This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/bmesh/intern/bmesh_mods.c

806 lines
18 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Joseph Eagar, Geoffrey Bantle, Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/bmesh/intern/bmesh_mods.c
* \ingroup bmesh
*
* This file contains functions for locally modifying
* the topology of existing mesh data. (split, join, flip etc).
*/
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_array.h"
#include "BLI_smallhash.h"
#include "BKE_customdata.h"
#include "bmesh.h"
#include "bmesh_private.h"
/**
2012-02-29 06:55:10 +00:00
* \brief Dissolve Vert
*
2012-02-29 06:55:10 +00:00
* Turns the face region surrounding a manifold vertex into a single polygon.
*
*
2012-02-29 06:55:10 +00:00
* \par Example:
*
2012-02-29 06:55:10 +00:00
* |=========| |=========|
* | \ / | | |
* Before: | V | After: | |
* | / \ | | |
* |=========| |=========|
*
*
* \note dissolves vert, in more situations then BM_disk_dissolve
* (e.g. if the vert is part of a wire edge, etc).
*/
int BM_vert_dissolve(BMesh *bm, BMVert *v)
{
const int len = BM_vert_edge_count(v);
if (len == 1) {
BM_vert_kill(bm, v); /* will kill edges too */
return TRUE;
}
else if (!BM_vert_is_manifold(bm, v)) {
if (!v->e) {
BM_vert_kill(bm, v);
return TRUE;
}
else if (!v->e->l) {
if (len == 2) {
return (BM_vert_collapse_edge(bm, v->e, v, TRUE) != NULL);
}
else {
/* used to kill the vertex here, but it may be connected to faces.
* so better do nothing */
return FALSE;
}
}
else {
return FALSE;
}
}
else if (len == 2 && BM_vert_face_count(v) == 1) {
/* boundry vertex on a face */
return (BM_vert_collapse_edge(bm, v->e, v, TRUE) != NULL);
}
else {
return BM_disk_dissolve(bm, v);
}
}
/**
* dissolves all faces around a vert, and removes it.
*/
int BM_disk_dissolve(BMesh *bm, BMVert *v)
{
BMFace *f, *f2;
BMEdge *e, *keepedge = NULL, *baseedge = NULL;
int len = 0;
if (!BM_vert_is_manifold(bm, v)) {
return FALSE;
}
if (v->e) {
/* v->e we keep, what else */
e = v->e;
do {
e = bmesh_disk_edge_next(e, v);
if (!(BM_edge_share_face_count(e, v->e))) {
keepedge = e;
baseedge = v->e;
break;
}
len++;
} while (e != v->e);
}
/* this code for handling 2 and 3-valence verts
* may be totally bad */
if (keepedge == NULL && len == 3) {
/* handle specific case for three-valence. solve it by
* increasing valence to four. this may be hackish. . */
BMLoop *loop = e->l;
if (loop->v == v) loop = loop->next;
if (!BM_face_split(bm, loop->f, v, loop->v, NULL, NULL))
return FALSE;
if (!BM_disk_dissolve(bm, v)) {
return FALSE;
}
return TRUE;
}
else if (keepedge == NULL && len == 2) {
/* collapse the verte */
e = BM_vert_collapse_faces(bm, v->e, v, 1.0, TRUE, TRUE);
if (!e) {
return FALSE;
}
/* handle two-valenc */
f = e->l->f;
f2 = e->l->radial_next->f;
if (f != f2 && !BM_faces_join_pair(bm, f, f2, e)) {
return FALSE;
}
return TRUE;
}
if (keepedge) {
int done = 0;
while (!done) {
done = 1;
e = v->e;
do {
f = NULL;
len = bmesh_radial_length(e->l);
if (len == 2 && (e != baseedge) && (e != keepedge)) {
f = BM_faces_join_pair(bm, e->l->f, e->l->radial_next->f, e);
/* return if couldn't join faces in manifold
* conditions */
//!disabled for testing why bad things happen
if (!f) {
return FALSE;
}
}
if (f) {
done = 0;
break;
}
e = bmesh_disk_edge_next(e, v);
} while (e != v->e);
}
/* collapse the verte */
e = BM_vert_collapse_faces(bm, baseedge, v, 1.0, TRUE, TRUE);
if (!e) {
return FALSE;
}
/* get remaining two face */
f = e->l->f;
f2 = e->l->radial_next->f;
if (f != f2) {
/* join two remaining face */
if (!BM_faces_join_pair(bm, f, f2, e)) {
return FALSE;
}
}
}
return TRUE;
}
/**
2012-02-29 06:55:10 +00:00
* \brief Faces Join Pair
*
2012-03-01 12:20:18 +00:00
* Joins two adjacent faces togather.
