- updating some bundled scripts, thanks to authors Jean-Michel Soler, Campbell Barton and Anthony D'Agostino.

BPython:
- removing wrong fix from BGL.c's glDrawPixels.

note: applied guitargeek's setName patch to Blender.Key, but saw that he updated it with more functionality and assigned to stivs, so I won't commit this old version.
This commit is contained in:
2005-10-11 02:32:58 +00:00
parent 93a4f6a876
commit b970eadedf
12 changed files with 3994 additions and 1553 deletions

View File

@@ -1,15 +1,15 @@
#!BPY
"""
Name: 'Bridge/Skin/Loft'
Blender: 234
Name: 'Bridge Faces/Edge-Loops'
Blender: 237
Group: 'Mesh'
Tooltip: 'Select 2 or more vert loops, then run this script'
Tooltip: 'Select 2 vert loops, then run this script.'
"""
__author__ = "Campbell Barton AKA Ideasman"
__url__ = ["http://members.iinet.net.au/~cpbarton/ideasman/", "blender", "elysiun"]
__version__ = "1.1 2005/06/13"
__version__ = "1.0 2004/04/25"
__bpydoc__ = """\
With this script vertex loops can be skinned: faces are created to connect the
@@ -19,11 +19,7 @@ Usage:
In mesh Edit mode select the vertices of the loops (closed paths / curves of
vertices: circles, for example) that should be skinned, then run this script.
A pop-up will provide further options.
Notes:
If the results of a method chosen from the pop-up are not adequate, undo and try one of the others.
A pop-up will provide further options, if the results of a method are not adequate try one of the others.
"""
@@ -51,536 +47,443 @@ If the results of a method chosen from the pop-up are not adequate, undo and try
# ***** END GPL LICENCE BLOCK *****
# --------------------------------------------------------------------------
# Made by Ideasman/Campbell 2004/04/25 - ideasman@linuxmail.org
# Made by Ideasman/Campbell 2005/06/15 - ideasman@linuxmail.org
import Blender
from Blender import *
import math
from math import *
BIG_NUM = 1<<30
choice = Draw.PupMenu(\
'Loft-loop - shortest edge method|\
Loft-loop - even method|\
Loft-segment - shortest edge|\
Loft-segment - even method')
global CULL_METHOD
CULL_METHOD = 0
if choice == 1:
arg='A1'
elif choice == 2:
arg='A2'
elif choice == 3:
arg='B1'
elif choice == 4:
arg='B2'
#================#
# Math functions #
#================#
# Measure 2 points
def measure(v1, v2):
return Mathutils.Vector([v1[0]-v2[0], v1[1] - v2[1], v1[2] - v2[2]]).length
# Clamp
def clamp(max, number):
while number >= max:
number = number - max
return number
#=============================================================#
# List func that takes the last item and adds it to the front #
#=============================================================#
def listRotate(ls):
ls.append(ls.pop(0))
#=================================================================#
# Recieve a list of locs: [x,y,z] and return the average location #
#=================================================================#
def averageLocation(locList):
avLoc = [0,0,0]
# Loop through x/y/z
for coordIdx in [0,1,2]:
class edge:
def __init__(self, v1,v2):
self.v1 = v1
self.v2 = v2
# Add all the values from 1 of the 3 coords at the avLoc.
for loc in locList:
avLoc[coordIdx] += loc[coordIdx]
# uv1 uv2 vcol1 vcol2 # Add later
self.length = (v1.co - v2.co).length
avLoc[coordIdx] = avLoc[coordIdx] / len(locList)
return avLoc
self.removed = 0 # Have we been culled from the eloop
self.match = None # The other edge were making a face with
#=============================#
# Blender functions/shortcuts #
#=============================#
def error(str):
Draw.PupMenu('ERROR%t|'+str)
# Returns a new face that has the same properties as the origional face
# With no verts though
def copyFace(face):
newFace = NMesh.Face()
# Copy some generic properties
newFace.mode = face.mode
if face.image != None:
newFace.image = face.image
newFace.flag = face.flag
newFace.mat = face.mat
newFace.smooth = face.smooth
return newFace
#=============================================#
# Find a selected vert that 2 faces share. #
#=============================================#
def selVertBetween2Faces(face1, face2):
for v1 in face1.v:
if v1.sel:
for v2 in face2.v:
if v1 == v2:
return v1
#=======================================================#
# Measure the total distance between all the edges in #
# 2 vertex loops #
#=======================================================#
def measureVloop(mesh, v1loop, v2loop, surplusFaces, bestSoFar):
