This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/smoke.c

2056 lines
57 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Daniel Genrich
* Blender Foundation
*
* ***** END GPL LICENSE BLOCK *****
*/
2011-02-27 20:40:57 +00:00
/** \file blender/blenkernel/intern/smoke.c
* \ingroup bke
*/
/* Part of the code copied from elbeem fluid library, copyright by Nils Thuerey */
#include <GL/glew.h>
#include "MEM_guardedalloc.h"
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <string.h> /* memset */
#include "BLI_linklist.h"
#include "BLI_rand.h"
#include "BLI_jitter.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_edgehash.h"
#include "BLI_kdtree.h"
#include "BLI_kdopbvh.h"
#include "BLI_utildefines.h"
#include "BKE_bvhutils.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_collision.h"
#include "BKE_customdata.h"
#include "BKE_DerivedMesh.h"
#include "BKE_effect.h"
#include "BKE_modifier.h"
#include "BKE_particle.h"
#include "BKE_pointcache.h"
#include "BKE_smoke.h"
#include "DNA_customdata_types.h"
#include "DNA_group_types.h"
#include "DNA_lamp_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "DNA_smoke_types.h"
#include "BKE_smoke.h"
/* UNUSED so far, may be enabled later */
/* #define USE_SMOKE_COLLISION_DM */
2011-11-01 22:51:10 +00:00
#ifdef WITH_SMOKE
#include "smoke_API.h"
#ifdef _WIN32
#include <time.h>
#include <stdio.h>
#include <conio.h>
#include <windows.h>
static LARGE_INTEGER liFrequency;
static LARGE_INTEGER liStartTime;
static LARGE_INTEGER liCurrentTime;
static void tstart ( void )
{
QueryPerformanceFrequency ( &liFrequency );
QueryPerformanceCounter ( &liStartTime );
}
static void tend ( void )
{
QueryPerformanceCounter ( &liCurrentTime );
}
static double UNUSED_FUNCTION(tval)( void )
2009-09-16 17:43:09 +00:00
{
return ((double)( (liCurrentTime.QuadPart - liStartTime.QuadPart)* (double)1000.0/(double)liFrequency.QuadPart ));
}
#else
#include <sys/time.h>
static struct timeval _tstart, _tend;
static struct timezone tz;
static void tstart ( void )
{
gettimeofday ( &_tstart, &tz );
}
static void tend ( void )
{
gettimeofday ( &_tend,&tz );
}
2010-12-03 01:52:28 +00:00
static double UNUSED_FUNCTION(tval)( void )
{
double t1, t2;
t1 = ( double ) _tstart.tv_sec*1000 + ( double ) _tstart.tv_usec/ ( 1000 );
t2 = ( double ) _tend.tv_sec*1000 + ( double ) _tend.tv_usec/ ( 1000 );
return t2-t1;
}
#endif
struct Object;
struct Scene;
struct DerivedMesh;
struct SmokeModifierData;
#define TRI_UVOFFSET (1./4.)
// timestep default value for nice appearance 0.1f
#define DT_DEFAULT 0.1f
/* forward declerations */
static void calcTriangleDivs(Object *ob, MVert *verts, int numverts, MFace *tris, int numfaces, int numtris, int **tridivs, float cell_len);
static void get_cell(float *p0, int res[3], float dx, float *pos, int *cell, int correct);
static void fill_scs_points(Object *ob, DerivedMesh *dm, SmokeCollSettings *scs);
2011-11-01 22:51:10 +00:00
#else /* WITH_SMOKE */
2011-11-01 22:51:10 +00:00
/* Stubs to use when smoke is disabled */
struct WTURBULENCE *smoke_turbulence_init(int *UNUSED(res), int UNUSED(amplify), int UNUSED(noisetype)) { return NULL; }
struct FLUID_3D *smoke_init(int *UNUSED(res), float *UNUSED(p0)) { return NULL; }
void smoke_free(struct FLUID_3D *UNUSED(fluid)) {}
void smoke_turbulence_free(struct WTURBULENCE *UNUSED(wt)) {}
void smoke_initWaveletBlenderRNA(struct WTURBULENCE *UNUSED(wt), float *UNUSED(strength)) {}
void smoke_initBlenderRNA(struct FLUID_3D *UNUSED(fluid), float *UNUSED(alpha), float *UNUSED(beta), float *UNUSED(dt_factor), float *UNUSED(vorticity), int *UNUSED(border_colli)) {}
long long smoke_get_mem_req(int UNUSED(xres), int UNUSED(yres), int UNUSED(zres), int UNUSED(amplify)) { return 0; }
void smokeModifier_do(SmokeModifierData *UNUSED(smd), Scene *UNUSED(scene), Object *UNUSED(ob), DerivedMesh *UNUSED(dm)) {}
2011-11-01 22:51:10 +00:00
#endif /* WITH_SMOKE */
#ifdef WITH_SMOKE
2011-11-01 22:51:10 +00:00
static int smokeModifier_init (SmokeModifierData *smd, Object *ob, Scene *scene, DerivedMesh *dm)
{
if((smd->type & MOD_SMOKE_TYPE_DOMAIN) && smd->domain && !smd->domain->fluid)
{
size_t i;
float min[3] = {FLT_MAX, FLT_MAX, FLT_MAX}, max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
float size[3];
MVert *verts = dm->getVertArray(dm);
float scale = 0.0;
int res;
res = smd->domain->maxres;
// get BB of domain
for(i = 0; i < dm->getNumVerts(dm); i++)
{
float tmp[3];
copy_v3_v3(tmp, verts[i].co);
mul_m4_v3(ob->obmat, tmp);
// min BB
min[0] = MIN2(min[0], tmp[0]);
min[1] = MIN2(min[1], tmp[1]);
min[2] = MIN2(min[2], tmp[2]);
// max BB
max[0] = MAX2(max[0], tmp[0]);
max[1] = MAX2(max[1], tmp[1]);
max[2] = MAX2(max[2], tmp[2]);
}
copy_v3_v3(smd->domain->p0, min);
copy_v3_v3(smd->domain->p1, max);
// calc other res with max_res provided
sub_v3_v3v3(size, max, min);
2009-09-16 17:43:09 +00:00
// prevent crash when initializing a plane as domain
if((size[0] < FLT_EPSILON) || (size[1] < FLT_EPSILON) || (size[2] < FLT_EPSILON))
return 0;
if(size[0] > size[1])
{
if(size[0] > size[2])
{
scale = res / size[0];
smd->domain->scale = size[0];
smd->domain->dx = 1.0f / res;
smd->domain->res[0] = res;
smd->domain->res[1] = (int)(size[1] * scale + 0.5);
smd->domain->res[2] = (int)(size[2] * scale + 0.5);
}
else {
scale = res / size[2];
smd->domain->scale = size[2];
smd->domain->dx = 1.0f / res;
smd->domain->res[2] = res;
smd->domain->res[0] = (int)(size[0] * scale + 0.5);
smd->domain->res[1] = (int)(size[1] * scale + 0.5);
}
}
else {
if(size[1] > size[2])
{
scale = res / size[1];
smd->domain->scale = size[1];
smd->domain->dx = 1.0f / res;
smd->domain->res[1] = res;
smd->domain->res[0] = (int)(size[0] * scale + 0.5);
smd->domain->res[2] = (int)(size[2] * scale + 0.5);
}
else {
scale = res / size[2];
smd->domain->scale = size[2];
smd->domain->dx = 1.0f / res;
smd->domain->res[2] = res;
smd->domain->res[0] = (int)(size[0] * scale + 0.5);
smd->domain->res[1] = (int)(size[1] * scale + 0.5);
}
}
// TODO: put in failsafe if res<=0 - dg
// dt max is 0.1
smd->domain->fluid = smoke_init(smd->domain->res, smd->domain->p0, DT_DEFAULT);
smd->time = scene->r.cfra;
if(smd->domain->flags & MOD_SMOKE_HIGHRES)
{
2009-09-16 17:43:09 +00:00
smd->domain->wt = smoke_turbulence_init(smd->domain->res, smd->domain->amplify + 1, smd->domain->noise);
smd->domain->res_wt[0] = smd->domain->res[0] * (smd->domain->amplify + 1);
smd->domain->res_wt[1] = smd->domain->res[1] * (smd->domain->amplify + 1);
smd->domain->res_wt[2] = smd->domain->res[2] * (smd->domain->amplify + 1);
smd->domain->dx_wt = smd->domain->dx / (smd->domain->amplify + 1);
}
if(!smd->domain->shadow)
2009-09-16 17:43:09 +00:00
smd->domain->shadow = MEM_callocN(sizeof(float) * smd->domain->res[0] * smd->domain->res[1] * smd->domain->res[2], "SmokeDomainShadow");
smoke_initBlenderRNA(smd->domain->fluid, &(smd->domain->alpha), &(smd->domain->beta), &(smd->domain->time_scale), &(smd->domain->vorticity), &(smd->domain->border_collisions));
if(smd->domain->wt)
2009-09-16 17:43:09 +00:00
{
smoke_initWaveletBlenderRNA(smd->domain->wt, &(smd->domain->strength));
}
return 1;
}
else if((smd->type & MOD_SMOKE_TYPE_FLOW) && smd->flow)
{
// handle flow object here
// XXX TODO
smd->time = scene->r.cfra;
return 1;
}
else if((smd->type & MOD_SMOKE_TYPE_COLL))
{
// todo: delete this when loading colls work -dg
if(!smd->coll)
{
smokeModifier_createType(smd);
}
if(!smd->coll->points)
{
// init collision points
SmokeCollSettings *scs = smd->coll;
smd->time = scene->r.cfra;
// copy obmat
copy_m4_m4(scs->mat, ob->obmat);
copy_m4_m4(scs->mat_old, ob->obmat);
DM_ensure_tessface(dm);
fill_scs_points(ob, dm, scs);
}
if(!smd->coll->bvhtree)
{
smd->coll->bvhtree = NULL; // bvhtree_build_from_smoke ( ob->obmat, dm->getTessFaceArray(dm), dm->getNumTessFaces(dm), dm->getVertArray(dm), dm->getNumVerts(dm), 0.0 );
}
return 1;
}
return 2;
}
static void fill_scs_points(Object *ob, DerivedMesh *dm, SmokeCollSettings *scs)
{
MVert *mvert = dm->getVertArray(dm);
MFace *mface = dm->getTessFaceArray(dm);
int i = 0, divs = 0;
// DG TODO: need to do this dynamically according to the domain object!
