diff --git a/source/blender/render/intern/include/voxeldata.h b/source/blender/render/intern/include/voxeldata.h new file mode 100644 index 00000000000..504d5523db6 --- /dev/null +++ b/source/blender/render/intern/include/voxeldata.h @@ -0,0 +1,45 @@ +/** + * + * ***** BEGIN GPL LICENSE BLOCK ***** + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software Foundation, + * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. + * All rights reserved. + * + * The Original Code is: all of this file. + * + * Contributor(s): Raul Fernandez Hernandez (Farsthary), Matt Ebb. + * + * ***** END GPL LICENSE BLOCK ***** + */ + +#ifndef VOXELDATA_H +#define VOXELDATA_H + +/** + * Load voxel data for all point density textures in the scene + */ + +struct Render; +struct TexResult; + +int _I(int x,int y,int z,int n); +void make_voxeldata(struct Render *re); +void free_voxeldata(struct Render *re); +int voxeldatatex(struct Tex *tex, float *texvec, struct TexResult *texres); + + +#endif /* VOXELDATA_H */ diff --git a/source/blender/render/intern/source/voxeldata.c b/source/blender/render/intern/source/voxeldata.c new file mode 100644 index 00000000000..b2521e59b41 --- /dev/null +++ b/source/blender/render/intern/source/voxeldata.c @@ -0,0 +1,444 @@ +/** + * + * ***** BEGIN GPL LICENSE BLOCK ***** + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software Foundation, + * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. + * All rights reserved. + * + * The Original Code is: all of this file. + * + * Contributor(s): Raul Fernandez Hernandez (Farsthary), Matt Ebb. + * + * ***** END GPL LICENSE BLOCK ***** + */ + +#include +#include +#include + +#include "MEM_guardedalloc.h" + +#include "BLI_arithb.h" +#include "BLI_blenlib.h" + +#include "BKE_global.h" +#include "BKE_main.h" + +#include "DNA_texture_types.h" +#include "render_types.h" +#include "renderdatabase.h" +#include "texture.h" + +/*---------------------------Utils----------------------------------------*/ +int _I(int x,int y,int z,int n) +{ + return (z*(n)+y)*(n)+x; +} + +float Linear(float xx,float yy,float zz,float *x0,int n) +{ + float sx1,sx0,sy1,sy0,sz1,sz0,v0,v1; + int i0,i1,j0,j1,k0,k1; + + if (xx<0.5) xx=0.5f; if (xx>n+0.5) xx=n+0.5f; i0=(int)xx; i1=i0+1; + if (yy<0.5) yy=0.5f; if (yy>n+0.5) yy=n+0.5f; j0=(int)yy; j1=j0+1; + if (zz<0.5) zz=0.5f; if (zz>n+0.5) zz=n+0.5f; k0=(int)zz; k1=k0+1; + + sx1 = xx-i0; sx0 = 1-sx1; + sy1 = yy-j0; sy0 = 1-sy1; + sz1 = zz-k0; sz0 = 1-sz1; + v0 = sx0*(sy0*x0[_I(i0,j0,k0,n)]+sy1*x0[_I(i0,j1,k0,n)])+sx1*(sy0*x0[_I(i1,j0,k0,n)]+sy1*x0[_I(i1,j1,k0,n)]); + v1 = sx0*(sy0*x0[_I(i0,j0,k1,n)]+sy1*x0[_I(i0,j1,k1,n)])+sx1*(sy0*x0[_I(i1,j0,k1,n)]+sy1*x0[_I(i1,j1,k1,n)]); + return sz0*v0 + sz1*v1; + +} + +int