This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/intern/bmesh_mesh.c

613 lines
16 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Geoffrey Bantle.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/bmesh/intern/bmesh_mesh.c
* \ingroup bmesh
*
* BM mesh level functions.
*/
#include "MEM_guardedalloc.h"
#include "DNA_listBase.h"
#include "DNA_object_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BKE_utildefines.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_tessmesh.h"
#include "BKE_customdata.h"
#include "BKE_multires.h"
#include "ED_mesh.h"
#include "bmesh_private.h"
/* used as an extern, defined in bmesh.h */
int bm_mesh_allocsize_default[4] = {512, 512, 2048, 512};
static void bmesh_mempool_init(BMesh *bm, const int allocsize[4])
{
bm->vpool = BLI_mempool_create(sizeof(BMVert), allocsize[0], allocsize[0], FALSE, TRUE);
bm->epool = BLI_mempool_create(sizeof(BMEdge), allocsize[1], allocsize[1], FALSE, TRUE);
bm->lpool = BLI_mempool_create(sizeof(BMLoop), allocsize[2], allocsize[2], FALSE, FALSE);
bm->fpool = BLI_mempool_create(sizeof(BMFace), allocsize[3], allocsize[3], FALSE, TRUE);
#ifdef USE_BMESH_HOLES
bm->looplistpool = BLI_mempool_create(sizeof(BMLoopList), allocsize[3], allocsize[3], FALSE, FALSE);
#endif
/* allocate one flag pool that we dont get rid of. */
bm->toolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), 512, 512, FALSE, FALSE);
}
/*
* BMESH MAKE MESH
*
* Allocates a new BMesh structure.
* Returns -
* Pointer to a BM
*
*/
BMesh *BM_mesh_create(struct Object *ob, const int allocsize[4])
{
/* allocate the structure */
BMesh *bm = MEM_callocN(sizeof(BMesh), __func__);
bm->ob = ob;
/* allocate the memory pools for the mesh elements */
bmesh_mempool_init(bm, allocsize);
/* allocate one flag pool that we dont get rid of. */
bm->stackdepth = 1;
bm->totflags = 1;
return bm;
}
/*
* BMESH FREE MESH
*
* Frees a BMesh structure.
*/
void BM_mesh_data_free(BMesh *bm)
{
BMVert *v;
BMEdge *e;
BMLoop *l;
BMFace *f;
BMIter verts;
BMIter edges;
BMIter faces;
BMIter loops;
for (v = BM_iter_new(&verts, bm, BM_VERTS_OF_MESH, bm); v; v = BM_iter_step(&verts)) {
CustomData_bmesh_free_block(&(bm->vdata), &(v->head.data));
}
for (e = BM_iter_new(&edges, bm, BM_EDGES_OF_MESH, bm); e; e = BM_iter_step(&edges)) {
CustomData_bmesh_free_block(&(bm->edata), &(e->head.data));
}
for (f = BM_iter_new(&faces, bm, BM_FACES_OF_MESH, bm); f; f = BM_iter_step(&faces)) {
CustomData_bmesh_free_block(&(bm->pdata), &(f->head.data));
for (l = BM_iter_new(&loops, bm, BM_LOOPS_OF_FACE, f); l; l = BM_iter_step(&loops)) {
CustomData_bmesh_free_block(&(bm->ldata), &(l->head.data));
}
}
/* Free custom data pools, This should probably go in CustomData_free? */
if (bm->vdata.totlayer) BLI_mempool_destroy(bm->vdata.pool);
if (bm->edata.totlayer) BLI_mempool_destroy(bm->edata.pool);
if (bm->ldata.totlayer) BLI_mempool_destroy(bm->ldata.pool);
if (bm->pdata.totlayer) BLI_mempool_destroy(bm->pdata.pool);
/* free custom data */
CustomData_free(&bm->vdata, 0);
CustomData_free(&bm->edata, 0);
CustomData_free(&bm->ldata, 0);