float cell_len = scs->dx;
int newdivs = 0;
int quads = 0, facecounter = 0;
// count quads
for(i = 0; i < dm->getNumTessFaces(dm); i++)
{
if(mface[i].v4)
quads++;
}
scs->numtris = dm->getNumTessFaces(dm) + quads;
scs->tridivs = NULL;
calcTriangleDivs(ob, mvert, dm->getNumVerts(dm), mface, dm->getNumTessFaces(dm), scs->numtris, &(scs->tridivs), cell_len);
// count triangle divisions
for(i = 0; i < dm->getNumTessFaces(dm) + quads; i++)
{
divs += (scs->tridivs[3 * i] + 1) * (scs->tridivs[3 * i + 1] + 1) * (scs->tridivs[3 * i + 2] + 1);
}
scs->points = MEM_callocN(sizeof(float) * (dm->getNumVerts(dm) + divs) * 3, "SmokeCollPoints");
scs->points_old = MEM_callocN(sizeof(float) * (dm->getNumVerts(dm) + divs) * 3, "SmokeCollPointsOld");
for(i = 0; i < dm->getNumVerts(dm); i++)
{
float tmpvec[3];
copy_v3_v3(tmpvec, mvert[i].co);
// mul_m4_v3(ob->obmat, tmpvec); // DG: use local coordinates, we save MAT anyway
copy_v3_v3(&scs->points[i * 3], tmpvec);
}
for(i = 0, facecounter = 0; i < dm->getNumTessFaces(dm); i++)
{
int again = 0;
do
{
int j, k;
int divs1 = scs->tridivs[3 * facecounter + 0];
int divs2 = scs->tridivs[3 * facecounter + 1];
//int divs3 = scs->tridivs[3 * facecounter + 2];
float side1[3], side2[3], trinormorg[3], trinorm[3];
if(again == 1 && mface[i].v4)
{
sub_v3_v3v3(side1, mvert[ mface[i].v3 ].co, mvert[ mface[i].v1 ].co);
sub_v3_v3v3(side2, mvert[ mface[i].v4 ].co, mvert[ mface[i].v1 ].co);
}
else {
sub_v3_v3v3(side1, mvert[ mface[i].v2 ].co, mvert[ mface[i].v1 ].co);
sub_v3_v3v3(side2, mvert[ mface[i].v3 ].co, mvert[ mface[i].v1 ].co);
}
cross_v3_v3v3(trinormorg, side1, side2);
normalize_v3(trinormorg);
copy_v3_v3(trinorm, trinormorg);
mul_v3_fl(trinorm, 0.25 * cell_len);
for(j = 0; j <= divs1; j++)
{
for(k = 0; k <= divs2; k++)
{
float p1[3], p2[3], p3[3], p[3]={0,0,0};
const float uf = (float)(j + TRI_UVOFFSET) / (float)(divs1 + 0.0);
const float vf = (float)(k + TRI_UVOFFSET) / (float)(divs2 + 0.0);
float tmpvec[3];
if(uf+vf > 1.0)
{
// printf("bigger - divs1: %d, divs2: %d\n", divs1, divs2);
continue;
}
copy_v3_v3(p1, mvert[ mface[i].v1 ].co);
if(again == 1 && mface[i].v4)
{
copy_v3_v3(p2, mvert[ mface[i].v3 ].co);
copy_v3_v3(p3, mvert[ mface[i].v4 ].co);
}
else {
copy_v3_v3(p2, mvert[ mface[i].v2 ].co);
copy_v3_v3(p3, mvert[ mface[i].v3 ].co);
}
mul_v3_fl(p1, (1.0-uf-vf));
mul_v3_fl(p2, uf);
mul_v3_fl(p3, vf);
add_v3_v3v3(p, p1, p2);
add_v3_v3(p, p3);
if(newdivs > divs)
printf("mem problem\n");
// mMovPoints.push_back(p + trinorm);
add_v3_v3v3(tmpvec, p, trinorm);
// mul_m4_v3(ob->obmat, tmpvec); // DG: use local coordinates, we save MAT anyway
copy_v3_v3(&scs->points[3 * (dm->getNumVerts(dm) + newdivs)], tmpvec);
newdivs++;
if(newdivs > divs)
printf("mem problem\n");
// mMovPoints.push_back(p - trinorm);
copy_v3_v3(tmpvec, p);
sub_v3_v3(tmpvec, trinorm);
// mul_m4_v3(ob->obmat, tmpvec); // DG: use local coordinates, we save MAT anyway
copy_v3_v3(&scs->points[3 * (dm->getNumVerts(dm) + newdivs)], tmpvec);
newdivs++;
}
}
if(again == 0 && mface[i].v4)
again++;
else
again = 0;
facecounter++;
} while(again!=0);
}
scs->numverts = dm->getNumVerts(dm);
// DG TODO: also save triangle count?
scs->numpoints = dm->getNumVerts(dm) + newdivs;
for(i = 0; i < scs->numpoints * 3; i++)
{
scs->points_old[i] = scs->points[i];
}
}
static void fill_scs_points_anim(Object *UNUSED(ob), DerivedMesh *dm, SmokeCollSettings *scs)
{
MVert *mvert = dm->getVertArray(dm);
MFace *mface = dm->getTessFaceArray(dm);
int quads = 0, numtris = 0, facecounter = 0;
unsigned int i = 0;
int divs = 0, newdivs = 0;
// DG TODO: need to do this dynamically according to the domain object!