totalDist = 0
# Rotate the vertloops to cycle through each pair.
# of faces to compate the distance between the 2 poins
for ii in range(len(v1loop)):
if ii not in surplusFaces:
# Clamp
v2clampii = ii
while v2clampii >= len(v2loop):
v2clampii -= len(v2loop)
print v2clampii
V1 = selVertBetween2Faces(mesh.faces[v1loop[ii-1]], mesh.faces[v1loop[ii]])
V2 = selVertBetween2Faces(mesh.faces[v2loop[v2clampii-1]], mesh.faces[v2loop[v2clampii]])
totalDist += measure(V1, V2)
# Bail out early if not an improvement on previously measured.
if bestSoFar != None and totalDist > bestSoFar:
return totalDist
#selVertBetween2Faces(mesh.faces[v2loop[0]], mesh.faces[v2loop[1]])
return totalDist
# Remove the shortest edge from a vert loop
def removeSmallestFace(mesh, vloop):
bestDistSoFar = None
bestFIdxSoFar = None
for fIdx in vloop:
vSelLs = []
for v in mesh.faces[fIdx].v:
if v.sel:
vSelLs.append(v)
class edgeLoop:
def __init__(self, loop): # Vert loop
# Use next and prev, nextDist, prevDist
dist = measure(vSelLs[0].co, vSelLs[1].co)
# Get Loops centre.
self.centre = Mathutils.Vector()
f = 1.0/len(loop)
for v in loop:
self.centre += v.co * f
if bestDistSoFar == None:
bestDistSoFar = dist
bestFIdxSoFar = fIdx
elif dist < bestDistSoFar:
bestDistSoFar = dist
bestFIdxSoFar = fIdx
# Convert Vert loop to Edges.
self.edges = []
vIdx = 0
while vIdx < len(loop):
self.edges.append( edge(loop[vIdx-1], loop[vIdx]) )
vIdx += 1
# Assign linked list
for eIdx in range(len(self.edges)-1):
self.edges[eIdx].next = self.edges[eIdx+1]
self.edges[eIdx].prev = self.edges[eIdx-1]
# Now last
self.edges[-1].next = self.edges[0]
self.edges[-1].prev = self.edges[-2]
# GENERATE AN AVERAGE NORMAL FOR THE WHOLE LOOP.
self.normal = Mathutils.Vector()
for e in self.edges:
n = Mathutils.CrossVecs(self.centre-e.v1.co, self.centre-e.v2.co)
# Do we realy need tot normalize?
n.normalize()
self.normal += n
self.normal.normalize()
# Generate a normal for each edge.
for e in self.edges:
n1 = e.v1.co
n2 = e.v2.co
n3 = e.prev.v1.co
a = n1-n2
b = n1-n3
normal1 = Mathutils.CrossVecs(a,b)
normal1.normalize()
n1 = e.v2.co
n3 = e.next.v2.co
n2 = e.v1.co
a = n1-n2
b = n1-n3
normal2 = Mathutils.CrossVecs(a,b)
normal2.normalize()
# Reuse normal1 var
normal1 += normal1 + normal2
normal1.normalize()
e.normal = normal1
#print e.normal
def backup(self):
# Keep a backup of the edges
self.backupEdges = self.edges[:]
def restore(self):
self.edges = self.backupEdges[:]
for e in self.edges:
e.removed = 0
def reverse(self):
self.edges.reverse()
for e in self.edges:
e.normal = -e.normal
e.v1, e.v2 = e.v2, e.v1
self.normal = -self.normal
# Return the smallest face index of the vloop that was sent
return bestFIdxSoFar
# Removes N Smallest edges and backs up
def removeSmallest(self, cullNum, otherLoopLen):
global CULL_METHOD
if CULL_METHOD == 0: # Shortest edge
eloopCopy = self.edges[:]
eloopCopy.sort(lambda e1, e2: cmp(e1.length, e2.length )) # Length sort, smallest first
eloopCopy = eloopCopy[:cullNum]
for e in eloopCopy:
e.removed = 1
self.edges.remove( e ) # Remove from own list, still in linked list.