C[64][64] = { + { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + {-3, 3, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 2,-2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + {-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 9,-9,-9, 9, 0, 0, 0, 0, 6, 3,-6,-3, 0, 0, 0, 0, 6,-6, 3,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + {-6, 6, 6,-6, 0, 0, 0, 0,-3,-3, 3, 3, 0, 0, 0, 0,-4, 4,-2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-2,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + {-6, 6, 6,-6, 0, 0, 0, 0,-4,-2, 4, 2, 0, 0, 0, 0,-3, 3,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 4,-4,-4, 4, 0, 0, 0, 0, 2, 2,-2,-2, 0, 0, 0, 0, 2,-2, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9,-9,-9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 3,-6,-3, 0, 0, 0, 0, 6,-6, 3,-3, 0, 0, 0, 0, 4, 2, 2, 1, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3,-3, 3, 3, 0, 0, 0, 0,-4, 4,-2, 2, 0, 0, 0, 0,-2,-2,-1,-1, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4,-2, 4, 2, 0, 0, 0, 0,-3, 3,-3, 3, 0, 0, 0, 0,-2,-1,-2,-1, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,-4,-4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2,-2,-2, 0, 0, 0, 0, 2,-2, 2,-2, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0}, + {-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 9,-9, 0, 0,-9, 9, 0, 0, 6, 3, 0, 0,-6,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,-6, 0, 0, 3,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + {-6, 6, 0, 0, 6,-6, 0, 0,-3,-3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 4, 0, 0,-2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-2, 0, 0,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9,-9, 0, 0,-9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 3, 0, 0,-6,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,-6, 0, 0, 3,-3, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 0, 0, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3,-3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 4, 0, 0,-2, 2, 0, 0,-2,-2, 0, 0,-1,-1, 0, 0}, + { 9, 0,-9, 0,-9, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 3, 0,-6, 0,-3, 0, 6, 0,-6, 0, 3, 0,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 9, 0,-9, 0,-9, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 3, 0,-6, 0,-3, 0, 6, 0,-6, 0, 3, 0,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 1, 0}, + {-27,27,27,-27,27,-27,-27,27,-18,-9,18, 9,18, 9,-18,-9,-18,18,-9, 9,18,-18, 9,-9,-18,18,18,-18,-9, 9, 9,-9,-12,-6,-6,-3,12, 6, 6, 3,-12,-6,12, 6,-6,-3, 6, 3,-12,12,-6, 6,-6, 6,-3, 3,-8,-4,-4,-2,-4,-2,-2,-1}, + {18,-18,-18,18,-18,18,18,-18, 9, 9,-9,-9,-9,-9, 9, 9,12,-12, 6,-6,-12,12,-6, 6,12,-12,-12,12, 6,-6,-6, 6, 6, 6, 3, 3,-6,-6,-3,-3, 6, 6,-6,-6, 3, 3,-3,-3, 8,-8, 4,-4, 4,-4, 2,-2, 4, 4, 