float cell_len = scs->dx;
// count quads
for(i = 0; i < dm->getNumTessFaces(dm); i++)
{
if(mface[i].v4)
quads++;
}
numtris = dm->getNumTessFaces(dm) + quads;
// check if mesh changed topology
if(scs->numtris != numtris)
return;
if(scs->numverts != dm->getNumVerts(dm))
return;
// update new positions
for(i = 0; i < dm->getNumVerts(dm); i++)
{
float tmpvec[3];
copy_v3_v3(tmpvec, mvert[i].co);
copy_v3_v3(&scs->points[i * 3], tmpvec);
}
// for every triangle // update div points
for(i = 0, facecounter = 0; i < dm->getNumTessFaces(dm); i++)
{
int again = 0;
do
{
int j, k;
int divs1 = scs->tridivs[3 * facecounter + 0];
int divs2 = scs->tridivs[3 * facecounter + 1];
float srcside1[3], srcside2[3], destside1[3], destside2[3], src_trinormorg[3], dest_trinormorg[3], src_trinorm[3], dest_trinorm[3];
if(again == 1 && mface[i].v4)
{
sub_v3_v3v3(srcside1, &scs->points_old[mface[i].v3 * 3], &scs->points_old[mface[i].v1 * 3]);
sub_v3_v3v3(destside1, &scs->points[mface[i].v3 * 3], &scs->points[mface[i].v1 * 3]);
sub_v3_v3v3(srcside2, &scs->points_old[mface[i].v4 * 3], &scs->points_old[mface[i].v1 * 3]);
sub_v3_v3v3(destside2, &scs->points[mface[i].v4 * 3], &scs->points[mface[i].v1 * 3]);
}
else {
sub_v3_v3v3(srcside1, &scs->points_old[mface[i].v2 * 3], &scs->points_old[mface[i].v1 * 3]);
sub_v3_v3v3(destside1, &scs->points[mface[i].v2 * 3], &scs->points[mface[i].v1 * 3]);
sub_v3_v3v3(srcside2, &scs->points_old[mface[i].v3 * 3], &scs->points_old[mface[i].v1 * 3]);
sub_v3_v3v3(destside2, &scs->points[mface[i].v3 * 3], &scs->points[mface[i].v1 * 3]);
}
cross_v3_v3v3(src_trinormorg, srcside1, srcside2);
cross_v3_v3v3(dest_trinormorg, destside1, destside2);
normalize_v3(src_trinormorg);
normalize_v3(dest_trinormorg);
copy_v3_v3(src_trinorm, src_trinormorg);
copy_v3_v3(dest_trinorm, dest_trinormorg);
mul_v3_fl(src_trinorm, 0.25 * cell_len);
mul_v3_fl(dest_trinorm, 0.25 * cell_len);
for(j = 0; j <= divs1; j++)
{
for(k = 0; k <= divs2; k++)
{
float src_p1[3], src_p2[3], src_p3[3], src_p[3]={0,0,0};
float dest_p1[3], dest_p2[3], dest_p3[3], dest_p[3]={0,0,0};
const float uf = (float)(j + TRI_UVOFFSET) / (float)(divs1 + 0.0);
const float vf = (float)(k + TRI_UVOFFSET) / (float)(divs2 + 0.0);
float src_tmpvec[3], dest_tmpvec[3];
if(uf+vf > 1.0)
{
// printf("bigger - divs1: %d, divs2: %d\n", divs1, divs2);
continue;
}
copy_v3_v3(src_p1, &scs->points_old[mface[i].v1 * 3]);
copy_v3_v3(dest_p1, &scs->points[mface[i].v1 * 3]);
if(again == 1 && mface[i].v4)
{
copy_v3_v3(src_p2, &scs->points_old[mface[i].v3 * 3]);
copy_v3_v3(dest_p2, &scs->points[mface[i].v3 * 3]);
copy_v3_v3(src_p3,&scs->points_old[mface[i].v4 * 3]);
copy_v3_v3(dest_p3, &scs->points[mface[i].v4 * 3]);
}
else {
copy_v3_v3(src_p2, &scs->points_old[mface[i].v2 * 3]);
copy_v3_v3(dest_p2, &scs->points[mface[i].v2 * 3]);
copy_v3_v3(src_p3, &scs->points_old[mface[i].v3 * 3]);
copy_v3_v3(dest_p3, &scs->points[mface[i].v3 * 3]);
}
mul_v3_fl(src_p1, (1.0-uf-vf));
mul_v3_fl(dest_p1, (1.0-uf-vf));
mul_v3_fl(src_p2, uf);
mul_v3_fl(dest_p2, uf);
mul_v3_fl(src_p3, vf);
mul_v3_fl(dest_p3, vf);
add_v3_v3v3(src_p, src_p1, src_p2);
add_v3_v3v3(dest_p, dest_p1, dest_p2);
add_v3_v3(src_p, src_p3);
add_v3_v3(dest_p, dest_p3);
if(newdivs > divs)
printf("mem problem\n");
// mMovPoints.push_back(p + trinorm);
add_v3_v3v3(src_tmpvec, src_p, src_trinorm);
add_v3_v3v3(dest_tmpvec, dest_p, dest_trinorm);
// mul_m4_v3(ob->obmat, tmpvec); // DG: use local coordinates, we save MAT anyway
copy_v3_v3(&scs->points_old[3 * (dm->getNumVerts(dm) + newdivs)], src_tmpvec);
copy_v3_v3(&scs->points[3 * (dm->getNumVerts(dm) + newdivs)], dest_tmpvec);
newdivs++;
if(newdivs > divs)
printf("mem problem\n");
// mMovPoints.push_back(p - trinorm);
copy_v3_v3(src_tmpvec, src_p);
copy_v3_v3(dest_tmpvec, dest_p);
sub_v3_v3(src_tmpvec, src_trinorm);
sub_v3_v3(dest_tmpvec, dest_trinorm);
// mul_m4_v3(ob->obmat, tmpvec); // DG: use local coordinates, we save MAT anyway
copy_v3_v3(&scs->points_old[3 * (dm->getNumVerts(dm) + newdivs)], src_tmpvec);
copy_v3_v3(&scs->points[3 * (dm->getNumVerts(dm) + newdivs)], dest_tmpvec);
newdivs++;
}
}
if(again == 0 && mface[i].v4)
again++;
else
again = 0;
facecounter++;
} while(again!=0);
}
// scs->numpoints = dm->getNumVerts(dm) + newdivs;
}
/*! init triangle divisions */
static void calcTriangleDivs(Object *ob, MVert *verts, int UNUSED(numverts), MFace *faces, int numfaces, int numtris, int **tridivs, float cell_len)
{
// mTriangleDivs1.resize( faces.size() );
// mTriangleDivs2.resize( faces.size() );
// mTriangleDivs3.resize( faces.size() );
size_t i = 0, facecounter = 0;
float maxscale[3] = {1,1,1}; // = channelFindMaxVf(mcScale); get max scale value
float maxpart = ABS(maxscale[0]);
float scaleFac = 0;
float fsTri = 0;
if(ABS(maxscale[1])>maxpart) maxpart = ABS(maxscale[1]);
if(ABS(maxscale[2])>maxpart) maxpart = ABS(maxscale[2]);
scaleFac = 1.0 / maxpart;
// featureSize = mLevel[mMaxRefine].nodeSize
fsTri = cell_len * 0.75 * scaleFac; // fsTri = cell_len * 0.9;
if(*tridivs)
MEM_freeN(*tridivs);
*tridivs = MEM_callocN(sizeof(int) * numtris * 3, "Smoke_Tridivs");
for(i = 0, facecounter = 0; i < numfaces; i++)
{
float p0[3], p1[3], p2[3];
float side1[3];
float side2[3];
float side3[3];
int divs1=0, divs2=0, divs3=0;
copy_v3_v3(p0, verts[faces[i].v1].co);
mul_m4_v3(ob->obmat, p0);
copy_v3_v3(p1, verts[faces[i].v2].co);
mul_m4_v3(ob->obmat, p1);
copy_v3_v3(p2, verts[faces[i].v3].co);
mul_m4_v3(ob->obmat, p2);
sub_v3_v3v3(side1, p1, p0);
sub_v3_v3v3(side2, p2, p0);
sub_v3_v3v3(side3, p1, p2);
if(dot_v3v3(side1, side1) > fsTri*fsTri)
{
float tmp = normalize_v3(side1);
divs1 = (int)ceil(tmp/fsTri);
}
if(dot_v3v3(side2, side2) > fsTri*fsTri)
{
float tmp = normalize_v3(side2);
divs2 = (int)ceil(tmp/fsTri);
/*
// debug
if(i==0)
printf("b tmp: %f, fsTri: %f, divs2: %d\n", tmp, fsTri, divs2);
*/
}
(*tridivs)[3 * facecounter + 0] = divs1;
(*tridivs)[3 * facecounter + 1] = divs2;
(*tridivs)[3 * facecounter + 2] = divs3;
// TODO quad case
if(faces[i].v4)
{
divs1=0, divs2=0, divs3=0;
facecounter++;
copy_v3_v3(p0, verts[faces[i].v3].co);
mul_m4_v3(ob->obmat, p0);
copy_v3_v3(p1, verts[faces[i].v4].co);
mul_m4_v3(ob->obmat, p1);
copy_v3_v3(p2, verts[faces[i].v1].co);
mul_m4_v3(ob->obmat, p2);
sub_v3_v3v3(side1, p1, p0);
sub_v3_v3v3(side2, p2, p0);
sub_v3_v3v3(side3, p1, p2);
if(dot_v3v3(side1, side1) > fsTri*fsTri)
{
float tmp = normalize_v3(side1);
divs1 = (int)ceil(tmp/fsTri);
}
if(dot_v3v3(side2, side2) > fsTri*fsTri)
{
float tmp = normalize_v3(side2);
divs2 = (int)ceil(tmp/fsTri);
}
(*tridivs)[3 * facecounter + 0] = divs1;
(*tridivs)[3 * facecounter + 1] = divs2;
(*tridivs)[3 * facecounter + 2] = divs3;
}
facecounter++;
}
}
#endif /* WITH_SMOKE */
2009-09-16 17:43:09 +00:00
static void smokeModifier_freeDomain(SmokeModifierData *smd)
{
if(smd->domain)
{
if(smd->domain->shadow)
2009-09-16 17:43:09 +00:00
MEM_freeN(smd->domain->shadow);
smd->domain->shadow = NULL;
if(smd->domain->fluid)
smoke_free(smd->domain->fluid);
if(smd->domain->wt)
smoke_turbulence_free(smd->domain->wt);
if(smd->domain->effector_weights)
MEM_freeN(smd->domain->effector_weights);
smd->domain->effector_weights = NULL;
BKE_ptcache_free_list(&(smd->domain->ptcaches[0]));
smd->domain->point_cache[0] = NULL;
MEM_freeN(smd->domain);
smd->domain = NULL;
}
}
2009-09-16 17:43:09 +00:00
static void smokeModifier_freeFlow(SmokeModifierData *smd)
{
if(smd->flow)
{
/*
if(smd->flow->bvh)
{
free_bvhtree_from_mesh(smd->flow->bvh);
MEM_freeN(smd->flow->bvh);
}