else: # CULL METHOD is even
culled = 0
step = int(otherLoopLen / float(cullNum))
currentEdge = self.edges[0]
while culled < cullNum:
# Get the shortest face in the next STEP
while currentEdge.removed == 1:
# Bug here!
currentEdge = currentEdge.next
smallestEdge = currentEdge
for i in range(step):
currentEdge = currentEdge.next
while currentEdge.removed == 1:
currentEdge = currentEdge.next
if smallestEdge.length > currentEdge.length:
smallestEdge = currentEdge
# In that stepping length we have the smallest edge.remove it
smallestEdge.removed = 1
self.edges.remove(smallestEdge)
culled+=1
# Returns face edges.
# face must have edge data.
def faceEdges(me, f):
if len(f) == 3:
return [\
me.findEdge(f[0], f[1]),\
me.findEdge(f[1], f[2]),\
me.findEdge(f[2], f[0])\
]
elif len(f) == 4:
return [\
me.findEdge(f[0], f[1]),\
me.findEdge(f[1], f[2]),\
me.findEdge(f[2], f[3]),\
me.findEdge(f[3], f[0])\
]
#=============================================#
# Take 2 vert loops and skin them #
#=============================================#
def skinVertLoops(mesh, v1loop, v2loop):
def getSelectedEdges(me, ob):
SEL_FLAG = NMesh.EdgeFlags['SELECT']
FGON_FLAG = NMesh.EdgeFlags['FGON']
edges = [e for e in me.edges if e.flag & SEL_FLAG if (e.flag & FGON_FLAG) == 0 ]
# Now remove edges that face 2 or more selected faces usoing them
edgeFromSelFaces = []
for f in me.faces:
if len(f) >2 and f.sel:
edgeFromSelFaces.extend(faceEdges(me, f))
# Remove all edges with 2 or more selected faces as uses.
for e in edgeFromSelFaces:
if edgeFromSelFaces.count(e) > 1:
me.removeEdge(e.v1, e.v2)
# Remove selected faces?
fIdx = len(me.faces)
while fIdx:
fIdx-=1
if len(me.faces[fIdx]) > 2:
if me.faces[fIdx].sel:
me.faces.pop(fIdx)
return [e for e in edges if edgeFromSelFaces.count(e) < 2]
#=============================================#
# Handle uneven vert loops, this is tricky #
#=============================================#
# Reorder so v1loop is always the biggest
if len(v1loop) < len(v2loop):
v1loop, v2loop = v2loop, v1loop
# Work out if the vert loops are equel or not, if not remove the extra faces from the larger
surplusFaces = []
tempv1loop = v1loop[:] # strip faces off this one, use it to keep track of which we have taken faces from.
if len(v1loop) > len(v2loop):
# Like vert loops
def getVertLoops(selEdges):
mainVertLoops = []
while selEdges:
e = selEdges.pop()
contextVertLoop= [e.v1, e.v2] # start the vert loop
# Even face method.
if arg[1] == '2':
remIdx = 0
faceStepping = len( v1loop) / len(v2loop)
while len(v1loop) - len(surplusFaces) > len(v2loop):
remIdx += faceStepping
surplusFaces.append(tempv1loop[ clamp(len(tempv1loop),remIdx) ])
tempv1loop.remove(surplusFaces[-1])
eIdx = 1 # Get us into the loop. dummy var.