CustomData_free(&bm->pdata, 0);
/* destroy element pools */
BLI_mempool_destroy(bm->vpool);
BLI_mempool_destroy(bm->epool);
BLI_mempool_destroy(bm->lpool);
BLI_mempool_destroy(bm->fpool);
/* destroy flag pool */
BLI_mempool_destroy(bm->toolflagpool);
#ifdef USE_BMESH_HOLES
BLI_mempool_destroy(bm->looplistpool);
#endif
/* These tables aren't used yet, so it's not stricly necessary
* to 'end' them (with 'e' param) but if someone tries to start
* using them, having these in place will save a lot of pain */
mesh_octree_table(NULL, NULL, NULL, 'e');
mesh_mirrtopo_table(NULL, 'e');
BLI_freelistN(&bm->selected);
BMO_error_clear(bm);
}
void BM_mesh_clear(BMesh *bm)
{
Object *ob = bm->ob;
/* free old mesh */
BM_mesh_data_free(bm);
memset(bm, 0, sizeof(BMesh));
/* re-initialize mesh */
bm->ob = ob;
/* allocate the memory pools for the mesh elements */
bmesh_mempool_init(bm, bm_mesh_allocsize_default);
bm->stackdepth = 1;
bm->totflags = 1;
}
/*
* BMESH FREE MESH
*
* Frees a BMesh structure.
*/
void BM_mesh_free(BMesh *bm)
{
BM_mesh_data_free(bm);
MEM_freeN(bm);
}
/*
* BMESH COMPUTE NORMALS
*
* Updates the normals of a mesh.
* Note that this can only be called
*
*/
void BM_mesh_normals_update(BMesh *bm, const short skip_hidden)
{
BMVert *v;
BMFace *f;
BMLoop *l;
BMEdge *e;
BMIter verts;
BMIter faces;
BMIter loops;
BMIter edges;
unsigned int maxlength = 0;
int index;
float (*projectverts)[3];
float (*edgevec)[3];
/* first, find out the largest face in mesh */
BM_ITER(f, &faces, bm, BM_FACES_OF_MESH, NULL) {
if (skip_hidden && BM_elem_flag_test(f, BM_ELEM_HIDDEN))
continue;
if (f->len > maxlength) maxlength = f->len;
}
/* make sure we actually have something to do */
if (maxlength < 3) return;
/* allocate projectverts array */
projectverts = MEM_callocN(sizeof(float) * maxlength * 3, "BM normal computation array");
/* calculate all face normals */
BM_ITER(f, &faces, bm, BM_FACES_OF_MESH, NULL) {
if (skip_hidden && BM_elem_flag_test(f, BM_ELEM_HIDDEN))
continue;
#if 0 /* UNUSED */
if (f->head.flag & BM_NONORMCALC)
continue;
#endif
bmesh_update_face_normal(bm, f, f->no, projectverts);
}
/* Zero out vertex normals */
BM_ITER(v, &verts, bm, BM_VERTS_OF_MESH, NULL) {
if (skip_hidden && BM_elem_flag_test(v, BM_ELEM_HIDDEN))
continue;
zero_v3(v->no);
}
/* compute normalized direction vectors for each edge. directions will be
* used below for calculating the weights of the face normals on the vertex
* normals */
index = 0;
edgevec = MEM_callocN(sizeof(float) * 3 * bm->totedge, "BM normal computation array");
BM_ITER(e, &edges, bm, BM_EDGES_OF_MESH, NULL) {
BM_elem_index_set(e, index); /* set_inline */
if (e->l) {
sub_v3_v3v3(edgevec[index], e->v2->co, e->v1->co);
normalize_v3(edgevec[index]);
}
else {
/* the edge vector will not be needed when the edge has no radial */
}
index++;
}
bm->elem_index_dirty &= ~BM_EDGE;
/* add weighted face normals to vertices */
BM_ITER(f, &faces, bm, BM_FACES_OF_MESH, NULL) {
if (skip_hidden && BM_elem_flag_test(f, BM_ELEM_HIDDEN))
continue;
BM_ITER(l, &loops, bm, BM_LOOPS_OF_FACE, f) {
float *e1diff, *e2diff;
float dotprod;
float fac;