smd->flow->bvh = NULL;
*/
MEM_freeN(smd->flow);
smd->flow = NULL;
}
}
2009-09-16 17:43:09 +00:00
static void smokeModifier_freeCollision(SmokeModifierData *smd)
{
if(smd->coll)
{
SmokeCollSettings *scs = smd->coll;
if(scs->numpoints)
{
if(scs->points)
{
MEM_freeN(scs->points);
scs->points = NULL;
}
if(scs->points_old)
{
MEM_freeN(scs->points_old);
scs->points_old = NULL;
}
if(scs->tridivs)
{
MEM_freeN(scs->tridivs);
scs->tridivs = NULL;
}
}
if(scs->bvhtree)
{
BLI_bvhtree_free(scs->bvhtree);
scs->bvhtree = NULL;
}
#ifdef USE_SMOKE_COLLISION_DM
if(smd->coll->dm)
smd->coll->dm->release(smd->coll->dm);
smd->coll->dm = NULL;
#endif
MEM_freeN(smd->coll);
smd->coll = NULL;
}
}
2009-09-16 17:43:09 +00:00
void smokeModifier_reset_turbulence(struct SmokeModifierData *smd)
{
if(smd && smd->domain && smd->domain->wt)
2009-09-16 17:43:09 +00:00
{
smoke_turbulence_free(smd->domain->wt);
smd->domain->wt = NULL;
}
}
void smokeModifier_reset(struct SmokeModifierData *smd)
{
if(smd)
{
if(smd->domain)
{
if(smd->domain->shadow)
2009-09-16 17:43:09 +00:00
MEM_freeN(smd->domain->shadow);
smd->domain->shadow = NULL;
if(smd->domain->fluid)
{
smoke_free(smd->domain->fluid);
smd->domain->fluid = NULL;
}
2009-09-16 17:43:09 +00:00
smokeModifier_reset_turbulence(smd);
smd->time = -1;
// printf("reset domain end\n");
}
else if(smd->flow)
{
/*
if(smd->flow->bvh)
{
free_bvhtree_from_mesh(smd->flow->bvh);
MEM_freeN(smd->flow->bvh);
2009-09-16 17:43:09 +00:00
}
smd->flow->bvh = NULL;
*/
}
else if(smd->coll)
{
SmokeCollSettings *scs = smd->coll;
if(scs->numpoints && scs->points)
{
MEM_freeN(scs->points);
scs->points = NULL;
if(scs->points_old)
{
MEM_freeN(scs->points_old);
scs->points_old = NULL;
}
if(scs->tridivs)
{
MEM_freeN(scs->tridivs);
scs->tridivs = NULL;
}
}
}
}
}
void smokeModifier_free(SmokeModifierData *smd)
{
if(smd)
{
smokeModifier_freeDomain(smd);
smokeModifier_freeFlow(smd);
smokeModifier_freeCollision(smd);
}
}
void smokeModifier_createType(struct SmokeModifierData *smd)
{
if(smd)
{
if(smd->type & MOD_SMOKE_TYPE_DOMAIN)
{
if(smd->domain)
smokeModifier_freeDomain(smd);
smd->domain = MEM_callocN(sizeof(SmokeDomainSettings), "SmokeDomain");
smd->domain->smd = smd;
smd->domain->point_cache[0] = BKE_ptcache_add(&(smd->domain->ptcaches[0]));
smd->domain->point_cache[0]->flag |= PTCACHE_DISK_CACHE;
smd->domain->point_cache[0]->step = 1;
/* Deprecated */
smd->domain->point_cache[1] = NULL;
smd->domain->ptcaches[1].first = smd->domain->ptcaches[1].last = NULL;
/* set some standard values */
smd->domain->fluid = NULL;
2009-09-16 17:43:09 +00:00
smd->domain->wt = NULL;
smd->domain->eff_group = NULL;
smd->domain->fluid_group = NULL;
smd->domain->coll_group = NULL;
smd->domain->maxres = 32;
2009-09-16 17:43:09 +00:00
smd->domain->amplify = 1;
smd->domain->omega = 1.0;
smd->domain->alpha = -0.001;
smd->domain->beta = 0.1;
smd->domain->time_scale = 1.0;
smd->domain->vorticity = 2.0;
smd->domain->border_collisions = SM_BORDER_OPEN; // open domain
smd->domain->flags = MOD_SMOKE_DISSOLVE_LOG | MOD_SMOKE_HIGH_SMOOTH;
2009-09-16 17:43:09 +00:00
smd->domain->strength = 2.0;
smd->domain->noise = MOD_SMOKE_NOISEWAVE;
2009-09-16 17:43:09 +00:00
smd->domain->diss_speed = 5;
// init 3dview buffer
smd->domain->viewsettings = MOD_SMOKE_VIEW_SHOWBIG;
smd->domain->effector_weights = BKE_add_effector_weights(NULL);
}
else if(smd->type & MOD_SMOKE_TYPE_FLOW)
{
if(smd->flow)
smokeModifier_freeFlow(smd);
smd->flow = MEM_callocN(sizeof(SmokeFlowSettings), "SmokeFlow");
smd->flow->smd = smd;
/* set some standard values */
smd->flow->density = 1.0;
smd->flow->temp = 1.0;
smd->flow->flags = MOD_SMOKE_FLOW_ABSOLUTE;
smd->flow->vel_multi = 1.0;
smd->flow->psys = NULL;
}
else if(smd->type & MOD_SMOKE_TYPE_COLL)
{
if(smd->coll)
smokeModifier_freeCollision(smd);
smd->coll = MEM_callocN(sizeof(SmokeCollSettings), "SmokeColl");
smd->coll->smd = smd;
smd->coll->points = NULL;
smd->coll->points_old = NULL;
smd->coll->tridivs = NULL;
smd->coll->vel = NULL;
smd->coll->numpoints = 0;
smd->coll->numtris = 0;
smd->coll->bvhtree = NULL;
smd->coll->type = 0; // static obstacle
smd->coll->dx = 1.0f / 50.0f;
#ifdef USE_SMOKE_COLLISION_DM
smd->coll->dm = NULL;
#endif
}
}
}
void smokeModifier_copy(struct SmokeModifierData *smd, struct SmokeModifierData *tsmd)
{
tsmd->type = smd->type;
tsmd->time = smd->time;
smokeModifier_createType(tsmd);
if (tsmd->domain) {
tsmd->domain->maxres = smd->domain->maxres;
tsmd->domain->amplify = smd->domain->amplify;
tsmd->domain->omega = smd->domain->omega;
tsmd->domain->alpha = smd->domain->alpha;
tsmd->domain->beta = smd->domain->beta;
tsmd->domain->flags = smd->domain->flags;
tsmd->domain->strength = smd->domain->strength;
tsmd->domain->noise = smd->domain->noise;
tsmd->domain->diss_speed = smd->domain->diss_speed;
tsmd->domain->viewsettings = smd->domain->viewsettings;
tsmd->domain->fluid_group = smd->domain->fluid_group;
tsmd->domain->coll_group = smd->domain->coll_group;
tsmd->domain->vorticity = smd->domain->vorticity;
tsmd->domain->time_scale = smd->domain->time_scale;
tsmd->domain->border_collisions = smd->domain->border_collisions;
MEM_freeN(tsmd->domain->effector_weights);
tsmd->domain->effector_weights = MEM_dupallocN(smd->domain->effector_weights);
}
else if (tsmd->flow) {
tsmd->flow->density = smd->flow->density;
tsmd->flow->temp = smd->flow->temp;
tsmd->flow->psys = smd->flow->psys;
tsmd->flow->type = smd->flow->type;
tsmd->flow->flags = smd->flow->flags;
tsmd->flow->vel_multi = smd->flow->vel_multi;
}
else if (tsmd->coll) {
;
2012-03-18 07:38:51 +00:00
/* leave it as initialized, collision settings is mostly caches */
}
}
#ifdef WITH_SMOKE
2009-09-16 17:43:09 +00:00
// forward decleration
static void smoke_calc_transparency(float *result, float *input, float *p0, float *p1, int res[3], float dx, float *light, bresenham_callback cb, float correct);
static float calc_voxel_transp(float *result, float *input, int res[3], int *pixel, float *tRay, float correct);
2009-09-16 17:43:09 +00:00
static int get_lamp(Scene *scene, float *light)
{
Base *base_tmp = NULL;
int found_lamp = 0;
// try to find a lamp, preferably local
for(base_tmp = scene->base.first; base_tmp; base_tmp= base_tmp->next) {
if(base_tmp->object->type == OB_LAMP) {
Lamp *la = base_tmp->object->data;
if(la->type == LA_LOCAL) {
copy_v3_v3(light, base_tmp->object->obmat[3]);
return 1;
}
else if(!found_lamp) {
copy_v3_v3(light, base_tmp->object->obmat[3]);
found_lamp = 1;
}
}
}
return found_lamp;
2009-09-16 17:43:09 +00:00
}
static void smoke_calc_domain(Scene *UNUSED(scene), Object *UNUSED(ob), SmokeModifierData *UNUSED(smd))
2009-09-16 17:43:09 +00:00
{
#if 0
2009-09-16 17:43:09 +00:00
SmokeDomainSettings *sds = smd->domain;
GroupObject *go = NULL;
Base *base = NULL;
2009-09-16 17:43:09 +00:00
/* do collisions, needs to be done before emission, so that smoke isn't emitted inside collision cells */
if(1)
{
unsigned int i;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
collobjs = get_collisionobjects(scene, ob, sds->coll_group, &numcollobj);
for(i = 0; i < numcollobj; i++)
{
Object *collob= collobjs[i];
SmokeModifierData *smd2 = (SmokeModifierData*)modifiers_findByType(collob, eModifierType_Smoke);
// check for active smoke modifier
// if(md && md->mode & (eModifierMode_Realtime | eModifierMode_Render))
// SmokeModifierData *smd2 = (SmokeModifierData *)md;
if((smd2->type & MOD_SMOKE_TYPE_COLL) && smd2->coll && smd2->coll->points && smd2->coll->points_old)
{
// ??? anything to do here?
