and loading can be switched
off in the settings. Vector pass currently loads the fluidism meshes 3 times,
so this should still be optimized.
Examples:
- smoothed normals versus normals from subdividing once:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_1smoothnorms.png
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_2subdivnorms.png
- fluidsim particles, size/alpha influence 0:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_3particlesnorm.png
size influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_4particlessize.png
size & alpha influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_5particlesalpha.png
- the standard drop with motion blur and particles:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t2new.mpg
(here's how it looks without
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t1old.mpg)
- another inflow animation (moving, switched on/off) with a moving obstacle
(and strong mblur :)
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t3ipos.mpg
Things still to fix:
- rotating & scaling domains causes wrong speed vectors
- get rid of SDL code for threading, use pthreads as well?
- update wiki documentation
- cool effects for rendering would be photon maps for caustics,
and motion blur for particles :)
2006-02-27 11:45:42 +00:00
|
|
|
/* particle display - size scaling, and alpha influence */
|
|
|
|
|
float particleInfSize, particleInfAlpha;
|
2006-03-29 07:35:54 +00:00
|
|
|
/* testing vars */
|
2006-05-11 08:09:02 +00:00
|
|
|
float farFieldSize;
|
Sorry for the big commit, but I've been fixing many of these
issues in parallel... So this commit contains: an update of
the solver (e.g. moving objects), integration of blender IPOs,
improved rendering (motion blur, smoothed normals) and a first particle
test. In more detail:
Solver update:
- Moving objects using a relatively simple model, and not yet fully optimized - ok
for box falling into water, water in a moving glass might cause trouble. Simulation
times are influenced by overall no. of triangles of the mesh, scaling meshes up a lot
might also cause slowdowns.
- Additional obstacle settings: noslip (as before), free slip (move along wall freely)
and part slip (mix of both).
- Obstacle settings also added for domain boundaries now, the six walls of the domain are
obstacles after all as well
- Got rid of templates, should make compiling for e.g. macs more convenient,
for linux there's not much difference. Finally got rid of parser (and some other code
parts), the simulation now uses the internal API to transfer data.
- Some unnecessary file were removed, the GUI now needs 3 settings buttons...
This should still be changed (maybe by adding a new panel for domain objects).
IPOs:
- Animated params: viscosity, time and gravity for domains. In contrast
to normal time IPO for Blender objects, the fluidsim one scales the time
step size - so a constant 1 has no effect, values towards 0 slow it down,
larger ones speed the simulation up (-> longer time steps, more compuations).
The viscosity IPO is also only a factor for the selected viscosity (again, 1=no effect).
- For objects that are enabled for fluidsim, a new IPO type shows up. Inflow
objects can use the velocity channels to animate the inflow. Obstacles, in/outflow
objects can be switched on (Active IPO>0) and off (<0) during the simulation.
- Movement, rotation and scaling of those 3 types is exported from the normal
Blender channels (Loc,dLoc,etc.).
Particles:
- This is still experimental, so it might be deactivated for a
release... It should at some point be used to model smaller splashes,
depending on the the realworld size and the particle generation
settings particles are generated during simulation (stored in _particles_X.gz
files).
- These are loaded by enabling the particle field for an arbitrary object,
which should be given a halo material. For each frame, similar to the mesh
loading, the particle system them loads the simulated particle positions.
- For rendering, I "abused" the part->rt field - I couldnt find any use
for it in the code and it seems to work fine. The fluidsim particles
store their size there.
Rendering:
- The fluidims particles use scaled sizes and alpha values to give a more varied
appearance. In convertblender.c fluidsim particle systems use the p->rt field
to scale up the size and down the alpha of "smaller particles". Setting the
influence fields in the fluidims settings to 0 gives equally sized particles
with same alpha everywhere. Higher values cause larger differences.
- Smoothed normals: for unmodified fluid meshes (e.g. no subdivision) the normals
computed by the solver are used. This is basically done by switching off the
normal recalculation in convertblender.c (the function calc_fluidsimnormals
handles other mesh inits instead of calc_vertexnormals).
This could also be used to e.g. modify mesh normals in a modifier...