*
2012-02-29 06:55:10 +00:00
* Because this method calls to #BM_faces_join to do its work, if a pair
* of faces share multiple edges, the pair of faces will be joined at
* every edge (not just edge \a e). This part of the functionality might need
* to be reconsidered.
*
2012-02-29 06:55:10 +00:00
* If the windings do not match the winding of the new face will follow
* \a f1's winding (i.e. \a f2 will be reversed before the join).
*
2012-02-29 06:55:10 +00:00
* \return pointer to the combined face
*/
BMFace *BM_faces_join_pair(BMesh *bm, BMFace *f1, BMFace *f2, BMEdge *e)
{
BMLoop *l1, *l2;
BMEdge *jed = NULL;
BMFace *faces[2] = {f1, f2};
jed = e;
if (!jed) {
BMLoop *l_first;
/* search for an edge that has both these faces in its radial cycl */
l1 = l_first = BM_FACE_FIRST_LOOP(f1);
do {
if (l1->radial_next->f == f2) {
jed = l1->e;
break;
}
} while ((l1 = l1->next) != l_first);
}
if (UNLIKELY(!jed)) {
BMESH_ASSERT(0);
return NULL;
}
l1 = jed->l;
if (UNLIKELY(!l1)) {
BMESH_ASSERT(0);
return NULL;
}
l2 = l1->radial_next;
if (l1->v == l2->v) {
bmesh_loop_reverse(bm, f2);
}
f1 = BM_faces_join(bm, faces, 2);
return f1;
}
/**
2012-02-29 06:55:10 +00:00
* \brief Connect Verts, Split Face
*
* connects two verts together, automatically (if very naively) finding the
2012-02-29 06:55:10 +00:00
* face they both share (if there is one) and splittling it. Use this at your
* own risk, as it doesn't handle the many complex cases it should (like zero-area faces,
* multiple faces, etc).
*
* this is really only meant for cases where you don't know before hand the face
* the two verts belong to for splitting (e.g. the subdivision operator).
2012-02-29 06:55:10 +00:00
*
* \return The newly created edge.
*/
BMEdge *BM_verts_connect(BMesh *bm, BMVert *v1, BMVert *v2, BMFace **r_f)
{
BMIter fiter;
BMIter viter;
BMVert *v_iter;
BMFace *f_iter;
/* be warned: this can do weird things in some ngon situation, see BM_face_legal_splits */
BM_ITER(f_iter, &fiter, bm, BM_FACES_OF_VERT, v1) {
BM_ITER(v_iter, &viter, bm, BM_FACES_OF_VERT, f_iter) {
if (v_iter == v2) {
BMLoop *nl;
f_iter = BM_face_split(bm, f_iter, v1, v2, &nl, NULL);
if (r_f) {
*r_f = f_iter;
}
return nl->e;
}
}
}
2012-02-29 06:55:10 +00:00
if (r_f) {
*r_f = NULL;
}
return NULL;
}
/**
2012-02-29 06:55:10 +00:00
* \brief Face Split
*
2012-02-29 06:55:10 +00:00
* Split a face along two vertices. returns the newly made face, and sets
* the \a r_l member to a loop in the newly created edge.
*
2012-02-29 06:55:10 +00:00
* \param bm The bmesh
* \param f the original face
* \param v1, v2 vertices which define the split edge, must be different
* \param r_l pointer which will receive the BMLoop for the split edge in the new face
* \param example Face used to initialize settings
*
* \return Pointer to the newly created face representing one side of the split
* if the split is successful (and the original original face will be the
* other side). NULL if the split fails.