// TODO: only something to do for ANIMATED obstacles: need to update positions
}
}
if(collobjs)
MEM_freeN(collobjs);
}
#endif
}
/* Animated obstacles: dx_step = ((x_new - x_old) / totalsteps) * substep */
static void update_obstacles(Scene *scene, Object *ob, SmokeDomainSettings *sds, float dt, int substep, int totalsteps)
{
Object **collobjs = NULL;
unsigned int numcollobj = 0;
unsigned int collIndex;
unsigned char *obstacles = smoke_get_obstacle(sds->fluid);
float *velx = NULL;
float *vely = NULL;
float *velz = NULL;
float *velxOrig = smoke_get_velocity_x(sds->fluid);
float *velyOrig = smoke_get_velocity_y(sds->fluid);
float *velzOrig = smoke_get_velocity_z(sds->fluid);
// float *density = smoke_get_density(sds->fluid);
unsigned int z;
smoke_get_ob_velocity(sds->fluid, &velx, &vely, &velz);
// TODO: delete old obstacle flags
for(z = 0; z < sds->res[0] * sds->res[1] * sds->res[2]; z++)
{
if(obstacles[z])
{
// density[z] = 0;
velxOrig[z] = 0;
velyOrig[z] = 0;
velzOrig[z] = 0;
}
if(obstacles[z] & 8) // Do not delete static obstacles
{
obstacles[z] = 0;
}
velx[z] = 0;
vely[z] = 0;
velz[z] = 0;
}
collobjs = get_collisionobjects(scene, ob, sds->coll_group, &numcollobj, eModifierType_Smoke);
// update obstacle tags in cells
for(collIndex = 0; collIndex < numcollobj; collIndex++)
{
Object *collob= collobjs[collIndex];
SmokeModifierData *smd2 = (SmokeModifierData*)modifiers_findByType(collob, eModifierType_Smoke);
// DG TODO: check if modifier is active?
if((smd2->type & MOD_SMOKE_TYPE_COLL) && smd2->coll && smd2->coll->points && smd2->coll->points_old)
{
SmokeCollSettings *scs = smd2->coll;
unsigned int i;
/*
// DG TODO: support static cobstacles, but basicly we could even support static + rigid with one set of code
if(scs->type > SM_COLL_STATIC)
*/
/* Handle collisions */
for(i = 0; i < scs->numpoints; i++)
{
// 1. get corresponding cell
int cell[3];
float pos[3], oldpos[3], vel[3];
float cPos[3], cOldpos[3]; /* current position in substeps */
int badcell = 0;
size_t index;
int j;
// translate local points into global positions
copy_v3_v3(cPos, &scs->points[3 * i]);
mul_m4_v3(scs->mat, cPos);
copy_v3_v3(pos, cPos);
copy_v3_v3(cOldpos, &scs->points_old[3 * i]);
mul_m4_v3(scs->mat_old, cOldpos);
copy_v3_v3(oldpos, cOldpos);
/* support for rigid bodies, armatures etc */
{
float tmp[3];
/* x_current = x_old + (x_new - x_old) * step_current / steps_total */
float mulStep = (float)(((float)substep) / ((float)totalsteps));
sub_v3_v3v3(tmp, cPos, cOldpos);
mul_v3_fl(tmp, mulStep);
add_v3_v3(cOldpos, tmp);
}
sub_v3_v3v3(vel, pos, oldpos);
/* Scale velocity to incorperate the object movement during this step */
mul_v3_fl(vel, 1.0 / (totalsteps * dt));
// mul_v3_fl(vel, 1.0 / dt);
// DG TODO: cap velocity to maxVelMag (or maxvel)
// oldpos + velocity * dt = newpos
get_cell(sds->p0, sds->res, sds->dx*sds->scale, cOldpos /* use current position here instead of "pos" */, cell, 0);
// check if cell is valid (in the domain boundary)
for(j = 0; j < 3; j++)
if((cell[j] > sds->res[j] - 1) || (cell[j] < 0))
{
badcell = 1;
break;
}
if(badcell)
continue;
// 2. set cell values (heat, density and velocity)
index = smoke_get_index(cell[0], sds->res[0], cell[1], sds->res[1], cell[2]);
// Don't overwrite existing obstacles
if(obstacles[index])
continue;
// printf("cell[0]: %d, cell[1]: %d, cell[2]: %d\n", cell[0], cell[1], cell[2]);
// printf("res[0]: %d, res[1]: %d, res[2]: %d, index: %d\n\n", sds->res[0], sds->res[1], sds->res[2], index);
obstacles[index] = 1 | 8 /* ANIMATED */;
if(len_v3(vel) > FLT_EPSILON)
{
// Collision object is moving
velx[index] = vel[0]; // use "+="?
vely[index] = vel[1];
velz[index] = vel[2];
}
}
}
}
if(collobjs)
MEM_freeN(collobjs);
}
static void update_flowsfluids(Scene *scene, Object *ob, SmokeDomainSettings *sds, float time)
{
Object **flowobjs = NULL;
unsigned int numflowobj = 0;
unsigned int flowIndex;
flowobjs = get_collisionobjects(scene, ob, sds->fluid_group, &numflowobj, eModifierType_Smoke);
// update obstacle tags in cells
for(flowIndex = 0; flowIndex < numflowobj; flowIndex++)
{
Object *collob= flowobjs[flowIndex];
SmokeModifierData *smd2 = (SmokeModifierData*)modifiers_findByType(collob, eModifierType_Smoke);
2009-09-16 17:43:09 +00:00
// check for initialized smoke object
if((smd2->type & MOD_SMOKE_TYPE_FLOW) && smd2->flow)
{
// we got nice flow object
SmokeFlowSettings *sfs = smd2->flow;
2009-09-16 17:43:09 +00:00
if(sfs && sfs->psys && sfs->psys->part && sfs->psys->part->type==PART_EMITTER) // is particle system selected
2009-09-16 17:43:09 +00:00
{
ParticleSimulationData sim;
ParticleSystem *psys = sfs->psys;
int totpart=psys->totpart, totchild;
int p = 0;
float *density = smoke_get_density(sds->fluid);
float *bigdensity = smoke_turbulence_get_density(sds->wt);
float *heat = smoke_get_heat(sds->fluid);
float *velocity_x = smoke_get_velocity_x(sds->fluid);
float *velocity_y = smoke_get_velocity_y(sds->fluid);
float *velocity_z = smoke_get_velocity_z(sds->fluid);
unsigned char *obstacle = smoke_get_obstacle(sds->fluid);
// DG TODO UNUSED unsigned char *obstacleAnim = smoke_get_obstacle_anim(sds->fluid);
int bigres[3];
short absolute_flow = (sfs->flags & MOD_SMOKE_FLOW_ABSOLUTE);
short high_emission_smoothing = bigdensity ? (sds->flags & MOD_SMOKE_HIGH_SMOOTH) : 0;
/*
* A temporary volume map used to store whole emissive
* area to be added to smoke density and interpolated
* for high resolution smoke.