2, 2, 2, 2, 1, 1}, + {-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0,-3, 0, 3, 0, 3, 0,-4, 0, 4, 0,-2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-2, 0,-1, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0,-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0,-3, 0, 3, 0, 3, 0,-4, 0, 4, 0,-2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-2, 0,-1, 0,-1, 0}, + {18,-18,-18,18,-18,18,18,-18,12, 6,-12,-6,-12,-6,12, 6, 9,-9, 9,-9,-9, 9,-9, 9,12,-12,-12,12, 6,-6,-6, 6, 6, 3, 6, 3,-6,-3,-6,-3, 8, 4,-8,-4, 4, 2,-4,-2, 6,-6, 6,-6, 3,-3, 3,-3, 4, 2, 4, 2, 2, 1, 2, 1}, + {-12,12,12,-12,12,-12,-12,12,-6,-6, 6, 6, 6, 6,-6,-6,-6, 6,-6, 6, 6,-6, 6,-6,-8, 8, 8,-8,-4, 4, 4,-4,-3,-3,-3,-3, 3, 3, 3, 3,-4,-4, 4, 4,-2,-2, 2, 2,-4, 4,-4, 4,-2, 2,-2, 2,-2,-2,-2,-2,-1,-1,-1,-1}, + { 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + {-6, 6, 0, 0, 6,-6, 0, 0,-4,-2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 4,-4, 0, 0,-4, 4, 0, 0, 2, 2, 0, 0,-2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 0, 0, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4,-2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0,-3, 3, 0, 0,-2,-1, 0, 0,-2,-1, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,-4, 0, 0,-4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0,-2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 2,-2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0}, + {-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 0,-2, 0, 4, 0, 2, 0,-3, 0, 3, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0,-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 0,-2, 0, 4, 0, 2, 0,-3, 0, 3, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0,-2, 0,-1, 0}, + {18,-18,-18,18,-18,18,18,-18,12, 6,-12,-6,-12,-6,12, 6,12,-12, 6,-6,-12,12,-6, 6, 9,-9,-9, 9, 9,-9,-9, 9, 8, 4, 4, 2,-8,-4,-4,-2, 6, 3,-6,-3, 6, 3,-6,-3, 6,-6, 3,-3, 6,-6, 3,-3, 4, 2, 2, 1, 4, 2, 2, 1}, + {-12,12,12,-12,12,-12,-12,12,-6,-6, 6, 6, 6, 6,-6,-6,-8, 8,-4, 4, 8,-8, 4,-4,-6, 6, 6,-6,-6, 6, 6,-6,-4,-4,-2,-2, 4, 4, 2, 2,-3,-3, 3, 3,-3,-3, 3, 3,-4, 4,-2, 2,-4, 4,-2, 2,-2,-2,-1,-1,-2,-2,-1,-1}, + { 4, 0,-4, 0,-4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0,-2, 0,-2, 0, 2, 0,-2, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + { 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,-4, 0,-4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0,-2, 0,-2, 0, 2, 0,-2, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0}, + {-12,12,12,-12,12,-12,-12,12,-8,-4, 8, 4, 8, 4,-8,-4,-6, 6,-6, 6, 6,-6, 6,-6,-6, 6, 6,-6,-6, 6, 6,-6,-4,-2,-4,-2, 4, 2, 4, 2,-4,-2, 4, 2,-4,-2, 4, 2,-3, 3,-3, 3,-3, 3,-3, 3,-2,-1,-2,-1,-2,-1,-2,-1}, + { 8,-8,-8, 8,-8, 8, 8,-8, 4, 4,-4,-4,-4,-4, 4, 4, 4,-4, 4,-4,-4, 4,-4, 4, 4,-4,-4, 4, 4,-4,-4, 4, 2, 2, 2, 