- Another change is that fluidsim meshes load the velocities computed
during the simulation for image based motion blur. This is inited in
load_fluidsimspeedvectors for the vector pass (they're loaded during the
normal load in DerivedMesh readBobjgz). Generation and loading can be switched
off in the settings. Vector pass currently loads the fluidism meshes 3 times,
so this should still be optimized.
Examples:
- smoothed normals versus normals from subdividing once:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_1smoothnorms.png
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_2subdivnorms.png
- fluidsim particles, size/alpha influence 0:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_3particlesnorm.png
size influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_4particlessize.png
size & alpha influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_5particlesalpha.png
- the standard drop with motion blur and particles:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t2new.mpg
(here's how it looks without
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t1old.mpg)
- another inflow animation (moving, switched on/off) with a moving obstacle
(and strong mblur :)
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t3ipos.mpg
Things still to fix:
- rotating & scaling domains causes wrong speed vectors
- get rid of SDL code for threading, use pthreads as well?
- update wiki documentation
- cool effects for rendering would be photon maps for caustics,
and motion blur for particles :)
2006-02-27 11:45:42 +00:00
|
|
|
|
|
|
|
|
/* save fluidsurface normals in mvert.no, and surface vertex velocities (if available) in mvert.co */
|
|
|
|
|
struct MVert *meshSurfNormals;
|
2008-07-04 15:23:21 +00:00
|
|
|
|
|
|
|
|
/* Fluid control settings */
|
2008-07-07 09:23:12 +00:00
|
|
|
float cpsTimeStart;
|
|
|
|
|
float cpsTimeEnd;
|
2008-07-08 17:38:33 +00:00
|
|
|
float cpsQuality;
|
2008-07-07 09:23:12 +00:00
|
|
|
|
2008-07-04 15:23:21 +00:00
|
|
|
float attractforceStrength;
|
|
|
|
|
float attractforceRadius;
|
|
|
|
|
float velocityforceStrength;
|
|
|
|
|
float velocityforceRadius;
|
Sorry for the big commit, but I've been fixing many of these
issues in parallel... So this commit contains: an update of
the solver (e.g. moving objects), integration of blender IPOs,
improved rendering (motion blur, smoothed normals) and a first particle
test. In more detail:
Solver update:
- Moving objects using a relatively simple model, and not yet fully optimized - ok
for box falling into water, water in a moving glass might cause trouble. Simulation
times are influenced by overall no. of triangles of the mesh, scaling meshes up a lot
might also cause slowdowns.
- Additional obstacle settings: noslip (as before), free slip (move along wall freely)
and part slip (mix of both).
- Obstacle settings also added for domain boundaries now, the six walls of the domain are
obstacles after all as well
- Got rid of templates, should make compiling for e.g. macs more convenient,
for linux there's not much difference. Finally got rid of parser (and some other code
parts), the simulation now uses the internal API to transfer data.
- Some unnecessary file were removed, the GUI now needs 3 settings buttons...
This should still be changed (maybe by adding a new panel for domain objects).
IPOs:
- Animated params: viscosity, time and gravity for domains. In contrast
to normal time IPO for Blender objects, the fluidsim one scales the time
step size - so a constant 1 has no effect, values towards 0 slow it down,
larger ones speed the simulation up (-> longer time steps, more compuations).
The viscosity IPO is also only a factor for the selected viscosity (again, 1=no effect).
- For objects that are enabled for fluidsim, a new IPO type shows up. Inflow
objects can use the velocity channels to animate the inflow. Obstacles, in/outflow
objects can be switched on (Active IPO>0) and off (<0) during the simulation.
- Movement, rotation and scaling of those 3 types is exported from the normal
Blender channels (Loc,dLoc,etc.).
Particles:
- This is still experimental, so it might be deactivated for a
release... It should at some point be used to model smaller splashes,
depending on the the realworld size and the particle generation
settings particles are generated during simulation (stored in _particles_X.gz
files).
- These are loaded by enabling the particle field for an arbitrary object,
which should be given a halo material. For each frame, similar to the mesh
loading, the particle system them loads the simulated particle positions.
- For rendering, I "abused" the part->rt field - I couldnt find any use
for it in the code and it seems to work fine. The fluidsim particles
store their size there.