*/
float *temp_emission_map = NULL;
sim.scene = scene;
sim.ob = collob;
sim.psys = psys;
// initialize temp emission map
if(!(sfs->type & MOD_SMOKE_FLOW_TYPE_OUTFLOW))
2009-09-16 17:43:09 +00:00
{
int i;
temp_emission_map = MEM_callocN(sizeof(float) * sds->res[0]*sds->res[1]*sds->res[2], "SmokeTempEmission");
// set whole volume to 0.0f
for (i=0; i<sds->res[0]*sds->res[1]*sds->res[2]; i++) {
temp_emission_map[i] = 0.0f;
}
}
// mostly copied from particle code
if(psys->part->type==PART_HAIR)
{
/*
if(psys->childcache)
2009-09-16 17:43:09 +00:00
{
totchild = psys->totchildcache;
}
else
*/
// TODO: PART_HAIR not supported whatsoever
totchild=0;
}
else
totchild=psys->totchild*psys->part->disp/100;
for(p=0; p<totpart+totchild; p++)
{
int cell[3];
size_t i = 0;
size_t index = 0;
int badcell = 0;
ParticleKey state;
if(p < totpart)
{
if(psys->particles[p].flag & (PARS_NO_DISP|PARS_UNEXIST))
continue;
}
else {
/* handle child particle */
ChildParticle *cpa = &psys->child[p - totpart];
if(psys->particles[cpa->parent].flag & (PARS_NO_DISP|PARS_UNEXIST))
continue;
}
state.time = time;
if(psys_get_particle_state(&sim, p, &state, 0) == 0)
continue;
// copy_v3_v3(pos, pa->state.co);
// mul_m4_v3(ob->imat, pos);
// 1. get corresponding cell
get_cell(sds->p0, sds->res, sds->dx*sds->scale, state.co, cell, 0);
// check if cell is valid (in the domain boundary)
for(i = 0; i < 3; i++)
{
if((cell[i] > sds->res[i] - 1) || (cell[i] < 0))
{
badcell = 1;
break;
}
}
if(badcell)
continue;
// 2. set cell values (heat, density and velocity)
index = smoke_get_index(cell[0], sds->res[0], cell[1], sds->res[1], cell[2]);
if(!(sfs->type & MOD_SMOKE_FLOW_TYPE_OUTFLOW) && !(obstacle[index])) // this is inflow
{
// heat[index] += sfs->temp * 0.1;
// density[index] += sfs->density * 0.1;
heat[index] = sfs->temp;
// Add emitter density to temp emission map
temp_emission_map[index] = sfs->density;
// Uses particle velocity as initial velocity for smoke
if(sfs->flags & MOD_SMOKE_FLOW_INITVELOCITY && (psys->part->phystype != PART_PHYS_NO))
{
velocity_x[index] = state.vel[0]*sfs->vel_multi;
velocity_y[index] = state.vel[1]*sfs->vel_multi;
velocity_z[index] = state.vel[2]*sfs->vel_multi;
}
}
else if(sfs->type & MOD_SMOKE_FLOW_TYPE_OUTFLOW) // outflow
{
heat[index] = 0.f;
density[index] = 0.f;
velocity_x[index] = 0.f;
velocity_y[index] = 0.f;
velocity_z[index] = 0.f;
// we need different handling for the high-res feature
if(bigdensity)
{
// init all surrounding cells according to amplification, too
int i, j, k;
smoke_turbulence_get_res(sds->wt, bigres);
for(i = 0; i < sds->amplify + 1; i++)
for(j = 0; j < sds->amplify + 1; j++)
for(k = 0; k < sds->amplify + 1; k++)
{
index = smoke_get_index((sds->amplify + 1)* cell[0] + i, bigres[0], (sds->amplify + 1)* cell[1] + j, bigres[1], (sds->amplify + 1)* cell[2] + k);
bigdensity[index] = 0.f;
}
}
}
} // particles loop
// apply emission values
if(!(sfs->type & MOD_SMOKE_FLOW_TYPE_OUTFLOW))
{
// initialize variables
int ii, jj, kk, x, y, z, block_size;
size_t index, index_big;
smoke_turbulence_get_res(sds->wt, bigres);
block_size = sds->amplify + 1; // high res block size
// loop through every low res cell
for(x = 0; x < sds->res[0]; x++)
for(y = 0; y < sds->res[1]; y++)
for(z = 0; z < sds->res[2]; z++)
{
// neighbor cell emission densities (for high resolution smoke smooth interpolation)
float c000, c001, c010, c011, c100, c101, c110, c111;
c000 = (x>0 && y>0 && z>0) ? temp_emission_map[smoke_get_index(x-1, sds->res[0], y-1, sds->res[1], z-1)] : 0;
c001 = (x>0 && y>0) ? temp_emission_map[smoke_get_index(x-1, sds->res[0], y-1, sds->res[1], z)] : 0;
c010 = (x>0 && z>0) ? temp_emission_map[smoke_get_index(x-1, sds->res[0], y, sds->res[1], z-1)] : 0;
c011 = (x>0) ? temp_emission_map[smoke_get_index(x-1, sds->res[0], y, sds->res[1], z)] : 0;
c100 = (y>0 && z>0) ? temp_emission_map[smoke_get_index(x, sds->res[0], y-1, sds->res[1], z-1)] : 0;
c101 = (y>0) ? temp_emission_map[smoke_get_index(x, sds->res[0], y-1, sds->res[1], z)] : 0;
c110 = (z>0) ? temp_emission_map[smoke_get_index(x, sds->res[0], y, sds->res[1], z-1)] : 0;
c111 = temp_emission_map[smoke_get_index(x, sds->res[0], y, sds->res[1], z)]; // this cell
// get cell index
index = smoke_get_index(x, sds->res[0], y, sds->res[1], z);
// add emission to low resolution density
if (absolute_flow)
2009-09-16 17:43:09 +00:00
{
if (temp_emission_map[index]>0)
density[index] = temp_emission_map[index];
}
else
{
density[index] += temp_emission_map[index];
if (density[index]>1)
density[index]=1.0f;
}
smoke_turbulence_get_res(sds->wt, bigres);
/* loop through high res blocks if high res enabled */
if (bigdensity)
for(ii = 0; ii < block_size; ii++)
for(jj = 0; jj < block_size; jj++)
for(kk = 0; kk < block_size; kk++)
{
float fx,fy,fz, interpolated_value;
int shift_x, shift_y, shift_z;
/*
* Do volume interpolation if emitter smoothing
* is enabled
*/
if (high_emission_smoothing)
{
// convert block position to relative
// for interpolation smoothing
fx = (float)ii/block_size + 0.5f/block_size;
fy = (float)jj/block_size + 0.5f/block_size;
fz = (float)kk/block_size + 0.5f/block_size;
// calculate trilinear interpolation
interpolated_value = c000 * (1-fx) * (1-fy) * (1-fz) +
c100 * fx * (1-fy) * (1-fz) +
c010 * (1-fx) * fy * (1-fz) +
c001 * (1-fx) * (1-fy) * fz +
c101 * fx * (1-fy) * fz +
c011 * (1-fx) * fy * fz +
c110 * fx * fy * (1-fz) +
c111 * fx * fy * fz;
// add some contrast / sharpness
// depending on hi-res block size
interpolated_value = (interpolated_value-0.4f*sfs->density)*(block_size/2) + 0.4f*sfs->density;
if (interpolated_value<0.0f) interpolated_value = 0.0f;
if (interpolated_value>1.0f) interpolated_value = 1.0f;
// shift smoke block index
// (because pixel center is actually
// in halfway of the low res block)
shift_x = (x < 1) ? 0 : block_size/2;
shift_y = (y < 1) ? 0 : block_size/2;
shift_z = (z < 1) ? 0 : block_size/2;
}
else
{
// without interpolation use same low resolution
// block value for all hi-res blocks
interpolated_value = c111;
shift_x = 0;
shift_y = 0;
shift_z = 0;
}
// get shifted index for current high resolution block
index_big = smoke_get_index(block_size * x + ii - shift_x, bigres[0], block_size * y + jj - shift_y, bigres[1], block_size * z + kk - shift_z);
// add emission data to high resolution density
if (absolute_flow)
{
if (interpolated_value > 0)
bigdensity[index_big] = interpolated_value;
}
else
{
bigdensity[index_big] += interpolated_value;
if (bigdensity[index_big]>1)
bigdensity[index_big]=1.0f;
}
} // end of hires loop
} // end of low res loop
// free temporary emission map
if (temp_emission_map)
MEM_freeN(temp_emission_map);
} // end emission
}
}
}
if(flowobjs)
MEM_freeN(flowobjs);
}
static void update_effectors(Scene *scene, Object *ob, SmokeDomainSettings *sds, float UNUSED(dt))
{
ListBase *effectors = pdInitEffectors(scene, ob, NULL, sds->effector_weights);
if(effectors)
{
float *density = smoke_get_density(sds->fluid);
float *force_x = smoke_get_force_x(sds->fluid);
float *force_y = smoke_get_force_y(sds->fluid);
float *force_z = smoke_get_force_z(sds->fluid);
float *velocity_x = smoke_get_velocity_x(sds->fluid);
float *velocity_y = smoke_get_velocity_y(sds->fluid);
float *velocity_z = smoke_get_velocity_z(sds->fluid);
unsigned char *obstacle = smoke_get_obstacle(sds->fluid);
int x, y, z;
// precalculate wind forces
for(x = 0; x < sds->res[0]; x++)
for(y = 0; y < sds->res[1]; y++)
for(z = 0; z < sds->res[2]; z++)
{
EffectedPoint epoint;
2012-04-29 15:47:02 +00:00
float voxelCenter[3] = {0,0,0}, vel[3] = {0,0,0}, retvel[3] = {0,0,0};
unsigned int index = smoke_get_index(x, sds->res[0], y, sds->res[1], z);
if((density[index] < FLT_EPSILON) || obstacle[index])
continue;
vel[0] = velocity_x[index];
vel[1] = velocity_y[index];
vel[2] = velocity_z[index];
voxelCenter[0] = sds->p0[0] + sds->dx * sds->scale * x + sds->dx * sds->scale * 0.5;
voxelCenter[1] = sds->p0[1] + sds->dx * sds->scale * y + sds->dx * sds->scale * 0.5;
voxelCenter[2] = sds->p0[2] + sds->dx * sds->scale * z + sds->dx * sds->scale * 0.5;
pd_point_from_loc(scene, voxelCenter, vel, index, &epoint);
pdDoEffectors(effectors, NULL, sds->effector_weights, &epoint, retvel, NULL);
// TODO dg - do in force!