*/
BMFace *BM_face_split(BMesh *bm, BMFace *f, BMVert *v1, BMVert *v2, BMLoop **r_l, BMEdge *example)
{
const int has_mdisp = CustomData_has_layer(&bm->ldata, CD_MDISPS);
BMFace *nf, *of;
BLI_assert(v1 != v2);
/* do we have a multires layer */
if (has_mdisp) {
of = BM_face_copy(bm, f, FALSE, FALSE);
}
#ifdef USE_BMESH_HOLES
nf = bmesh_sfme(bm, f, v1, v2, r_l, NULL, example);
#else
nf = bmesh_sfme(bm, f, v1, v2, r_l, example);
#endif
if (nf) {
BM_elem_attrs_copy(bm, bm, f, nf);
copy_v3_v3(nf->no, f->no);
/* handle multires update */
if (has_mdisp && (nf != f)) {
BMLoop *l_iter;
BMLoop *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
BM_loop_interp_from_face(bm, l_iter, of, FALSE, TRUE);
} while ((l_iter = l_iter->next) != l_first);
l_iter = l_first = BM_FACE_FIRST_LOOP(nf);
do {
BM_loop_interp_from_face(bm, l_iter, of, FALSE, TRUE);
} while ((l_iter = l_iter->next) != l_first);
BM_face_kill(bm, of);
#if 0
/* BM_face_multires_bounds_smooth doesn't flip displacement correct */
BM_face_multires_bounds_smooth(bm, f);
BM_face_multires_bounds_smooth(bm, nf);
#endif
}
}
return nf;
}
/**
2012-02-29 06:55:10 +00:00
* \brief Vert Collapse Faces
*
* Collapses vertex \a kv that has only two manifold edges
* onto a vertex it shares an edge with.
* \a fac defines the amount of interpolation for Custom Data.
*
* \note that this is not a general edge collapse function.
*
2012-02-29 06:55:10 +00:00
* \note this function is very close to #BM_vert_collapse_edge,
* both collapse a vertex and return a new edge.
* Except this takes a factor and merges custom data.
*
* BMESH_TODO:
* Insert error checking for KV valance.
*
2012-02-29 06:55:10 +00:00
* \param bm The bmesh
* \param ke The edge to collapse
* \param kv The vertex to collapse into the edge
* \param fac The factor along the edge
* \param join_faces When true the faces around the vertex will be joined
* otherwise collapse the vertex by merging the 2 edges this vert touches into one.
* \param kill_degenerate_faces Removes faces with less than 3 verts after collapsing.
2012-02-29 06:55:10 +00:00
*
* \returns The New Edge
*/
BMEdge *BM_vert_collapse_faces(BMesh *bm, BMEdge *ke, BMVert *kv, float fac,
const short join_faces, const short kill_degenerate_faces)
{
BMEdge *ne = NULL;
BMVert *tv = bmesh_edge_other_vert_get(ke, kv);
BMEdge *e2;
BMVert *tv2;
BMIter iter;
BMLoop *l_iter = NULL, *kvloop = NULL, *tvloop = NULL;
void *src[2];
float w[2];
/* Only intended to be called for 2-valence vertices */
BLI_assert(bmesh_disk_count(kv) <= 2);
/* first modify the face loop data */
w[0] = 1.0f - fac;
w[1] = fac;
if (ke->l) {
l_iter = ke->l;
do {
if (l_iter->v == tv && l_iter->next->v == kv) {
tvloop = l_iter;
kvloop = l_iter->next;
src[0] = kvloop->head.data;
src[1] = tvloop->head.data;
CustomData_bmesh_interp(&bm->ldata, src, w, NULL, 2, kvloop->head.data);
}
} while ((l_iter = l_iter->radial_next) != ke->l);
}
/* now interpolate the vertex data */
BM_data_interp_from_verts(bm, kv, tv, kv, fac);
e2 = bmesh_disk_edge_next(ke, kv);
tv2 = BM_edge_other_vert(e2, kv);
if (join_faces) {
BMFace **faces = NULL;
BMFace *f;
BLI_array_staticdeclare(faces, 8);
BM_ITER(f, &iter, bm, BM_FACES_OF_VERT, kv) {
BLI_array_append(faces, f);
}
if (BLI_array_count(faces) >= 2) {
BMFace *f2 = BM_faces_join(bm, faces, BLI_array_count(faces));
if (f2) {
BMLoop *nl = NULL;
if (BM_face_split(bm, f2, tv, tv2, &nl, NULL)) {
ne = nl->e;
}
}
}
BLI_array_free(faces);
}
else {
/* single face or no faces */
/* same as BM_vert_collapse_edge() however we already
* have vars to perform this operation so dont call. */
ne = bmesh_jekv(bm, ke, kv, TRUE);
/* ne = BM_edge_exists(tv, tv2); */ /* same as return above */
if (kill_degenerate_faces) {
BMIter fiter;
BMFace *f;
BMVert *verts[2] = {ne->v1, ne->v2};
int i;
for (i = 0; i < 2; i++) {
BM_ITER(f, &fiter, bm, BM_FACES_OF_VERT, verts[i]) {
if (f->len < 3) {
BM_face_kill(bm, f);
}
}
}
}
}
return ne;
}
/**
2012-02-29 06:55:10 +00:00
* \brief Vert Collapse Faces
*
* Collapses a vertex onto another vertex it shares an edge with.
