This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/draw/engines/eevee/shaders/lightprobe_lib.glsl

262 lines
7.9 KiB
GLSL
Raw Normal View History

/* ----------- Uniforms --------- */
uniform sampler2DArray probePlanars;
uniform float lodPlanarMax;
uniform sampler2DArray probeCubes;
uniform float lodCubeMax;
/* ----------- Structures --------- */
struct CubeData {
vec4 position_type;
vec4 attenuation_fac_type;
mat4 influencemat;
mat4 parallaxmat;
};
#define PROBE_PARALLAX_BOX 1.0
#define PROBE_ATTENUATION_BOX 1.0
#define p_position position_type.xyz
#define p_parallax_type position_type.w
#define p_atten_fac attenuation_fac_type.x
#define p_atten_type attenuation_fac_type.y
struct PlanarData {
vec4 plane_equation;
vec4 clip_vec_x_fade_scale;
vec4 clip_vec_y_fade_bias;
vec4 clip_edges;
vec4 facing_scale_bias;
mat4 reflectionmat; /* transform world space into reflection texture space */
};
#define pl_plane_eq plane_equation
#define pl_normal plane_equation.xyz
#define pl_facing_scale facing_scale_bias.x
#define pl_facing_bias facing_scale_bias.y
#define pl_fade_scale clip_vec_x_fade_scale.w
#define pl_fade_bias clip_vec_y_fade_bias.w
#define pl_clip_pos_x clip_vec_x_fade_scale.xyz
#define pl_clip_pos_y clip_vec_y_fade_bias.xyz
#define pl_clip_edges clip_edges
struct GridData {
mat4 localmat;
ivec4 resolution_offset;
vec4 ws_corner_atten_scale; /* world space corner position */
vec4 ws_increment_x_atten_bias; /* world space vector between 2 opposite cells */
vec4 ws_increment_y;
vec4 ws_increment_z;
};
#define g_corner ws_corner_atten_scale.xyz
#define g_atten_scale ws_corner_atten_scale.w
#define g_atten_bias ws_increment_x_atten_bias.w
#define g_increment_x ws_increment_x_atten_bias.xyz
#define g_increment_y ws_increment_y.xyz
#define g_increment_z ws_increment_z.xyz
#define g_resolution resolution_offset.xyz
#define g_offset resolution_offset.w
#ifndef MAX_PROBE
#define MAX_PROBE 1
#endif
#ifndef MAX_GRID
#define MAX_GRID 1
#endif
#ifndef MAX_PLANAR
#define MAX_PLANAR 1
#endif
layout(std140) uniform probe_block {
CubeData probes_data[MAX_PROBE];
};
layout(std140) uniform grid_block {
GridData grids_data[MAX_GRID];
};
layout(std140) uniform planar_block {
PlanarData planars_data[MAX_PLANAR];
};
/* ----------- Functions --------- */
float probe_attenuation_cube(CubeData pd, vec3 W)
{
vec3 localpos = transform_point(pd.influencemat, W);
float fac;
if (pd.p_atten_type == PROBE_ATTENUATION_BOX) {
vec3 axes_fac = saturate(pd.p_atten_fac - pd.p_atten_fac * abs(localpos));
fac = min_v3(axes_fac);
}
else {
fac = saturate(pd.p_atten_fac - pd.p_atten_fac * length(localpos));
}
return fac;
}
float probe_attenuation_planar(PlanarData pd, vec3 W, vec3 N)
{
/* Normal Facing */
float fac = saturate(dot(pd.pl_normal, N) * pd.pl_facing_scale + pd.pl_facing_bias);
/* Distance from plane */
fac *= saturate(abs(dot(pd.pl_plane_eq, vec4(W, 1.0))) * pd.pl_fade_scale + pd.pl_fade_bias);
/* Fancy fast clipping calculation */
vec2 dist_to_clip;
dist_to_clip.x = dot(pd.pl_clip_pos_x, W);
dist_to_clip.y = dot(pd.pl_clip_pos_y, W);
fac *= step(2.0, dot(step(pd.pl_clip_edges, dist_to_clip.xxyy), vec2(-1.0, 1.0).xyxy)); /* compare and add all tests */
return fac;
}
float probe_attenuation_grid(GridData gd, vec3 W, out vec3 localpos)
{
localpos = transform_point(gd.localmat, W);
float fade = min(1.0, min_v3(1.0 - abs(localpos)));
return saturate(fade * gd.g_atten_scale + gd.g_atten_bias);
}
vec3 probe_evaluate_cube(float id, CubeData cd, vec3 W, vec3 R, float roughness)
{
/* Correct reflection ray using parallax volume intersection. */
vec3 localpos = transform_point(cd.parallaxmat, W);
vec3 localray = mat3(cd.parallaxmat) * R;
float dist;
if (cd.p_parallax_type == PROBE_PARALLAX_BOX) {
dist = line_unit_box_intersect_dist(localpos, localray);
}
else {
dist = line_unit_sphere_intersect_dist(localpos, localray);
}
/* Use Distance in WS directly to recover intersection */
vec3 intersection = W + R * dist - cd.p_position;
/* From Frostbite PBR Course
* Distance based roughness
* http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf */
float original_roughness = roughness;
float linear_roughness = sqrt(roughness);
float distance_roughness = saturate(dist * linear_roughness / length(intersection));
linear_roughness = mix(distance_roughness, linear_roughness, linear_roughness);
roughness = linear_roughness * linear_roughness;
float fac = saturate(original_roughness * 2.0 - 1.0);
R = mix(intersection, R, fac * fac);
return textureLod_octahedron(probeCubes, vec4(R, id), roughness * lodCubeMax, lodCubeMax).rgb;
}
vec3 probe_evaluate_world_spec(vec3 R, float roughness)
{
return textureLod_octahedron(probeCubes, vec4(R, 0.0), roughness * lodCubeMax, lodCubeMax).rgb;
}
vec3 probe_evaluate_planar(
float id, PlanarData pd, vec3 W, vec3 N, vec3 V,
float rand, float roughness,
inout float fade)
{
/* Find view vector / reflection plane intersection. */
vec3 point_on_plane = line_plane_intersect(W, V, pd.pl_plane_eq);
/* How far the pixel is from the plane. */
float ref_depth = 1.0; /* TODO parameter */
/* Compute distorded reflection vector based on the distance to the reflected object.