force_x[index] = MIN2(MAX2(-1.0, retvel[0] * 0.2), 1.0);
force_y[index] = MIN2(MAX2(-1.0, retvel[1] * 0.2), 1.0);
force_z[index] = MIN2(MAX2(-1.0, retvel[2] * 0.2), 1.0);
}
}
pdEndEffectors(&effectors);
}
static void step(Scene *scene, Object *ob, SmokeModifierData *smd, float fps)
{
/* stability values copied from wturbulence.cpp */
const int maxSubSteps = 25;
float maxVel;
// maxVel should be 1.5 (1.5 cell max movement) * dx (cell size)
float dt = DT_DEFAULT;
float maxVelMag = 0.0f;
int totalSubsteps;
int substep = 0;
float dtSubdiv;
SmokeDomainSettings *sds = smd->domain;
/* get max velocity and lower the dt value if it is too high */
size_t size= sds->res[0] * sds->res[1] * sds->res[2];
float *velX = smoke_get_velocity_x(sds->fluid);
float *velY = smoke_get_velocity_y(sds->fluid);
float *velZ = smoke_get_velocity_z(sds->fluid);
size_t i;
/* adapt timestep for different framerates, dt = 0.1 is at 25fps */
dt *= (25.0f / fps);
// maximum timestep/"CFL" constraint: dt < 5.0 *dx / maxVel
maxVel = (sds->dx * 5.0);
2009-09-16 17:43:09 +00:00
for(i = 0; i < size; i++)
{
float vtemp = (velX[i]*velX[i]+velY[i]*velY[i]+velZ[i]*velZ[i]);
if(vtemp > maxVelMag)
maxVelMag = vtemp;
2009-09-16 17:43:09 +00:00
}
maxVelMag = sqrt(maxVelMag) * dt * sds->time_scale;
totalSubsteps = (int)((maxVelMag / maxVel) + 1.0f); /* always round up */
totalSubsteps = (totalSubsteps < 1) ? 1 : totalSubsteps;
totalSubsteps = (totalSubsteps > maxSubSteps) ? maxSubSteps : totalSubsteps;
/* Disable substeps for now, since it results in numerical instability */
totalSubsteps = 1.0f;
dtSubdiv = (float)dt / (float)totalSubsteps;
// printf("totalSubsteps: %d, maxVelMag: %f, dt: %f\n", totalSubsteps, maxVelMag, dt);
for(substep = 0; substep < totalSubsteps; substep++)
2009-09-16 17:43:09 +00:00
{
// calc animated obstacle velocities
update_obstacles(scene, ob, sds, dtSubdiv, substep, totalSubsteps);
update_flowsfluids(scene, ob, sds, smd->time);
update_effectors(scene, ob, sds, dtSubdiv); // DG TODO? problem --> uses forces instead of velocity, need to check how they need to be changed with variable dt
smoke_step(sds->fluid, dtSubdiv);
// move animated obstacle: Done in update_obstacles() */
2009-09-16 17:43:09 +00:00
// where to delete old obstacles from array? Done in update_obstacles() */
}
2009-09-16 17:43:09 +00:00
}
void smokeModifier_do(SmokeModifierData *smd, Scene *scene, Object *ob, DerivedMesh *dm)
{
if((smd->type & MOD_SMOKE_TYPE_FLOW))
{
if(scene->r.cfra >= smd->time)
2009-09-16 17:43:09 +00:00
smokeModifier_init(smd, ob, scene, dm);
if(scene->r.cfra > smd->time)
{
// XXX TODO
smd->time = scene->r.cfra;
// rigid movement support
/*
copy_m4_m4(smd->flow->mat_old, smd->flow->mat);
copy_m4_m4(smd->flow->mat, ob->obmat);
*/
}
else if(scene->r.cfra < smd->time)
{
smd->time = scene->r.cfra;
smokeModifier_reset(smd);
}
}
else if(smd->type & MOD_SMOKE_TYPE_COLL)
{
/* Check if domain resolution changed */
/* DG TODO: can this be solved more elegant using dependancy graph? */
{
SmokeCollSettings *scs = smd->coll;
Base *base = scene->base.first;
int changed = 0;
float dx = FLT_MAX;
float scale = 1.0f;
int haveDomain = 0;
for ( ; base; base = base->next)
{
SmokeModifierData *smd2 = (SmokeModifierData *)modifiers_findByType(base->object, eModifierType_Smoke);
if (smd2 && (smd2->type & MOD_SMOKE_TYPE_DOMAIN) && smd2->domain)
{
SmokeDomainSettings *sds = smd2->domain;
if(sds->dx * sds->scale < dx)
{
dx = sds->dx;
scale = sds->scale;
changed = 1;
}
haveDomain = 1;
}
}
if(!haveDomain)
return;
if(changed)
{
if(dx*scale != scs->dx)
{
scs->dx = dx*scale;
smokeModifier_reset(smd);
}
}
}
if(scene->r.cfra >= smd->time)
smokeModifier_init(smd, ob, scene, dm);
if(scene->r.cfra > smd->time)
{
unsigned int i;
SmokeCollSettings *scs = smd->coll;
float *points_old = scs->points_old;
float *points = scs->points;
unsigned int numpoints = scs->numpoints;
// XXX TODO <-- DG: what is TODO here?
smd->time = scene->r.cfra;
// rigid movement support
copy_m4_m4(scs->mat_old, scs->mat);
copy_m4_m4(scs->mat, ob->obmat);
if(scs->type != SM_COLL_ANIMATED) // if(not_animated)
{
// nothing to do, "mat" is already up to date
}
else
{
// XXX TODO: need to update positions + divs
if(scs->numverts != dm->getNumVerts(dm))
{
// DG TODO: reset modifier?