Rendering:
- The fluidims particles use scaled sizes and alpha values to give a more varied
appearance. In convertblender.c fluidsim particle systems use the p->rt field
to scale up the size and down the alpha of "smaller particles". Setting the
influence fields in the fluidims settings to 0 gives equally sized particles
with same alpha everywhere. Higher values cause larger differences.
- Smoothed normals: for unmodified fluid meshes (e.g. no subdivision) the normals
computed by the solver are used. This is basically done by switching off the
normal recalculation in convertblender.c (the function calc_fluidsimnormals
handles other mesh inits instead of calc_vertexnormals).
This could also be used to e.g. modify mesh normals in a modifier...
- Another change is that fluidsim meshes load the velocities computed
during the simulation for image based motion blur. This is inited in
load_fluidsimspeedvectors for the vector pass (they're loaded during the
normal load in DerivedMesh readBobjgz). Generation and loading can be switched
off in the settings. Vector pass currently loads the fluidism meshes 3 times,
so this should still be optimized.
Examples:
- smoothed normals versus normals from subdividing once:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_1smoothnorms.png
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_2subdivnorms.png
- fluidsim particles, size/alpha influence 0:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_3particlesnorm.png
size influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_4particlessize.png
size & alpha influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_5particlesalpha.png
- the standard drop with motion blur and particles:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t2new.mpg
(here's how it looks without
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t1old.mpg)
- another inflow animation (moving, switched on/off) with a moving obstacle
(and strong mblur :)
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t3ipos.mpg
Things still to fix:
- rotating & scaling domains causes wrong speed vectors
- get rid of SDL code for threading, use pthreads as well?
- update wiki documentation
- cool effects for rendering would be photon maps for caustics,
and motion blur for particles :)
2006-02-27 11:45:42 +00:00
|
|
|
|
2008-07-25 18:57:16 +00:00
|
|
|
int lastgoodframe;
|
Sorry for the big commit, but I've been fixing many of these
issues in parallel... So this commit contains: an update of
the solver (e.g. moving objects), integration of blender IPOs,
improved rendering (motion blur, smoothed normals) and a first particle
test. In more detail:
Solver update:
- Moving objects using a relatively simple model, and not yet fully optimized - ok
for box falling into water, water in a moving glass might cause trouble. Simulation
times are influenced by overall no. of triangles of the mesh, scaling meshes up a lot
might also cause slowdowns.
- Additional obstacle settings: noslip (as before), free slip (move along wall freely)
and part slip (mix of both).
- Obstacle settings also added for domain boundaries now, the six walls of the domain are
obstacles after all as well
- Got rid of templates, should make compiling for e.g. macs more convenient,
for linux there's not much difference. Finally got rid of parser (and some other code
parts), the simulation now uses the internal API to transfer data.
- Some unnecessary file were removed, the GUI now needs 3 settings buttons...
This should still be changed (maybe by adding a new panel for domain objects).
IPOs:
- Animated params: viscosity, time and gravity for domains. In contrast
to normal time IPO for Blender objects, the fluidsim one scales the time
step size - so a constant 1 has no effect, values towards 0 slow it down,
larger ones speed the simulation up (-> longer time steps, more compuations).
The viscosity IPO is also only a factor for the selected viscosity (again, 1=no effect).
- For objects that are enabled for fluidsim, a new IPO type shows up. Inflow
objects can use the velocity channels to animate the inflow. Obstacles, in/outflow
objects can be switched on (Active IPO>0) and off (<0) during the simulation.
- Movement, rotation and scaling of those 3 types is exported from the normal
Blender channels (Loc,dLoc,etc.).
Particles:
- This is still experimental, so it might be deactivated for a
release... It should at some point be used to model smaller splashes,
depending on the the realworld size and the particle generation
settings particles are generated during simulation (stored in _particles_X.gz
files).
- These are loaded by enabling the particle field for an arbitrary object,
which should be given a halo material. For each frame, similar to the mesh
loading, the particle system them loads the simulated particle positions.
- For rendering, I "abused" the part->rt field - I couldnt find any use
for it in the code and it seems to work fine. The fluidsim particles
store their size there.
Rendering:
- The fluidims particles use scaled sizes and alpha values to give a more varied
appearance. In convertblender.c fluidsim particle systems use the p->rt field
to scale up the size and down the alpha of "smaller particles". Setting the
influence fields in the fluidims settings to 0 gives equally sized particles
with same alpha everywhere. Higher values cause larger differences.
