math func to find the intersection(s) between a segment and a sphere for C/python.

from python:
  i1, i2 = mathutils.geometry.intersect_line_sphere(l1, l2, sphere, radius)
This commit is contained in:
2011-06-26 07:21:19 +00:00
parent 83000d8504
commit 540c2eee56
3 changed files with 142 additions and 0 deletions

View File

@@ -349,6 +349,79 @@ int isect_seg_seg_v2_point(const float v1[2], const float v2[2], const float v3[
return -1;
}
int isect_seg_sphere_v3(const float l1[3], const float l2[3],
const float sp[3], const float r,
float r_p1[3], float r_p2[3])
{
/* l1: coordinates (point of line)
* l2: coordinates (point of line)
* sp, r: coordinates and radius (sphere)
* r_p1, r_p2: return intersection coordinates
*/
/* adapted for use in blender by Campbell Barton - 2011
*
* atelier iebele abel - 2001
* atelier@iebele.nl
* http://www.iebele.nl
*
* sphere_line_intersection function adapted from:
* http://astronomy.swin.edu.au/pbourke/geometry/sphereline
* Paul Bourke pbourke@swin.edu.au
*/
const float ldir[3]= {
l2[0] - l1[0],
l2[1] - l1[1],
l2[2] - l1[2]
};
const float a= dot_v3v3(ldir, ldir);
const float b= 2.0f *
(ldir[0] * (l1[0] - sp[0]) +
ldir[1] * (l1[1] - sp[1]) +
ldir[2] * (l1[2] - sp[2]));
const float c=
dot_v3v3(sp, sp) +
dot_v3v3(l1, l1) -
(2.0f * dot_v3v3(sp, l1)) -
(r * r);
const float i = b * b - 4.0f * a * c;
float mu;
if (i < 0.0f) {
/* no intersections */
return 0;
}
else if (i == 0.0f) {
/* one intersection */
mu = -b / (2.0f * a);
madd_v3_v3v3fl(r_p1, l1, ldir, mu);
return 1;
}
else if (i > 0.0) {
const float i_sqrt= sqrt(i); /* avoid calc twice */
/* first intersection */
mu = (-b + i_sqrt) / (2.0f * a);
madd_v3_v3v3fl(r_p1, l1, ldir, mu);
/* second intersection */
mu = (-b - i_sqrt) / (2.0f * a);
madd_v3_v3v3fl(r_p2, l1, ldir, mu);
return 2;
}
else {
/* math domain error - nan */
return -1;
}
}
/*
-1: colliniar
1: intersection