*
2012-02-29 06:55:10 +00:00
* \return The New Edge
*/
BMEdge *BM_vert_collapse_edge(BMesh *bm, BMEdge *ke, BMVert *kv,
const short kill_degenerate_faces)
{
/* nice example implementation but we want loops to have their customdata
* accounted for */
#if 0
BMEdge *ne = NULL;
/* Collapse between 2 edges */
/* in this case we want to keep all faces and not join them,
* rather just get rid of the veretex - see bug [#28645] */
BMVert *tv = bmesh_edge_other_vert_get(ke, kv);
if (tv) {
BMEdge *e2 = bmesh_disk_edge_next(ke, kv);
if (e2) {
BMVert *tv2 = BM_edge_other_vert(e2, kv);
if (tv2) {
/* only action, other calls here only get the edge to return */
ne = bmesh_jekv(bm, ke, kv);
/* ne = BM_edge_exists(tv, tv2); */ /* same as return above */
}
}
}
return ne;
#else
/* with these args faces are never joined, same as above
* but account for loop customdata */
return BM_vert_collapse_faces(bm, ke, kv, 1.0f, FALSE, kill_degenerate_faces);
#endif
}
#undef DO_V_INTERP
/**
2012-02-29 06:55:10 +00:00
* \brief Edge Split
*
2012-02-29 06:55:10 +00:00
* Splits an edge. \a v should be one of the vertices in \a e and defines
* the direction of the splitting operation for interpolation purposes.
*
2012-02-29 06:55:10 +00:00
* \return The new vert
*/
BMVert *BM_edge_split(BMesh *bm, BMEdge *e, BMVert *v, BMEdge **r_e, float percent)
{
BMVert *nv, *v2;
BMFace **oldfaces = NULL;
BMEdge *e_dummy;
BLI_array_staticdeclare(oldfaces, 32);
SmallHash hash;
const int do_mdisp = (e->l && CustomData_has_layer(&bm->ldata, CD_MDISPS));
/* we need this for handling multire */
if (!r_e) {
r_e = &e_dummy;
}
/* do we have a multires layer */
if (do_mdisp) {
BMLoop *l;
int i;
l = e->l;
do {
BLI_array_append(oldfaces, l->f);
l = l->radial_next;
} while (l != e->l);
/* create a hash so we can differentiate oldfaces from new face */
BLI_smallhash_init(&hash);
for (i = 0; i < BLI_array_count(oldfaces); i++) {
oldfaces[i] = BM_face_copy(bm, oldfaces[i], TRUE, TRUE);
BLI_smallhash_insert(&hash, (intptr_t)oldfaces[i], NULL);
}
}
v2 = bmesh_edge_other_vert_get(e, v);
nv = bmesh_semv(bm, v, e, r_e);
BLI_assert(nv != NULL);
sub_v3_v3v3(nv->co, v2->co, v->co);
madd_v3_v3v3fl(nv->co, v->co, nv->co, percent);
if (r_e) {
(*r_e)->head.hflag = e->head.hflag;
BM_elem_attrs_copy(bm, bm, e, *r_e);
}
/* v->nv->v2 */
BM_data_interp_face_vert_edge(bm, v2, v, nv, e, percent);
BM_data_interp_from_verts(bm, v, v2, nv, percent);
if (do_mdisp) {
int i, j;
/* interpolate new/changed loop data from copied old face */
for (j = 0; j < 2; j++) {
for (i = 0; i < BLI_array_count(oldfaces); i++) {
BMEdge *e1 = j ? *r_e : e;
BMLoop *l, *l2;
l = e1->l;
if (UNLIKELY(!l)) {
BMESH_ASSERT(0);
break;
}
do {
if (!BLI_smallhash_haskey(&hash, (intptr_t)l->f)) {
BMLoop *l2_first;
l2 = l2_first = BM_FACE_FIRST_LOOP(l->f);
do {
BM_loop_interp_multires(bm, l2, oldfaces[i]);
} while ((l2 = l2->next) != l2_first);
}
l = l->radial_next;
} while (l != e1->l);
}
}
/* destroy the old face */
for (i = 0; i < BLI_array_count(oldfaces); i++) {
BM_face_verts_kill(bm, oldfaces[i]);
}
/* fix boundaries a bit, doesn't work too well quite ye */
#if 0
for (j = 0; j < 2; j++) {
BMEdge *e1 = j ? *r_e : e;
BMLoop *l, *l2;
l = e1->l;
if (UNLIKELY(!l)) {
BMESH_ASSERT(0);
break;
}
do {
BM_face_multires_bounds_smooth(bm, l->f);
l = l->radial_next;
} while (l != e1->l);
}
#endif