- Smoothed normals: for unmodified fluid meshes (e.g. no subdivision) the normals
computed by the solver are used. This is basically done by switching off the
normal recalculation in convertblender.c (the function calc_fluidsimnormals
handles other mesh inits instead of calc_vertexnormals).
This could also be used to e.g. modify mesh normals in a modifier...
- Another change is that fluidsim meshes load the velocities computed
during the simulation for image based motion blur. This is inited in
load_fluidsimspeedvectors for the vector pass (they're loaded during the
normal load in DerivedMesh readBobjgz). Generation and loading can be switched
off in the settings. Vector pass currently loads the fluidism meshes 3 times,
so this should still be optimized.
Examples:
- smoothed normals versus normals from subdividing once:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_1smoothnorms.png
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_2subdivnorms.png
- fluidsim particles, size/alpha influence 0:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_3particlesnorm.png
size influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_4particlessize.png
size & alpha influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_5particlesalpha.png
- the standard drop with motion blur and particles:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t2new.mpg
(here's how it looks without
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t1old.mpg)
- another inflow animation (moving, switched on/off) with a moving obstacle
(and strong mblur :)
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t3ipos.mpg
Things still to fix:
- rotating & scaling domains causes wrong speed vectors
- get rid of SDL code for threading, use pthreads as well?
- update wiki documentation
- cool effects for rendering would be photon maps for caustics,
and motion blur for particles :)
2006-02-27 11:45:42 +00:00
|
|
|
|
2005-09-18 13:28:42 +00:00
|
|
|
} FluidsimSettings;
|
|
|
|
|
|
|
|
|
|
/* ob->fluidsimSettings defines */
|
|
|
|
|
#define OB_FLUIDSIM_ENABLE 1
|
|
|
|
|
#define OB_FLUIDSIM_DOMAIN 2
|
2009-07-02 19:41:31 +00:00
|
|
|
#define OB_FLUIDSIM_FLUID 4
|
2005-09-18 13:28:42 +00:00
|
|
|
#define OB_FLUIDSIM_OBSTACLE 8
|
2009-07-02 19:41:31 +00:00
|
|
|
#define OB_FLUIDSIM_INFLOW 16
|
|
|
|
|
#define OB_FLUIDSIM_OUTFLOW 32
|
|
|
|
|
#define OB_FLUIDSIM_PARTICLE 64
|
|
|
|
|
#define OB_FLUIDSIM_CONTROL 128
|
Sorry for the big commit, but I've been fixing many of these
issues in parallel... So this commit contains: an update of
the solver (e.g. moving objects), integration of blender IPOs,
improved rendering (motion blur, smoothed normals) and a first particle
test. In more detail:
Solver update:
- Moving objects using a relatively simple model, and not yet fully optimized - ok
for box falling into water, water in a moving glass might cause trouble. Simulation
times are influenced by overall no. of triangles of the mesh, scaling meshes up a lot
might also cause slowdowns.
- Additional obstacle settings: noslip (as before), free slip (move along wall freely)
and part slip (mix of both).
- Obstacle settings also added for domain boundaries now, the six walls of the domain are
obstacles after all as well
- Got rid of templates, should make compiling for e.g. macs more convenient,
for linux there's not much difference. Finally got rid of parser (and some other code
parts), the simulation now uses the internal API to transfer data.
- Some unnecessary file were removed, the GUI now needs 3 settings buttons...
This should still be changed (maybe by adding a new panel for domain objects).
IPOs:
- Animated params: viscosity, time and gravity for domains. In contrast
to normal time IPO for Blender objects, the fluidsim one scales the time
step size - so a constant 1 has no effect, values towards 0 slow it down,
larger ones speed the simulation up (-> longer time steps, more compuations).
The viscosity IPO is also only a factor for the selected viscosity (again, 1=no effect).
- For objects that are enabled for fluidsim, a new IPO type shows up. Inflow
objects can use the velocity channels to animate the inflow. Obstacles, in/outflow
objects can be switched on (Active IPO>0) and off (<0) during the simulation.
- Movement, rotation and scaling of those 3 types is exported from the normal
Blender channels (Loc,dLoc,etc.).