2,-2,-2,-2,-2, 2, 2,-2,-2, 2, 2,-2,-2, 2,-2, 2,-2, 2,-2, 2,-2, 1, 1, 1, 1, 1, 1, 1, 1}}; + +int ijk2n(int i, int j, int k) { + return(i+4*j+16*k); +} + +void tricubic_get_coeff_stacked(float a[64], float x[64]) { + int i,j; + for (i=0;i<64;i++) { + a[i]=(float)(0.0); + for (j=0;j<64;j++) { + a[i]+=C[i][j]*x[j]; + } + } +} + +void point2xyz(int p, int *x, int *y, int *z) { + switch (p) { + case 0: *x=0; *y=0; *z=0; break; + case 1: *x=1; *y=0; *z=0; break; + case 2: *x=0; *y=1; *z=0; break; + case 3: *x=1; *y=1; *z=0; break; + case 4: *x=0; *y=0; *z=1; break; + case 5: *x=1; *y=0; *z=1; break; + case 6: *x=0; *y=1; *z=1; break; + case 7: *x=1; *y=1; *z=1; break; + default:*x=0; *y=0; *z=0; + } +} + + +void tricubic_get_coeff(float a[64], float f[8], float dfdx[8], float dfdy[8], float dfdz[8], float d2fdxdy[8], float d2fdxdz[8], float d2fdydz[8], float d3fdxdydz[8]) { + int i; + float x[64]; + for (i=0;i<8;i++) { + x[0+i]=f[i]; + x[8+i]=dfdx[i]; + x[16+i]=dfdy[i]; + x[24+i]=dfdz[i]; + x[32+i]=d2fdxdy[i]; + x[40+i]=d2fdxdz[i]; + x[48+i]=d2fdydz[i]; + x[56+i]=d3fdxdydz[i]; + } + tricubic_get_coeff_stacked(a,x); +} + +float tricubic_eval(float a[64], float x, float y, float z) { + int i,j,k; + float ret=(float)(0.0); + + for (i=0;i<4;i++) { + for (j=0;j<4;j++) { + for (k=0;k<4;k++) { + ret+=a[ijk2n(i,j,k)]*pow(x,i)*pow(y,j)*pow(z,k); + } + } + } + return(ret); +} + + +float tricubic(float xx,float yy,float zz,float *heap,int n) +{ + + int xi,yi,zi; + + if (xx<0.5) xx=0.5f; if (xx>n+0.5) xx=n+0.5f; xi=(int)xx; + if (yy<0.5) yy=0.5f; if (yy>n+0.5) yy=n+0.5f; yi=(int)yy; + if (zz<0.5) zz=0.5f; if (zz>n+0.5) zz=n+0.5f; zi=(int)zz; + + float a[64]; + + float fval[8]={heap[_I(xi,yi,zi,n)],heap[_I(xi+1,yi,zi,n)],heap[_I(xi,yi+1,zi,n)],heap[_I(xi+1,yi+1,zi,n)],heap[_I(xi,yi,zi+1,n)],heap[_I(xi+1,yi,zi+1,n)],heap[_I(xi,yi+1,zi+1,n)],heap[_I(xi+1,yi+1,zi+1,n)]}; + + float dfdxval[8]={0.5f*(heap[_I(xi+1,yi,zi,n)]-heap[_I(xi-1,yi,zi,n)]),0.5f*(heap[_I(xi+2,yi,zi,n)]-heap[_I(xi,yi,zi,n)]), + 0.5f*(heap[_I(xi+1,yi+1,zi,n)]-heap[_I(xi-1,yi+1,zi,n)]),0.5f*(heap[_I(xi+2,yi+1,zi,n)]-heap[_I(xi,yi+1,zi,n)]), + 0.5f*(heap[_I(xi+1,yi,zi+1,n)]-heap[_I(xi-1,yi,zi+1,n)]),0.5f*(heap[_I(xi+2,yi,zi+1,n)]-heap[_I(xi,yi,zi+1,n)]), + 0.5f*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi-1,yi+1,zi+1,n)]), + 0.5f*(heap[_I(xi+2,yi+1,zi+1,n)]-heap[_I(xi,yi+1,zi+1,n)])}; + + float dfdyval[8]={0.5f*(heap[_I(xi,yi+1,zi,n)]-heap[_I(xi,yi-1,zi,n)]),0.5f*(heap[_I(xi+1,yi+1,zi,n)]-heap[_I(xi+1,yi-1,zi,n)]), + 0.5f*(heap[_I(xi,yi+2,zi,n)]-heap[_I(xi,yi,zi,n)]),0.5f*(heap[_I(xi+1,yi+2,zi,n)]-heap[_I(xi+1,yi,zi,n)]), + 0.5f*(heap[_I(xi,yi+1,zi+1,n)]-heap[_I(xi,yi-1,zi+1,n)]),0.5f*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi+1,yi-1,zi+1,n)]), + 