/* calculate the dot product of the two edges that
* meet at the loop's vertex */
e1diff = edgevec[BM_elem_index_get(l->prev->e)];
e2diff = edgevec[BM_elem_index_get(l->e)];
dotprod = dot_v3v3(e1diff, e2diff);
/* edge vectors are calculated from e->v1 to e->v2, so
* adjust the dot product if one but not both loops
* actually runs from from e->v2 to e->v1 */
if ((l->prev->e->v1 == l->prev->v) ^ (l->e->v1 == l->v)) {
dotprod = -dotprod;
}
fac = saacos(-dotprod);
/* accumulate weighted face normal into the vertex's normal */
madd_v3_v3fl(l->v->no, f->no, fac);
}
}
/* normalize the accumulated vertex normals */
BM_ITER(v, &verts, bm, BM_VERTS_OF_MESH, NULL) {
if (skip_hidden && BM_elem_flag_test(v, BM_ELEM_HIDDEN))
continue;
if (normalize_v3(v->no) == 0.0f) {
normalize_v3_v3(v->no, v->co);
}
}
MEM_freeN(edgevec);
MEM_freeN(projectverts);
}
/*
This function ensures correct normals for the mesh, but
sets the flag BM_ELEM_TAG in flipped faces, to allow restoration
of original normals.
if undo is 0: calculate right normals
if undo is 1: restore original normals
*/
//keep in sycn with utils.c!
#define FACE_FLIP 8
static void bmesh_rationalize_normals(BMesh *bm, int undo)
{
BMOperator bmop;
BMFace *f;
BMIter iter;
if (undo) {
BM_ITER(f, &iter, bm, BM_FACES_OF_MESH, NULL) {
if (BM_elem_flag_test(f, BM_ELEM_TAG)) {
BM_face_normal_flip(bm, f);
}
BM_elem_flag_disable(f, BM_ELEM_TAG);
}
return;
}
BMO_op_initf(bm, &bmop, "righthandfaces faces=%af do_flip=%b", FALSE);
BMO_push(bm, &bmop);
bmesh_righthandfaces_exec(bm, &bmop);
BM_ITER(f, &iter, bm, BM_FACES_OF_MESH, NULL) {
BM_elem_flag_set(f, BM_ELEM_TAG, BMO_elem_flag_test(bm, f, FACE_FLIP));
}
BMO_pop(bm);
BMO_op_finish(bm, &bmop);
}
static void bmesh_set_mdisps_space(BMesh *bm, int from, int to)
{
/* switch multires data out of tangent space */
if (CustomData_has_layer(&bm->ldata, CD_MDISPS)) {
Object *ob = bm->ob;
BMEditMesh *em = BMEdit_Create(bm, FALSE);
DerivedMesh *dm = CDDM_from_BMEditMesh(em, NULL, TRUE, FALSE);
MDisps *mdisps;
BMFace *f;
BMIter iter;
// int i = 0; // UNUSED
multires_set_space(dm, ob, from, to);
mdisps = CustomData_get_layer(&dm->loopData, CD_MDISPS);
BM_ITER(f, &iter, bm, BM_FACES_OF_MESH, NULL) {
BMLoop *l;
BMIter liter;
BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
MDisps *lmd = CustomData_bmesh_get(&bm->ldata, l->head.data, CD_MDISPS);
if (!lmd->disps) {
printf("%s: warning - 'lmd->disps' == NULL\n", __func__);
}
if (lmd->disps && lmd->totdisp == mdisps->totdisp) {
memcpy(lmd->disps, mdisps->disps, sizeof(float) * 3 * lmd->totdisp);
}
else if (mdisps->disps) {
if (lmd->disps)
MEM_freeN(lmd->disps);
lmd->disps = MEM_dupallocN(mdisps->disps);
lmd->totdisp = mdisps->totdisp;
}
mdisps++;
// i += 1;
}
}
dm->needsFree = 1;
dm->release(dm);
/* setting this to NULL prevents BMEdit_Free from freeing it */
em->bm = NULL;
BMEdit_Free(em);
MEM_freeN(em);
}
}
/*
* BMESH BEGIN/END EDIT
*
* Functions for setting up a mesh for editing and cleaning up after
* the editing operations are done. These are called by the tools/operator
* API for each time a tool is executed.