Particles:
- This is still experimental, so it might be deactivated for a
release... It should at some point be used to model smaller splashes,
depending on the the realworld size and the particle generation
settings particles are generated during simulation (stored in _particles_X.gz
files).
- These are loaded by enabling the particle field for an arbitrary object,
which should be given a halo material. For each frame, similar to the mesh
loading, the particle system them loads the simulated particle positions.
- For rendering, I "abused" the part->rt field - I couldnt find any use
for it in the code and it seems to work fine. The fluidsim particles
store their size there.
Rendering:
- The fluidims particles use scaled sizes and alpha values to give a more varied
appearance. In convertblender.c fluidsim particle systems use the p->rt field
to scale up the size and down the alpha of "smaller particles". Setting the
influence fields in the fluidims settings to 0 gives equally sized particles
with same alpha everywhere. Higher values cause larger differences.
- Smoothed normals: for unmodified fluid meshes (e.g. no subdivision) the normals
computed by the solver are used. This is basically done by switching off the
normal recalculation in convertblender.c (the function calc_fluidsimnormals
handles other mesh inits instead of calc_vertexnormals).
This could also be used to e.g. modify mesh normals in a modifier...
- Another change is that fluidsim meshes load the velocities computed
during the simulation for image based motion blur. This is inited in
load_fluidsimspeedvectors for the vector pass (they're loaded during the
normal load in DerivedMesh readBobjgz). Generation and loading can be switched
off in the settings. Vector pass currently loads the fluidism meshes 3 times,
so this should still be optimized.
Examples:
- smoothed normals versus normals from subdividing once:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_1smoothnorms.png
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_2subdivnorms.png
- fluidsim particles, size/alpha influence 0:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_3particlesnorm.png
size influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_4particlessize.png
size & alpha influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_5particlesalpha.png
- the standard drop with motion blur and particles:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t2new.mpg
(here's how it looks without
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t1old.mpg)
- another inflow animation (moving, switched on/off) with a moving obstacle
(and strong mblur :)
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t3ipos.mpg
Things still to fix:
- rotating & scaling domains causes wrong speed vectors
- get rid of SDL code for threading, use pthreads as well?
- update wiki documentation
- cool effects for rendering would be photon maps for caustics,
and motion blur for particles :)
2006-02-27 11:45:42 +00:00
|
|
|
|
2008-10-03 13:02:34 +00:00
|
|
|
#define OB_TYPEFLAG_START 7
|
Sorry for the big commit, but I've been fixing many of these
issues in parallel... So this commit contains: an update of
the solver (e.g. moving objects), integration of blender IPOs,
improved rendering (motion blur, smoothed normals) and a first particle
test. In more detail:
Solver update:
- Moving objects using a relatively simple model, and not yet fully optimized - ok
for box falling into water, water in a moving glass might cause trouble. Simulation
times are influenced by overall no. of triangles of the mesh, scaling meshes up a lot
might also cause slowdowns.
- Additional obstacle settings: noslip (as before), free slip (move along wall freely)
and part slip (mix of both).
- Obstacle settings also added for domain boundaries now, the six walls of the domain are
obstacles after all as well
- Got rid of templates, should make compiling for e.g. macs more convenient,
for linux there's not much difference. Finally got rid of parser (and some other code
parts), the simulation now uses the internal API to transfer data.
- Some unnecessary file were removed, the GUI now needs 3 settings buttons...
This should still be changed (maybe by adding a new panel for domain objects).
IPOs:
- Animated params: viscosity, time and gravity for domains. In contrast
to normal time IPO for Blender objects, the fluidsim one scales the time
step size - so a constant 1 has no effect, values towards 0 slow it down,
larger ones speed the simulation up (-> longer time steps, more compuations).
The viscosity IPO is also only a factor for the selected viscosity (again, 1=no effect).
- For objects that are enabled for fluidsim, a new IPO type shows up. Inflow
objects can use the velocity channels to animate the inflow. Obstacles, in/outflow
objects can be switched on (Active IPO>0) and off (<0) during the simulation.
- Movement, rotation and scaling of those 3 types is exported from the normal
Blender channels (Loc,dLoc,etc.).