0.5f*(heap[_I(xi,yi+2,zi+1,n)]-heap[_I(xi,yi,zi+1,n)]), + 0.5f*(heap[_I(xi+1,yi+2,zi+1,n)]-heap[_I(xi+1,yi,zi+1,n)])}; + + float dfdzval[8]={0.5f*(heap[_I(xi,yi,zi+1,n)]-heap[_I(xi,yi,zi-1,n)]),0.5f*(heap[_I(xi+1,yi,zi+1,n)]-heap[_I(xi+1,yi,zi-1,n)]), + 0.5f*(heap[_I(xi,yi+1,zi+1,n)]-heap[_I(xi,yi+1,zi-1,n)]),0.5f*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi+1,yi+1,zi-1,n)]), + 0.5f*(heap[_I(xi,yi,zi+2,n)]-heap[_I(xi,yi,zi,n)]),0.5f*(heap[_I(xi+1,yi,zi+2,n)]-heap[_I(xi+1,yi,zi,n)]), + 0.5f*(heap[_I(xi,yi+1,zi+2,n)]-heap[_I(xi,yi+1,zi,n)]), + 0.5f*(heap[_I(xi+1,yi+1,zi+2,n)]-heap[_I(xi+1,yi+1,zi,n)])}; + + float d2fdxdyval[8]={0.25*(heap[_I(xi+1,yi+1,zi,n)]-heap[_I(xi-1,yi+1,zi,n)]-heap[_I(xi+1,yi-1,zi,n)]+heap[_I(xi-1,yi-1,zi,n)]), + 0.25*(heap[_I(xi+2,yi+1,zi,n)]-heap[_I(xi,yi+1,zi,n)]-heap[_I(xi+2,yi-1,zi,n)]+heap[_I(xi,yi-1,zi,n)]), + 0.25*(heap[_I(xi+1,yi+2,zi,n)]-heap[_I(xi-1,yi+2,zi,n)]-heap[_I(xi+1,yi,zi,n)]+heap[_I(xi-1,yi,zi,n)]), + 0.25*(heap[_I(xi+2,yi+2,zi,n)]-heap[_I(xi,yi+2,zi,n)]-heap[_I(xi+2,yi,zi,n)]+heap[_I(xi,yi,zi,n)]), + 0.25*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi-1,yi+1,zi+1,n)]-heap[_I(xi+1,yi-1,zi+1,n)]+heap[_I(xi-1,yi-1,zi+1,n)]), + 0.25*(heap[_I(xi+2,yi+1,zi+1,n)]-heap[_I(xi,yi+1,zi+1,n)]-heap[_I(xi+2,yi-1,zi+1,n)]+heap[_I(xi,yi-1,zi+1,n)]), + 0.25*(heap[_I(xi+1,yi+2,zi+1,n)]-heap[_I(xi-1,yi+2,zi+1,n)]-heap[_I(xi+1,yi,zi+1,n)]+heap[_I(xi-1,yi,zi+1,n)]), + 0.25*(heap[_I(xi+2,yi+2,zi+1,n)]-heap[_I(xi,yi+2,zi+1,n)]-heap[_I(xi+2,yi,zi+1,n)]+heap[_I(xi,yi,zi+1,n)])}; + + float d2fdxdzval[8]={0.25f*(heap[_I(xi+1,yi,zi+1,n)]-heap[_I(xi-1,yi,zi+1,n)]-heap[_I(xi+1,yi,zi-1,n)]+heap[_I(xi-1,yi,zi-1,n)]), + 0.25f*(heap[_I(xi+2,yi,zi+1,n)]-heap[_I(xi,yi,zi+1,n)]-heap[_I(xi+2,yi,zi-1,n)]+heap[_I(xi,yi,zi-1,n)]), + 0.25f*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi-1,yi+1,zi+1,n)]-heap[_I(xi+1,yi+1,zi-1,n)]+heap[_I(xi-1,yi+1,zi-1,n)]), + 0.25f*(heap[_I(xi+2,yi+1,zi+1,n)]-heap[_I(xi,yi+1,zi+1,n)]-heap[_I(xi+2,yi+1,zi-1,n)]+heap[_I(xi,yi+1,zi-1,n)]), + 0.25f*(heap[_I(xi+1,yi,zi+2,n)]-heap[_I(xi-1,yi,zi+2,n)]-heap[_I(xi+1,yi,zi,n)]+heap[_I(xi-1,yi,zi,n)]), + 0.25f*(heap[_I(xi+2,yi,zi+2,n)]-heap[_I(xi,yi,zi+2,n)]-heap[_I(xi+2,yi,zi,n)]+heap[_I(xi,yi,zi,n)]), + 0.25f*(heap[_I(xi+1,yi+1,zi+2,n)]-heap[_I(xi-1,yi+1,zi+2,n)]-heap[_I(xi+1,yi+1,zi,n)]+heap[_I(xi-1,yi+1,zi,n)]), + 0.25f*(heap[_I(xi+2,yi+1,zi+2,n)]-heap[_I(xi,yi+1,zi+2,n)]-heap[_I(xi+2,yi+1,zi,n)]+heap[_I(xi,yi+1,zi,n)])}; + + + float d2fdydzval[8]={0.25f*(heap[_I(xi,yi+1,zi+1,n)]-heap[_I(xi,yi-1,zi+1,n)]-heap[_I(xi,yi+1,zi-1,n)]+heap[_I(xi,yi-1,zi-1,n)]), + 0.25f*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi+1,yi-1,zi+1,n)]-heap[_I(xi+1,yi+1,zi-1,n)]+heap[_I(xi+1,yi-1,zi-1,n)]), + 