# Shortest face
elif arg[1] == '1':
while len(v1loop) - len(surplusFaces) > len(v2loop):
surplusFaces.append(removeSmallestFace(mesh, tempv1loop))
tempv1loop.remove(surplusFaces[-1])
tempv1loop = None
v2loop = optimizeLoopOrdedShortEdge(mesh, v1loop, v2loop, surplusFaces)
# make Faces from
lenVloop = len(v1loop)
lenSupFaces = len(surplusFaces)
fIdx = 0
offset = 0
while fIdx < lenVloop:
face = copyFace( mesh.faces[v1loop[clamp(lenVloop, fIdx+1)]] )
if v1loop[fIdx] in surplusFaces:
# Draw a try, this face does not catch with an edge.
# So we must draw a tri and wedge it in.
# Copy old faces properties
face.v.append( selVertBetween2Faces(\
mesh.faces[v1loop[clamp(lenVloop, fIdx)]],\
mesh.faces[v1loop[clamp(lenVloop, fIdx+1)]]) )
face.v.append( selVertBetween2Faces(\
mesh.faces[v1loop[clamp(lenVloop, fIdx+1)]],\
mesh.faces[v1loop[clamp(lenVloop, fIdx+2)]]) )
#face.v.append( selVertBetween2Faces(\
#mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, (fIdx - offset +1 ))]],\
#mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, (fIdx - offset + 2))]]) )
face.v.append( selVertBetween2Faces(\
mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, (fIdx - offset))]],\
mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, fIdx - offset + 1)]]) )
mesh.faces.append(face)
# We need offset to work out how much smaller v2loop is at this current index.
offset+=1
else:
# Draw a normal quad between the 2 edges/faces
face.v.append( selVertBetween2Faces(\
mesh.faces[v1loop[clamp(lenVloop, fIdx)]],\
mesh.faces[v1loop[clamp(lenVloop, fIdx+1)]]) )
face.v.append( selVertBetween2Faces(\
mesh.faces[v1loop[clamp(lenVloop, fIdx+1)]],\
mesh.faces[v1loop[clamp(lenVloop, fIdx+2)]]) )
face.v.append( selVertBetween2Faces(\
mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, (fIdx - offset +1 ))]],\
mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, (fIdx - offset + 2))]]) )
face.v.append( selVertBetween2Faces(\
mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, (fIdx - offset))]],\
mesh.faces[v2loop[clamp(lenVloop - lenSupFaces, fIdx - offset + 1)]]) )
mesh.faces.append(face)
fIdx +=1
return mesh
#=======================================================#
# Takes a face and returns the number of selected verts #
#=======================================================#
def faceVSel(face):
vSel = 0
for v in face.v:
if v.sel:
vSel +=1
return vSel
#================================================================#
# This function takes a face and returns its selected vert loop #
# it returns a list of face indicies
#================================================================#
def vertLoop(mesh, startFaceIdx, fIgLs): # fIgLs is a list of faces to ignore.
# Here we store the faces indicies that
# are a part of the first vertex loop
vertLoopLs = [startFaceIdx]
restart = 0
while restart == 0:
# this keeps the face loop going until its told to stop,
# If the face loop does not find an adjacent face then the vert loop has been compleated
restart = 1
# Get my selected verts for the active face/edge.
selVerts = []
for v in mesh.faces[vertLoopLs[-1]].v:
selVerts.append(v)
fIdx = 0
while fIdx < len(mesh.faces) and restart:
# Not already added to the vert list
if fIdx not in fIgLs + vertLoopLs:
# Has 2 verts selected
if faceVSel(mesh.faces[fIdx]) > 1:
# Now we need to find if any of the selected verts
# are shared with our active face. (are we next to ActiveFace)
for v in mesh.faces[fIdx].v:
if v in selVerts:
vertLoopLs.append(fIdx)
restart = 0 # restart the face loop.