*/
void bmesh_begin_edit(BMesh *bm, int flag)
{
bm->opflag = flag;
/* Most operators seem to be using BMO_OP_FLAG_UNTAN_MULTIRES to change the MDisps to
* absolute space during mesh edits. With this enabled, changes to the topology
* (loop cuts, edge subdivides, etc) are not reflected in the higher levels of
* the mesh at all, which doesn't seem right. Turning off completely for now,
* until this is shown to be better for certain types of mesh edits. */
#if BMOP_UNTAN_MULTIRES_ENABLED
/* switch multires data out of tangent space */
if ((flag & BMO_OP_FLAG_UNTAN_MULTIRES) && CustomData_has_layer(&bm->ldata, CD_MDISPS)) {
bmesh_set_mdisps_space(bm, MULTIRES_SPACE_TANGENT, MULTIRES_SPACE_ABSOLUTE);
/* ensure correct normals, if possible */
bmesh_rationalize_normals(bm, 0);
BM_mesh_normals_update(bm);
}
else if (flag & BMO_OP_FLAG_RATIONALIZE_NORMALS) {
bmesh_rationalize_normals(bm, 0);
}
#else
if (flag & BMO_OP_FLAG_RATIONALIZE_NORMALS) {
bmesh_rationalize_normals(bm, 0);
}
#endif
}
void bmesh_end_edit(BMesh *bm, int flag)
{
/* BMO_OP_FLAG_UNTAN_MULTIRES disabled for now, see comment above in bmesh_begin_edit. */
#if BMOP_UNTAN_MULTIRES_ENABLED
/* switch multires data into tangent space */
if ((flag & BMO_OP_FLAG_UNTAN_MULTIRES) && CustomData_has_layer(&bm->ldata, CD_MDISPS)) {
/* set normals to their previous winding */
bmesh_rationalize_normals(bm, 1);
bmesh_set_mdisps_space(bm, MULTIRES_SPACE_ABSOLUTE, MULTIRES_SPACE_TANGENT);
}
else if (flag & BMO_OP_FLAG_RATIONALIZE_NORMALS) {
bmesh_rationalize_normals(bm, 1);
}
#else
if (flag & BMO_OP_FLAG_RATIONALIZE_NORMALS) {
bmesh_rationalize_normals(bm, 1);
}
#endif
bm->opflag = 0;
/* compute normals, clear temp flags and flush selections */
BM_mesh_normals_update(bm, TRUE);
BM_mesh_select_mode_flush(bm);
}
void BM_mesh_elem_index_ensure(BMesh *bm, const char hflag)
{
BMIter iter;
BMElem *ele;
#ifdef DEBUG
BM_ELEM_INDEX_VALIDATE(bm, "Should Never Fail!", __func__);
#endif
if (hflag & BM_VERT) {
if (bm->elem_index_dirty & BM_VERT) {
int index = 0;
BM_ITER(ele, &iter, bm, BM_VERTS_OF_MESH, NULL) {
BM_elem_index_set(ele, index); /* set_ok */
index++;
}
bm->elem_index_dirty &= ~BM_VERT;
BLI_assert(index == bm->totvert);
}
else {
// printf("%s: skipping vert index calc!\n", __func__);
}
}
if (hflag & BM_EDGE) {
if (bm->elem_index_dirty & BM_EDGE) {
int index = 0;
BM_ITER(ele, &iter, bm, BM_EDGES_OF_MESH, NULL) {
BM_elem_index_set(ele, index); /* set_ok */
index++;
}
bm->elem_index_dirty &= ~BM_EDGE;
BLI_assert(index == bm->totedge);
}
else {
// printf("%s: skipping edge index calc!\n", __func__);