0.25f*(heap[_I(xi,yi+2,zi+1,n)]-heap[_I(xi,yi,zi+1,n)]-heap[_I(xi,yi+2,zi-1,n)]+heap[_I(xi,yi,zi-1,n)]), + 0.25f*(heap[_I(xi+1,yi+2,zi+1,n)]-heap[_I(xi+1,yi,zi+1,n)]-heap[_I(xi+1,yi+2,zi-1,n)]+heap[_I(xi+1,yi,zi-1,n)]), + 0.25f*(heap[_I(xi,yi+1,zi+2,n)]-heap[_I(xi,yi-1,zi+2,n)]-heap[_I(xi,yi+1,zi,n)]+heap[_I(xi,yi-1,zi,n)]), + 0.25f*(heap[_I(xi+1,yi+1,zi+2,n)]-heap[_I(xi+1,yi-1,zi+2,n)]-heap[_I(xi+1,yi+1,zi,n)]+heap[_I(xi+1,yi-1,zi,n)]), + 0.25f*(heap[_I(xi,yi+2,zi+2,n)]-heap[_I(xi,yi,zi+2,n)]-heap[_I(xi,yi+2,zi,n)]+heap[_I(xi,yi,zi,n)]), + 0.25f*(heap[_I(xi+1,yi+2,zi+2,n)]-heap[_I(xi+1,yi,zi+2,n)]-heap[_I(xi+1,yi+2,zi,n)]+heap[_I(xi+1,yi,zi,n)])}; + + + float d3fdxdydzval[8]={0.125f*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi-1,yi+1,zi+1,n)]-heap[_I(xi+1,yi-1,zi+1,n)]+heap[_I(xi-1,yi-1,zi+1,n)]-heap[_I(xi+1,yi+1,zi-1,n)]+heap[_I(xi-1,yi+1,zi-1,n)]+heap[_I(xi+1,yi-1,zi-1,n)]-heap[_I(xi-1,yi-1,zi-1,n)]), + 0.125f*(heap[_I(xi+2,yi+1,zi+1,n)]-heap[_I(xi,yi+1,zi+1,n)]-heap[_I(xi+2,yi-1,zi+1,n)]+heap[_I(xi,yi-1,zi+1,n)]-heap[_I(xi+2,yi+1,zi-1,n)]+heap[_I(xi,yi+1,zi-1,n)]+heap[_I(xi+2,yi-1,zi-1,n)]-heap[_I(xi,yi-1,zi-1,n)]), + 0.125f*(heap[_I(xi+1,yi+2,zi+1,n)]-heap[_I(xi-1,yi+2,zi+1,n)]-heap[_I(xi+1,yi,zi+1,n)]+heap[_I(xi-1,yi,zi+1,n)]-heap[_I(xi+1,yi+2,zi-1,n)]+heap[_I(xi-1,yi+2,zi-1,n)]+heap[_I(xi+1,yi,zi-1,n)]-heap[_I(xi-1,yi,zi-1,n)]), + 0.125f*(heap[_I(xi+2,yi+2,zi+1,n)]-heap[_I(xi,yi+2,zi+1,n)]-heap[_I(xi+2,yi,zi+1,n)]+heap[_I(xi,yi,zi+1,n)]-heap[_I(xi+2,yi+2,zi-1,n)]+heap[_I(xi,yi+2,zi-1,n)]+heap[_I(xi+2,yi,zi-1,n)]-heap[_I(xi,yi,zi-1,n)]), + 0.125f*(heap[_I(xi+1,yi+1,zi+2,n)]-heap[_I(xi-1,yi+1,zi+2,n)]-heap[_I(xi+1,yi-1,zi+2,n)]+heap[_I(xi-1,yi-1,zi+2,n)]-heap[_I(xi+1,yi+1,zi,n)]+heap[_I(xi-1,yi+1,zi,n)]+heap[_I(xi+1,yi-1,zi,n)]-heap[_I(xi-1,yi-1,zi,n)]), + 0.125f*(heap[_I(xi+2,yi+1,zi+2,n)]-heap[_I(xi,yi+1,zi+2,n)]-heap[_I(xi+2,yi-1,zi+2,n)]+heap[_I(xi,yi-1,zi+2,n)]-heap[_I(xi+2,yi+1,zi,n)]+heap[_I(xi,yi+1,zi,n)]+heap[_I(xi+2,yi-1,zi,n)]-heap[_I(xi,yi-1,zi,n)]), + 0.125f*(heap[_I(xi+1,yi+2,zi+2,n)]-heap[_I(xi-1,yi+2,zi+2,n)]-heap[_I(xi+1,yi,zi+2,n)]+heap[_I(xi-1,yi,zi+2,n)]-heap[_I(xi+1,yi+2,zi,n)]+heap[_I(xi-1,yi+2,zi,n)]+heap[_I(xi+1,yi,zi,n)]-heap[_I(xi-1,yi,zi,n)]), + 0.125f*(heap[_I(xi+2,yi+2,zi+2,n)]-heap[_I(xi,yi+2,zi+2,n)]-heap[_I(xi+2,yi,zi+2,n)]+heap[_I(xi,yi,zi+2,n)]-heap[_I(xi+2,yi+2,zi,n)]+heap[_I(xi,yi+2,zi,n)]+heap[_I(xi+2,yi,zi,n)]-heap[_I(xi,yi,zi,n)])}; + + tricubic_get_coeff(a,fval,dfdxval,dfdyval,dfdzval,d2fdxdyval,d2fdxdzval,d2fdydzval,d3fdxdydzval); + + float dx=xx-xi; + float dy=yy-yi; + float dz=zz-zi; + + return tricubic_eval(a,dx,dy,dz); + +} + + + + + +/*--------------------------------------------------------------------*/ + +void load_frame (FILE *fp,float *F, int size,int frame) +{ + + fseek(fp,frame*size*sizeof(float),0); + fread(F,sizeof(float),size,fp); +} + + + + +void cache_voxeldata(struct Render *re,Tex *tex) +{ + VoxelData *vd = tex->vd; + FILE *fp; + int size; + + if (!vd) return; + + vd->resolY=vd->resolX; //for now only support cubic datasets (rectangular datasets could be added latter) + vd->resolZ=vd->resolX; + size = (vd->resolX)*(vd->resolY)*(vd->resolZ); + + vd->dataset=MEM_mallocN(sizeof(float)*size, "voxel dataset"); + + if (!BLI_exists(vd->source_path)) return; + fp = fopen(vd->source_path,"rb"); + if (!fp) return; + + load_frame(fp, vd->dataset, size, re->r.cfra); //here improve the dataset loading function for more dataset types + + fclose(fp); + +} + +void make_voxeldata(struct Render *re) +{ + Tex *tex; + + if(re->scene->r.scemode & R_PREVIEWBUTS) + return; + + re->i.infostr= "Loading voxel datasets"; + re->stats_draw(&re->i); + + for (tex= G.main->tex.first; tex; tex= tex->id.next) { + if(tex->id.us && tex->type==TEX_VOXELDATA) { + cache_voxeldata(re, tex); + } + } + + re->i.infostr= NULL; + re->stats_draw(&re->i); + +} + +static void free_voxeldata_one(Render *re, Tex *tex) +{ + VoxelData *vd = tex->vd; + + if (vd->dataset) { + MEM_freeN(vd->dataset); + vd->dataset = NULL; + } +} + + +void free_voxeldata(Render *re) +{ + Tex *tex; + + if(re->scene->r.scemode & R_PREVIEWBUTS) + return; + + for (tex= G.main->tex.first; tex; tex= tex->id.next) { + if(tex->id.us && tex->type==TEX_VOXELDATA) { + free_voxeldata_one(re, tex); + } + } +} + +int voxeldatatex(struct Tex *tex, float *texvec, struct TexResult *texres) +{ + int retval = TEX_INT; + VoxelData *vd = tex->vd; + float vec[3] = {0.0, 0.0, 0.0}; + float co[3]; + float dx, dy, dz; + int xi, yi, zi; + float xf, yf, zf; + int i=0, fail=0; + int resolX, resolY, resolZ; + + if ((!vd) || (vd->dataset==NULL)) { + texres->tin = 0.0f; + return 0; + } + + //here do the calculation of the interpolation types + + resolX=vd->resolX; + resolY=vd->resolY; + resolZ=vd->resolZ; + + VECCOPY(co, texvec); + + dx=1.0f/(resolX); + dy=1.0f/(resolY); + dz=1.0f/(resolZ); + + xi=co[0]/dx; + yi=co[1]/dy; + zi=co[2]/dz; + + xf=co[0]/dx; + yf=co[1]/dy; + zf=co[2]/dz; + + if (xi>1 && xi1 && yi1 && ziinterp_type) + { + + case TEX_VD_NEARESTNEIGHBOR: + { + texres->tin = vd->dataset[_I(xi,yi,zi,resolX)]; + BRICONT; + break; + } + case TEX_VD_LINEAR: + { + texres->tin = Linear(xf,yf,zf,vd->dataset,resolX); + } + case TEX_VD_TRICUBIC: + { + texres->tin = tricubic(xf,yf,zf,vd->dataset,resolX); + } + + } + + + + } else fail++; + } else fail++; + } else fail++; + + if (fail) texres->tin=0.0f; + + texres->tin *= vd->int_multiplier; + + texres->tr = texres->tin; + texres->tg = texres->tin; + texres->tb = texres->tin; + texres->ta = texres->tin; + BRICONTRGB; + + return retval; +} + +