break
# if eIdx == 0 then it means we searched and found no matches...
# time for a new vert loop,
while eIdx:
eIdx = len(selEdges)
while eIdx:
eIdx-=1
# Check for edge attached at the head of the loop.
if contextVertLoop[0] == selEdges[eIdx].v1:
contextVertLoop.insert(0, selEdges.pop(eIdx).v2)
elif contextVertLoop[0] == selEdges[eIdx].v2:
contextVertLoop.insert(0, selEdges.pop(eIdx).v1)
fIdx +=1
return vertLoopLs
#================================================================#
# Now we work out the optimum order to 'skin' the 2 vert loops #
# by measuring the total distance of all edges created, #
# test this for every possible series of joins #
# and find the shortest, Once this is done the #
# shortest dist can be skinned. #
# returns only the 2nd-reordered vert loop #
#================================================================#
def optimizeLoopOrded(mesh, v1loop, v2loop):
bestSoFar = None
# Measure the dist, ii is just a counter
for ii in range(len(v1loop)):
# Loop twice , Once for the forward test, and another for the revearsed
for iii in [None, None]:
dist = measureVloop(mesh, v1loop, v2loop, bestSoFar)
# Initialize the Best distance recorded
if bestSoFar == None or dist < bestSoFar:
bestSoFar = dist
bestv2Loop = v2loop[:]
# We might have got the vert loop backwards, try the other way
v2loop.reverse()
listRotate(v2loop)
return bestv2Loop
#================================================================#
# Now we work out the optimum order to 'skin' the 2 vert loops #
# by measuring the total distance of all edges created, #
# test this for every possible series of joins #
# and find the shortest, Once this is done the #
# shortest dist can be skinned. #
# returns only the 2nd-reordered vert loop #
#================================================================#
def optimizeLoopOrdedShortEdge(mesh, v1loop, v2loop, surplusFaces):
bestSoFar = None
# Measure the dist, ii is just a counter
for ii in range(len(v2loop)):
# Loop twice , Once for the forward test, and another for the revearsed
for iii in [None, None]:
dist = measureVloop(mesh, v1loop, v2loop, surplusFaces, bestSoFar)
print 'dist', dist
# Initialize the Best distance recorded
if bestSoFar == None or dist < bestSoFar:
bestSoFar = dist
bestv2Loop = v2loop[:]
# We might have got the vert loop backwards, try the other way
v2loop.reverse()
#v2loop = listRotate(v2loop)
listRotate(v2loop)
print 'best so far ', bestSoFar
return bestv2Loop
#==============================#
# Find our vert loop list #
#==============================#
# Find a face with 2 verts selected,
#this will be the first face in out vert loop
def findVertLoop(mesh, fIgLs): # fIgLs is a list of faces to ignore.
startFaceIdx = None
fIdx = 0
while fIdx < len(mesh.faces):
if fIdx not in fIgLs:
# Do we have an edge?
if faceVSel(mesh.faces[fIdx]) > 1:
# THIS IS THE STARTING FACE.
startFaceIdx = fIdx
break
fIdx+=1
# Here we access the function that generates the real vert loop
if startFaceIdx != None:
return vertLoop(mesh, startFaceIdx, fIgLs)
else:
# We are out'a vert loops, return a None,
return None
#===================================#
# Get the average loc of a vertloop #
# This is used when working out the #
# order to loft an object #
#===================================#
def vLoopAverageLoc(mesh, vertLoop):
locList = [] # List of vert locations
fIdx = 0
while fIdx < len(mesh.faces):
if fIdx in vertLoop:
for v in mesh.faces[fIdx].v:
if v.sel:
locList.append(v.co)
fIdx+=1
return averageLocation(locList)
#=================================================#
# Vert loop group functions
def getAllVertLoops(mesh):
# Make a chain of vert loops.
fIgLs = [] # List of faces to ignore
allVLoops = [findVertLoop(mesh, fIgLs)]
while allVLoops[-1] != None:
# In future ignore all faces in this vert loop
fIgLs += allVLoops[-1]
# Add the new vert loop to the list
allVLoops.append( findVertLoop(mesh, fIgLs) )
return allVLoops[:-1] # Remove the last Value- None.