return;
}
for(i = 0; i < numpoints * 3; i++)
{
points_old[i] = points[i];
}
DM_ensure_tessface(dm);
fill_scs_points_anim(ob, dm, scs);
}
}
else if(scene->r.cfra < smd->time)
{
smd->time = scene->r.cfra;
smokeModifier_reset(smd);
}
}
else if(smd->type & MOD_SMOKE_TYPE_DOMAIN)
{
2009-09-16 17:43:09 +00:00
SmokeDomainSettings *sds = smd->domain;
float light[3];
PointCache *cache = NULL;
PTCacheID pid;
int startframe, endframe, framenr;
2009-09-16 17:43:09 +00:00
float timescale;
framenr = scene->r.cfra;
//printf("time: %d\n", scene->r.cfra);
2009-09-16 17:43:09 +00:00
cache = sds->point_cache[0];
BKE_ptcache_id_from_smoke(&pid, ob, smd);
BKE_ptcache_id_time(&pid, scene, framenr, &startframe, &endframe, &timescale);
if(!smd->domain->fluid || framenr == startframe)
2009-09-16 17:43:09 +00:00
{
BKE_ptcache_id_reset(scene, &pid, PTCACHE_RESET_OUTDATED);
BKE_ptcache_validate(cache, framenr);
cache->flag &= ~PTCACHE_REDO_NEEDED;
}
2009-09-16 17:43:09 +00:00
if(!smd->domain->fluid && (framenr != startframe) && (smd->domain->flags & MOD_SMOKE_FILE_LOAD)==0 && (cache->flag & PTCACHE_BAKED)==0)
2009-09-16 17:43:09 +00:00
return;
smd->domain->flags &= ~MOD_SMOKE_FILE_LOAD;
CLAMP(framenr, startframe, endframe);
/* If already viewing a pre/after frame, no need to reload */
if ((smd->time == framenr) && (framenr != scene->r.cfra))
return;
2009-09-16 17:43:09 +00:00
// printf("startframe: %d, framenr: %d\n", startframe, framenr);
if(smokeModifier_init(smd, ob, scene, dm)==0)
2009-09-16 17:43:09 +00:00
{
printf("bad smokeModifier_init\n");
return;
2009-09-16 17:43:09 +00:00
}
/* try to read from cache */
if(BKE_ptcache_read(&pid, (float)framenr) == PTCACHE_READ_EXACT) {
BKE_ptcache_validate(cache, framenr);
smd->time = framenr;
return;
}
/* only calculate something when we advanced a single frame */
if(framenr != (int)smd->time+1)
return;
/* don't simulate if viewing start frame, but scene frame is not real start frame */
if (framenr != scene->r.cfra)
return;
2009-09-16 17:43:09 +00:00
tstart();
smoke_calc_domain(scene, ob, smd);
/* if on second frame, write cache for first frame */
if((int)smd->time == startframe && (cache->flag & PTCACHE_OUTDATED || cache->last_exact==0)) {
// create shadows straight after domain initialization so we get nice shadows for startframe, too
if(get_lamp(scene, light))
smoke_calc_transparency(sds->shadow, smoke_get_density(sds->fluid), sds->p0, sds->p1, sds->res, sds->dx, light, calc_voxel_transp, -7.0*sds->dx);
if(sds->wt)
{
if(sds->flags & MOD_SMOKE_DISSOLVE)
smoke_dissolve_wavelet(sds->wt, sds->diss_speed, sds->flags & MOD_SMOKE_DISSOLVE_LOG);
smoke_turbulence_step(sds->wt, sds->fluid);
}
BKE_ptcache_write(&pid, startframe);
}
2009-09-16 17:43:09 +00:00
// set new time
smd->time = scene->r.cfra;
/* do simulation */
// low res
2009-09-16 17:43:09 +00:00
// simulate the actual smoke (c++ code in intern/smoke)
// DG: interesting commenting this line + deactivating loading of noise files
if(framenr!=startframe)
{
if(sds->flags & MOD_SMOKE_DISSOLVE)
smoke_dissolve(sds->fluid, sds->diss_speed, sds->flags & MOD_SMOKE_DISSOLVE_LOG);
step(scene, ob, smd, scene->r.frs_sec / scene->r.frs_sec_base);
}
// create shadows before writing cache so they get stored
if(get_lamp(scene, light))
smoke_calc_transparency(sds->shadow, smoke_get_density(sds->fluid), sds->p0, sds->p1, sds->res, sds->dx, light, calc_voxel_transp, -7.0*sds->dx);
if(sds->wt)
{
if(sds->flags & MOD_SMOKE_DISSOLVE)
smoke_dissolve_wavelet(sds->wt, sds->diss_speed, sds->flags & MOD_SMOKE_DISSOLVE_LOG);
smoke_turbulence_step(sds->wt, sds->fluid);
}
BKE_ptcache_validate(cache, framenr);
if(framenr != startframe)
BKE_ptcache_write(&pid, framenr);
tend();
// printf ( "Frame: %d, Time: %f\n\n", (int)smd->time, ( float ) tval() );
}
}
2009-09-16 17:43:09 +00:00
static float calc_voxel_transp(float *result, float *input, int res[3], int *pixel, float *tRay, float correct)
{
const size_t index = smoke_get_index(pixel[0], res[0], pixel[1], res[1], pixel[2]);
// T_ray *= T_vox
2009-09-16 17:43:09 +00:00
*tRay *= exp(input[index]*correct);
if(result[index] < 0.0f)
{
2009-09-16 17:43:09 +00:00
#pragma omp critical
result[index] = *tRay;
}
2009-09-16 17:43:09 +00:00
return *tRay;
}
long long smoke_get_mem_req(int xres, int yres, int zres, int amplify)
{
int totalCells = xres * yres * zres;
int amplifiedCells = totalCells * amplify * amplify * amplify;
// print out memory requirements
long long int coarseSize = sizeof(float) * totalCells * 22 +
sizeof(unsigned char) * totalCells;
long long int fineSize = sizeof(float) * amplifiedCells * 7 + // big grids
sizeof(float) * totalCells * 8 + // small grids
sizeof(float) * 128 * 128 * 128; // noise tile
long long int totalMB = (coarseSize + fineSize) / (1024 * 1024);
return totalMB;
}
2009-09-16 17:43:09 +00:00
static void bresenham_linie_3D(int x1, int y1, int z1, int x2, int y2, int z2, float *tRay, bresenham_callback cb, float *result, float *input, int res[3], float correct)
{
int dx, dy, dz, i, l, m, n, x_inc, y_inc, z_inc, err_1, err_2, dx2, dy2, dz2;
int pixel[3];
pixel[0] = x1;
pixel[1] = y1;
pixel[2] = z1;
dx = x2 - x1;
dy = y2 - y1;
dz = z2 - z1;
x_inc = (dx < 0) ? -1 : 1;
l = abs(dx);
y_inc = (dy < 0) ? -1 : 1;
m = abs(dy);
z_inc = (dz < 0) ? -1 : 1;
n = abs(dz);
dx2 = l << 1;
dy2 = m << 1;
dz2 = n << 1;
if ((l >= m) && (l >= n)) {
err_1 = dy2 - l;
err_2 = dz2 - l;
for (i = 0; i < l; i++) {
if(cb(result, input, res, pixel, tRay, correct) <= FLT_EPSILON)
break;
if (err_1 > 0) {
pixel[1] += y_inc;
err_1 -= dx2;
}
if (err_2 > 0) {
pixel[2] += z_inc;
err_2 -= dx2;
}
err_1 += dy2;
err_2 += dz2;
pixel[0] += x_inc;
}
}
else if ((m >= l) && (m >= n)) {
err_1 = dx2 - m;
err_2 = dz2 - m;
for (i = 0; i < m; i++) {
if(cb(result, input, res, pixel, tRay, correct) <= FLT_EPSILON)
break;
if (err_1 > 0) {
pixel[0] += x_inc;
err_1 -= dy2;
}
if (err_2 > 0) {
pixel[2] += z_inc;
err_2 -= dy2;
}
err_1 += dx2;
err_2 += dz2;
pixel[1] += y_inc;
}
}
else {
err_1 = dy2 - n;
err_2 = dx2 - n;
for (i = 0; i < n; i++) {
if(cb(result, input, res, pixel, tRay, correct) <= FLT_EPSILON)
break;
if (err_1 > 0) {
pixel[1] += y_inc;
err_1 -= dz2;
}
if (err_2 > 0) {
pixel[0] += x_inc;
err_2 -= dz2;
}
err_1 += dy2;
err_2 += dx2;
pixel[2] += z_inc;
}
}
cb(result, input, res, pixel, tRay, correct);
}
static void get_cell(float *p0, int res[3], float dx, float *pos, int *cell, int correct)
{
float tmp[3];
sub_v3_v3v3(tmp, pos, p0);
mul_v3_fl(tmp, 1.0 / dx);
if (correct) {
cell[0] = MIN2(res[0] - 1, MAX2(0, (int)floor(tmp[0])));
cell[1] = MIN2(res[1] - 1, MAX2(0, (int)floor(tmp[1])));
cell[2] = MIN2(res[2] - 1, MAX2(0, (int)floor(tmp[2])));
}
else {
cell[0] = (int)floor(tmp[0]);
cell[1] = (int)floor(tmp[1]);
cell[2] = (int)floor(tmp[2]);
}
}
2009-09-16 17:43:09 +00:00
static void smoke_calc_transparency(float *result, float *input, float *p0, float *p1, int res[3], float dx, float *light, bresenham_callback cb, float correct)
{
float bv[6];
int a, z, slabsize=res[0]*res[1], size= res[0]*res[1]*res[2];
for(a=0; a<size; a++)
result[a]= -1.0f;
bv[0] = p0[0];
bv[1] = p1[0];
// y
bv[2] = p0[1];
bv[3] = p1[1];
// z
bv[4] = p0[2];
bv[5] = p1[2];
#pragma omp parallel for schedule(static,1)
for(z = 0; z < res[2]; z++)
{
size_t index = z*slabsize;
int x,y;
for(y = 0; y < res[1]; y++)
for(x = 0; x < res[0]; x++, index++)
{
float voxelCenter[3];
float pos[3];
int cell[3];
float tRay = 1.0;
if(result[index] >= 0.0f)
2009-09-16 17:43:09 +00:00
continue;
voxelCenter[0] = p0[0] + dx * x + dx * 0.5;
voxelCenter[1] = p0[1] + dx * y + dx * 0.5;
voxelCenter[2] = p0[2] + dx * z + dx * 0.5;
// get starting position (in voxel coords)
if(BLI_bvhtree_bb_raycast(bv, light, voxelCenter, pos) > FLT_EPSILON)
{
// we're ouside
get_cell(p0, res, dx, pos, cell, 1);
}
else {
// we're inside
get_cell(p0, res, dx, light, cell, 1);
}
2009-09-16 17:43:09 +00:00
bresenham_linie_3D(cell[0], cell[1], cell[2], x, y, z, &tRay, cb, result, input, res, correct);
// convention -> from a RGBA float array, use G value for tRay
2009-09-16 17:43:09 +00:00
// #pragma omp critical
result[index] = tRay;
}
}
}
#endif /* WITH_SMOKE */