BLI_array_free(oldfaces);
BLI_smallhash_release(&hash);
}
return nv;
}
/* split an edge multiple times evenly */
BMVert *BM_edge_split_n(BMesh *bm, BMEdge *e, int numcuts)
{
int i;
float percent;
BMVert *nv = NULL;
for (i = 0; i < numcuts; i++) {
percent = 1.0f / (float)(numcuts + 1 - i);
nv = BM_edge_split(bm, e, e->v2, NULL, percent);
}
return nv;
}
/* checks if a face is valid in the data structure */
int BM_face_validate(BMesh *bm, BMFace *face, FILE *err)
{
BMIter iter;
BLI_array_declare(verts);
BMVert **verts = NULL;
BMLoop *l;
int ret = 1, i, j;
if (face->len == 2) {
fprintf(err, "warning: found two-edged face. face ptr: %p\n", face);
fflush(err);
}
for (l = BM_iter_new(&iter, bm, BM_LOOPS_OF_FACE, face); l; l = BM_iter_step(&iter)) {
BLI_array_growone(verts);
verts[BLI_array_count(verts) - 1] = l->v;
if (l->e->v1 == l->e->v2) {
fprintf(err, "Found bmesh edge with identical verts!\n");
fprintf(err, " edge ptr: %p, vert: %p\n", l->e, l->e->v1);
fflush(err);
ret = 0;
}
}
for (i = 0; i < BLI_array_count(verts); i++) {
for (j = 0; j < BLI_array_count(verts); j++) {
if (j == i) {
continue;
}
if (verts[i] == verts[j]) {
fprintf(err, "Found duplicate verts in bmesh face!\n");
fprintf(err, " face ptr: %p, vert: %p\n", face, verts[i]);
fflush(err);
ret = 0;
}
}
}
BLI_array_free(verts);
return ret;
}
/**
* \brief Check if Rotate Edge is OK
*
* Quick check to see if we could rotate the edge,
* use this to avoid calling exceptions on common cases.
*/
int BM_edge_rotate_check(BMesh *UNUSED(bm), BMEdge *e)
{
BMFace *fa, *fb;
if (BM_edge_face_pair(e, &fa, &fb)) {
BMLoop *la, *lb;
la = BM_face_other_vert_loop(e->v2, fa, e->v1);
lb = BM_face_other_vert_loop(e->v2, fb, e->v1);
/* check that the next vert in both faces isnt the same
* (ie - the next edge doesnt share the same faces).
* since we can't rotate usefully in this case. */
if (la->v == lb->v) {
return FALSE;
}
/* mirror of the check above but in the opposite direction */
la = BM_face_other_vert_loop(e->v1, fa, e->v2);
lb = BM_face_other_vert_loop(e->v1, fb, e->v2);
if (la->v == lb->v) {
return FALSE;
}
return TRUE;
}
else {
return FALSE;
}
}
2012-02-29 06:55:10 +00:00
/**
* \brief Rotate Edge
*
2012-02-29 06:55:10 +00:00
* Spins an edge topologically,
* either counter-clockwise or clockwise depending on \a ccw.
*
2012-02-29 06:55:10 +00:00
* \return The spun edge, NULL on error
* (e.g., if the edge isn't surrounded by exactly two faces).
*
2012-02-29 06:55:10 +00:00
* \note This works by dissolving the edge then re-creating it,
* so the returned edge won't have the same pointer address as the original one.
*/
BMEdge *BM_edge_rotate(BMesh *bm, BMEdge *e, int ccw)
{
BMVert *v1, *v2;
BMLoop *l, *l1, *l2, *nl;
BMFace *f;
BMIter liter;
if (!BM_edge_rotate_check(bm, e)) {
return NULL;
}
v1 = e->v1;
v2 = e->v2;
f = BM_faces_join_pair(bm, e->l->f, e->l->radial_next->f, e);
if (f == NULL)
return NULL;
BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
if (l->v == v1)
l1 = l;
else if (l->v == v2)
l2 = l;
}
if (ccw) {
l1 = l1->prev;
l2 = l2->prev;
}
else {
l1 = l1->next;
l2 = l2->next;
}
if (!BM_face_split(bm, f, l1->v, l2->v, &nl, NULL))
return NULL;
return nl->e;
}
/* Rip a single face from a vertex fan */
2012-02-26 22:38:49 +00:00
BMVert *BM_vert_rip(BMesh *bm, BMFace *sf, BMVert *sv)
{
return bmesh_urmv(bm, sf, sv);
}