def reorderCircularVLoops(mesh, allVLoops):
# Now get a location for each vert loop.
allVertLoopLocs = []
for vLoop in allVLoops:
allVertLoopLocs.append( vLoopAverageLoc(mesh, vLoop) )
# We need to find the longest distance between 2 vert loops so we can
reorderedVLoopLocs = []
# Start with this one, then find the next closest.
# in doing this make a new list called reorderedVloop
currentVLoop = 0
reorderedVloopIdx = [currentVLoop]
newOrderVLoops = [allVLoops[0]] # This is a re-ordered allVLoops
while len(reorderedVloopIdx) != len(allVLoops):
bestSoFar = None
bestVIdxSoFar = None
for vLoopIdx in range(len(allVLoops)):
if vLoopIdx not in reorderedVloopIdx + [currentVLoop]:
if bestSoFar == None:
bestSoFar = measure( allVertLoopLocs[vLoopIdx], allVertLoopLocs[currentVLoop] )
bestVIdxSoFar = vLoopIdx
# Chech for edge vert at the tail.
elif contextVertLoop[-1] == selEdges[eIdx].v1:
contextVertLoop.append(selEdges.pop(eIdx).v2)
elif contextVertLoop[-1] == selEdges[eIdx].v2:
contextVertLoop.append(selEdges.pop(eIdx).v1)
else:
newDist = measure( allVertLoopLocs[vLoopIdx], allVertLoopLocs[currentVLoop] )
if newDist < bestSoFar:
bestSoFar = newDist
bestVIdxSoFar = vLoopIdx
reorderedVloopIdx.append(bestVIdxSoFar)
reorderedVLoopLocs.append(allVertLoopLocs[bestVIdxSoFar])
newOrderVLoops.append( allVLoops[bestVIdxSoFar] )
# Start looking for the next best fit
currentVLoop = bestVIdxSoFar
# This is not the locicle place to put this but its convieneint.
# Here we find the 2 vert loops that are most far apart
# We use this to work out which 2 vert loops not to skin when making an open loft.
vLoopIdx = 0
# Longest measured so far - 0 dummy.
bestSoFar = 0
while vLoopIdx < len(reorderedVLoopLocs):
# Skin back to the start if needs be, becuase this is a crcular loft
toSkin2 = vLoopIdx + 1
if toSkin2 == len(reorderedVLoopLocs):
toSkin2 = 0
newDist = measure( reorderedVLoopLocs[vLoopIdx], reorderedVLoopLocs[toSkin2] )
if newDist >= bestSoFar:
bestSoFar = newDist
vLoopIdxNotToSkin = vLoopIdx + 1
# None found? Keep looking
continue
vLoopIdx +=1
# Once found we.
break
# Is this a loop? if so then its forst and last vert must be teh same.
if contextVertLoop[0].index == contextVertLoop[-1].index:
contextVertLoop.pop() # remove double vert
mainVertLoops.append(contextVertLoop)
# Build context vert loops
return mainVertLoops
def skin2EdgeLoops(eloop1, eloop2, me, ob, MODE):
# Make sure e1 loops is bigger then e2
if len(eloop1.edges) != len(eloop2.edges):
if len(eloop1.edges) < len(eloop2.edges):
eloop1, eloop2 = eloop2, eloop1
eloop1.backup() # were about to cull faces
CULL_FACES = len(eloop1.edges) - len(eloop2.edges)
eloop1.removeSmallest(CULL_FACES, len(eloop1.edges))
else:
CULL_FACES = 0
# First make sure poly vert loops are in sync with eachother.
return newOrderVLoops, vLoopIdxNotToSkin
# The vector allong which we are skinning.
skinVector = eloop1.centre - eloop2.centre
loopDist = skinVector.length
# IS THE LOOP FLIPPED, IF SO FLIP BACK.
angleBetweenLoopNormals = Mathutils.AngleBetweenVecs(eloop1.normal, eloop2.normal)
if angleBetweenLoopNormals > 90:
eloop2.reverse()
bestEloopDist = BIG_NUM
bestOffset = 0
# Loop rotation offset to test.1
eLoopIdxs = range(len(eloop1.edges))
for offset in range(len(eloop1.edges)):
totEloopDist = 0 # Measure this total distance for thsi loop.