Particles:
- This is still experimental, so it might be deactivated for a
release... It should at some point be used to model smaller splashes,
depending on the the realworld size and the particle generation
settings particles are generated during simulation (stored in _particles_X.gz
files).
- These are loaded by enabling the particle field for an arbitrary object,
which should be given a halo material. For each frame, similar to the mesh
loading, the particle system them loads the simulated particle positions.
- For rendering, I "abused" the part->rt field - I couldnt find any use
for it in the code and it seems to work fine. The fluidsim particles
store their size there.
Rendering:
- The fluidims particles use scaled sizes and alpha values to give a more varied
appearance. In convertblender.c fluidsim particle systems use the p->rt field
to scale up the size and down the alpha of "smaller particles". Setting the
influence fields in the fluidims settings to 0 gives equally sized particles
with same alpha everywhere. Higher values cause larger differences.
- Smoothed normals: for unmodified fluid meshes (e.g. no subdivision) the normals
computed by the solver are used. This is basically done by switching off the
normal recalculation in convertblender.c (the function calc_fluidsimnormals
handles other mesh inits instead of calc_vertexnormals).
This could also be used to e.g. modify mesh normals in a modifier...
- Another change is that fluidsim meshes load the velocities computed
during the simulation for image based motion blur. This is inited in
load_fluidsimspeedvectors for the vector pass (they're loaded during the
normal load in DerivedMesh readBobjgz). Generation and loading can be switched
off in the settings. Vector pass currently loads the fluidism meshes 3 times,
so this should still be optimized.
Examples:
- smoothed normals versus normals from subdividing once:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_1smoothnorms.png
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_2subdivnorms.png
- fluidsim particles, size/alpha influence 0:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_3particlesnorm.png
size influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_4particlessize.png
size & alpha influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_5particlesalpha.png
- the standard drop with motion blur and particles:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t2new.mpg
(here's how it looks without
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t1old.mpg)
- another inflow animation (moving, switched on/off) with a moving obstacle
(and strong mblur :)
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t3ipos.mpg
Things still to fix:
- rotating & scaling domains causes wrong speed vectors
- get rid of SDL code for threading, use pthreads as well?
- update wiki documentation
- cool effects for rendering would be photon maps for caustics,
and motion blur for particles :)
2006-02-27 11:45:42 +00:00
|
|
|
#define OB_FSGEO_THIN (1<<(OB_TYPEFLAG_START+1))
|
|
|
|
|
#define OB_FSBND_NOSLIP (1<<(OB_TYPEFLAG_START+2))
|
|
|
|
|
#define OB_FSBND_PARTSLIP (1<<(OB_TYPEFLAG_START+3))
|
|
|
|
|
#define OB_FSBND_FREESLIP (1<<(OB_TYPEFLAG_START+4))
|
|
|
|
|
#define OB_FSINFLOW_LOCALCOORD (1<<(OB_TYPEFLAG_START+5))
|
|
|
|
|
|
|
|
|
|
// guiDisplayMode particle flags
|
|
|
|
|
#define OB_FSDOM_GEOM 1
|
|
|
|
|
#define OB_FSDOM_PREVIEW 2
|
|
|
|
|
#define OB_FSDOM_FINAL 3
|
|
|
|
|
#define OB_FSPART_BUBBLE (1<<1)
|
|
|
|
|
#define OB_FSPART_DROP (1<<2)
|
|
|
|
|
#define OB_FSPART_NEWPART (1<<3)
|
|
|
|
|
#define OB_FSPART_FLOAT (1<<4)
|
2008-12-29 17:36:06 +00:00
|
|
|
#define OB_FSPART_TRACER (1<<5)
|
2005-09-18 13:28:42 +00:00
|
|
|
|
2010-03-25 06:27:25 +00:00
|
|
|
// new fluid bit flags for fss->flags
|
|
|
|
|
#define OB_FLUIDSIM_REVERSE (1 << 0)
|
|
|
|
|
#define OB_FLUIDSIM_ACTIVE (1 << 1)
|
|
|
|
|
#define OB_FLUIDSIM_OVERRIDE_TIME (1 << 2)
|
2008-07-28 16:55:48 +00:00
|
|
|
|
2005-09-18 13:28:42 +00:00
|
|
|
#ifdef __cplusplus
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|