}
}
if (hflag & BM_FACE) {
if (bm->elem_index_dirty & BM_FACE) {
int index = 0;
BM_ITER(ele, &iter, bm, BM_FACES_OF_MESH, NULL) {
BM_elem_index_set(ele, index); /* set_ok */
index++;
}
bm->elem_index_dirty &= ~BM_FACE;
BLI_assert(index == bm->totface);
}
else {
// printf("%s: skipping face index calc!\n", __func__);
}
}
}
/* array checking/setting macros */
/* currently vert/edge/loop/face index data is being abused, but we should
* eventually be able to rely on it being valid. To this end, there are macros
* that validate them (so blender doesnt crash), but also print errors so we can
* fix the offending parts of the code, this way after some months we can
* confine this code for debug mode.
*
*
*/
void BM_mesh_elem_index_validate(BMesh *bm, const char *location, const char *func,
const char *msg_a, const char *msg_b)
{
const char iter_types[3] = {BM_VERTS_OF_MESH,
BM_EDGES_OF_MESH,
BM_FACES_OF_MESH};
const char flag_types[3] = {BM_VERT, BM_EDGE, BM_FACE};
const char *type_names[3] = {"vert", "edge", "face"};
BMIter iter;
BMElem *ele;
int i;
int is_any_error = 0;
for (i = 0; i < 3; i++) {
const int is_dirty = (flag_types[i] & bm->elem_index_dirty);
int index = 0;
int is_error = FALSE;
int err_val = 0;
int err_idx = 0;
BM_ITER(ele, &iter, bm, iter_types[i], NULL) {
if (!is_dirty) {
if (BM_elem_index_get(ele) != index) {
err_val = BM_elem_index_get(ele);
err_idx = index;
is_error = TRUE;
}
}
BM_elem_index_set(ele, index); /* set_ok */
index++;
}
if ((is_error == TRUE) && (is_dirty == FALSE)) {
is_any_error = TRUE;
fprintf(stderr,
"Invalid Index: at %s, %s, %s[%d] invalid index %d, '%s', '%s'\n",
location, func, type_names[i], err_idx, err_val, msg_a, msg_b);
}
else if ((is_error == FALSE) && (is_dirty == TRUE)) {
#if 0 /* mostly annoying */
/* dirty may have been incorrectly set */
fprintf(stderr,
"Invalid Dirty: at %s, %s (%s), dirty flag was set but all index values are correct, '%s', '%s'\n",
location, func, type_names[i], msg_a, msg_b);
#endif
}
}
#if 0 /* mostly annoying, even in debug mode */
#ifdef DEBUG
if (is_any_error == 0) {
fprintf(stderr,
"Valid Index Success: at %s, %s, '%s', '%s'\n",
location, func, msg_a, msg_b);
}
#endif
#endif
(void) is_any_error; /* shut up the compiler */
}
BMVert *BM_vert_at_index(BMesh *bm, const int index)
{
return BLI_mempool_findelem(bm->vpool, index);
}
BMEdge *BM_edge_at_index(BMesh *bm, const int index)
{
return BLI_mempool_findelem(bm->epool, index);
}
BMFace *BM_face_at_index(BMesh *bm, const int index)
{
return BLI_mempool_findelem(bm->fpool, index);
}