offsetIndexLs = eLoopIdxs[offset:] + eLoopIdxs[:offset] # Make offset index list
# e1Idx is always from 0 to N, e2Idx is offset.
for e1Idx, e2Idx in enumerate(offsetIndexLs):
# Measure the vloop distance ===============
totEloopDist += ((eloop1.edges[e1Idx].v1.co - eloop2.edges[e2Idx].v1.co).length / loopDist) #/ nangle1
totEloopDist += ((eloop1.edges[e1Idx].v2.co - eloop2.edges[e2Idx].v2.co).length / loopDist) #/ nangle1
# Premeture break if where no better off
if totEloopDist > bestEloopDist:
break
if totEloopDist < bestEloopDist:
bestOffset = offset
bestEloopDist = totEloopDist
# Modify V2 LS for Best offset
eloop2.edges = eloop2.edges[bestOffset:] + eloop2.edges[:bestOffset]
for loopIdx in range(len(eloop2.edges)):
e1 = eloop1.edges[loopIdx]
e2 = eloop2.edges[loopIdx]
# Remember the pairs for fan filling culled edges.
e1.match = e2; e2.match = e1
# need some smart face flipping code here.
f = NMesh.Face([e1.v1, e1.v2, e2.v2, e2.v1])
f.sel = 1
me.faces.append(f)
# FAN FILL MISSING FACES.
if CULL_FACES:
# Culled edges will be in eloop1.
FAN_FILLED_FACES = 0
contextEdge = eloop1.edges[0] # The larger of teh 2
while FAN_FILLED_FACES < CULL_FACES:
while contextEdge.next.removed == 0:
contextEdge = contextEdge.next
vertFanPivot = contextEdge.match.v2
while contextEdge.next.removed == 1:
f = NMesh.Face([contextEdge.next.v1, contextEdge.next.v2, vertFanPivot] )
f.sel = 1
me.faces.append(f)
# Should we use another var?, this will work for now.
contextEdge.next.removed = 1
contextEdge = contextEdge.next
FAN_FILLED_FACES += 1
eloop1.restore() # Add culled back into the list.
#if angleBetweenLoopNormals > 90:
# eloop2.reverse()
is_editmode = Window.EditMode()
if is_editmode: Window.EditMode(0)
def main():
global CULL_METHOD
is_editmode = Window.EditMode()
if is_editmode: Window.EditMode(0)
ob = Scene.GetCurrent().getActiveObject()
if ob == None or ob.getType() != 'Mesh':
return
me = ob.getData()
if not me.edges:
Draw.PupMenu('Error, add edge data first')
if is_editmode: Window.EditMode(1)
return
# BAD BLENDER PYTHON API, NEED TO ENTER EXIT EDIT MODE FOR ADDING EDGE DATA.
# ADD EDGE DATA HERE, Python API CANT DO IT YET, LOOSES SELECTION
selEdges = getSelectedEdges(me, ob)
vertLoops = getVertLoops(selEdges) # list of lists of edges.
if len(vertLoops) > 2:
choice = Draw.PupMenu('Loft '+str(len(vertLoops))+' edge loops%t|loop|segment')
if choice == -1:
if is_editmode: Window.EditMode(1)
return
elif len(vertLoops) < 2:
Draw.PupMenu('Error, No Vertloops found%t|if you have a valid selection, go in and out of face edit mode to update the selection state.')