* In other words find intersection between reflection vector and the sphere center
* around point_on_plane. */
vec3 proj_ref = reflect(reflect(-V, N) * ref_depth, pd.pl_normal);
/* Final point in world space. */
vec3 ref_pos = point_on_plane + proj_ref;
/* Reproject to find texture coords. */
vec4 refco = pd.reflectionmat * vec4(ref_pos, 1.0);
refco.xy /= refco.w;
/* Distance to roughness */
float linear_roughness = sqrt(roughness);
float distance_roughness = min(linear_roughness, ref_depth * linear_roughness);
linear_roughness = mix(distance_roughness, linear_roughness, linear_roughness);
/* Decrease influence for high roughness */
fade *= saturate((1.0 - linear_roughness) * 5.0 - 2.0);
float lod = linear_roughness * 2.5 * lodPlanarMax;
vec3 sample = textureLod(probePlanars, vec3(refco.xy, id), lod).rgb;
/* Use a second sample randomly rotated to blur out the lowres aspect */
vec2 rot_sample = (1.0 / vec2(textureSize(probePlanars, 0).xy)) * vec2(cos(rand * M_2PI), sin(rand * M_2PI)) * lod;
sample += textureLod(probePlanars, vec3(refco.xy + rot_sample, id), lod).rgb;
sample *= 0.5;
return sample;
}
#ifdef IRRADIANCE_LIB
vec3 probe_evaluate_grid(GridData gd, vec3 W, vec3 N, vec3 localpos)
{
localpos = localpos * 0.5 + 0.5;
localpos = localpos * vec3(gd.g_resolution) - 0.5;
vec3 localpos_floored = floor(localpos);
vec3 trilinear_weight = fract(localpos);
float weight_accum = 0.0;
vec3 irradiance_accum = vec3(0.0);
/* For each neighboor cells */
for (int i = 0; i < 8; ++i) {
ivec3 offset = ivec3(i, i >> 1, i >> 2) & ivec3(1);
vec3 cell_cos = clamp(localpos_floored + vec3(offset), vec3(0.0), vec3(gd.g_resolution) - 1.0);
/* Keep in sync with update_irradiance_probe */
ivec3 icell_cos = ivec3(cell_cos);
int cell = gd.g_offset + icell_cos.z + icell_cos.y * gd.g_resolution.z + icell_cos.x * gd.g_resolution.z * gd.g_resolution.y;
vec3 color = irradiance_from_cell_get(cell, N);
/* We need this because we render probes in world space (so we need light vector in WS).
* And rendering them in local probe space is too much problem. */
vec3 ws_cell_location = gd.g_corner +
(gd.g_increment_x * cell_cos.x +
gd.g_increment_y * cell_cos.y +
gd.g_increment_z * cell_cos.z);
// vec3 ws_point_to_cell = ws_cell_location - W;
// vec3 ws_light = normalize(ws_point_to_cell);
vec3 trilinear = mix(1 - trilinear_weight, trilinear_weight, offset);
float weight = trilinear.x * trilinear.y * trilinear.z;
/* Smooth backface test */
// weight *= sqrt(max(0.002, dot(ws_light, N)));
/* Avoid zero weight */
weight = max(0.00001, weight);
weight_accum += weight;
irradiance_accum += color * weight;
}
return irradiance_accum / weight_accum;
}
vec3 probe_evaluate_world_diff(vec3 N)
{
return irradiance_from_cell_get(0, N);
}
#endif /* IRRADIANCE_LIB */