if is_editmode: Window.EditMode(1)
return
else:
choice = 2
# The line below checks if any of the vert loops are differenyt in length.
if False in [len(v) == len(vertLoops[0]) for v in vertLoops]:
CULL_METHOD = Draw.PupMenu('Small to large edge loop distrobution method%t|remove edges evenly|remove smallest edges edges')
if CULL_METHOD == -1:
if is_editmode: Window.EditMode(1)
return
if CULL_METHOD ==1: # RESET CULL_METHOD
CULL_METHOD = 0 # shortest
else:
CULL_METHOD = 1 # even
time1 = sys.time()
# Convert to special edge data.
edgeLoops = []
for vloop in vertLoops:
edgeLoops.append(edgeLoop(vloop))
# VERT LOOP ORDERING CODE
# Build a worm list - grow from Both ends
edgeOrderedList = [edgeLoops.pop()]
# Find the closest.
bestSoFar = BIG_NUM
bestIdxSoFar = None
for edLoopIdx, edLoop in enumerate(edgeLoops):
l =(edgeOrderedList[-1].centre - edLoop.centre).length
if l < bestSoFar:
bestIdxSoFar = edLoopIdx
bestSoFar = l
edgeOrderedList.append( edgeLoops.pop(bestIdxSoFar) )
# Now we have the 2 closest, append to either end-
# Find the closest.
while edgeLoops:
bestSoFar = BIG_NUM
bestIdxSoFar = None
first_or_last = 0 # Zero is first
for edLoopIdx, edLoop in enumerate(edgeLoops):
l1 =(edgeOrderedList[-1].centre - edLoop.centre).length
if l1 < bestSoFar:
bestIdxSoFar = edLoopIdx
bestSoFar = l1
first_or_last = 1 # last
l2 =(edgeOrderedList[0].centre - edLoop.centre).length
if l2 < bestSoFar:
bestIdxSoFar = edLoopIdx
bestSoFar = l2
first_or_last = 0 # last
if first_or_last: # add closest Last
edgeOrderedList.append( edgeLoops.pop(bestIdxSoFar) )
else: # Add closest First
edgeOrderedList.insert(0, edgeLoops.pop(bestIdxSoFar) ) # First
for i in range(len(edgeOrderedList)-1):
skin2EdgeLoops(edgeOrderedList[i], edgeOrderedList[i+1], me, ob, 0)
if choice == 1 and len(edgeOrderedList) > 2: # Loop
skin2EdgeLoops(edgeOrderedList[0], edgeOrderedList[-1], me, ob, 0)
me.update(1, 1, 0)
if is_editmode: Window.EditMode(1)
# Get a mesh and raise errors if we cant
mesh = None
if choice == -1:
pass
elif len(Object.GetSelected()) > 0:
if Object.GetSelected()[0].getType() == 'Mesh':
mesh = Object.GetSelected()[0].getData()
else:
error('please select a mesh')
else:
error('no mesh object selected')
time1 = sys.time()
if mesh != None:
Window.WaitCursor(1)
allVLoops = getAllVertLoops(mesh)
# Re order the vert loops
allVLoops, vLoopIdxNotToSkin = reorderCircularVLoops(mesh, allVLoops)
vloopIdx = 0
while vloopIdx < len(allVLoops):
#print range(len(allVLoops) )
#print vloopIdx
#print allVLoops[vloopIdx]
# Skin back to the start if needs be, becuase this is a crcular loft
toSkin2 = vloopIdx + 1
if toSkin2 == len(allVLoops):
toSkin2 = 0
# Circular loft or not?
if arg[0] == 'B': # B for open
if vloopIdx != vLoopIdxNotToSkin:
mesh = skinVertLoops(mesh, allVLoops[vloopIdx], allVLoops[toSkin2])
elif arg[0] == 'A': # A for closed
mesh = skinVertLoops(mesh, allVLoops[vloopIdx], allVLoops[toSkin2])
vloopIdx +=1
mesh.update(1,(mesh.edges != []),0)
if is_editmode: Window.EditMode(1)
Window.WaitCursor(0)
print "skinning time: %.2f" % (sys.time() - time1)
main()