/* SPDX-License-Identifier: Apache-2.0 */ #include "testing/testing.h" #include "BLI_math_matrix.h" #include "BLI_math_matrix.hh" #include "BLI_math_rotation.h" #include "BLI_math_rotation.hh" TEST(math_matrix, interp_m4_m4m4_regular) { /* Test 4x4 matrix interpolation without singularity, i.e. without axis flip. */ /* Transposed matrix, so that the code here is written in the same way as print_m4() outputs. */ /* This matrix represents T=(0.1, 0.2, 0.3), R=(40, 50, 60) degrees, S=(0.7, 0.8, 0.9) */ float matrix_a[4][4] = { {0.224976f, -0.333770f, 0.765074f, 0.100000f}, {0.389669f, 0.647565f, 0.168130f, 0.200000f}, {-0.536231f, 0.330541f, 0.443163f, 0.300000f}, {0.000000f, 0.000000f, 0.000000f, 1.000000f}, }; transpose_m4(matrix_a); float matrix_i[4][4]; unit_m4(matrix_i); float result[4][4]; const float epsilon = 1e-6; interp_m4_m4m4(result, matrix_i, matrix_a, 0.0f); EXPECT_M4_NEAR(result, matrix_i, epsilon); interp_m4_m4m4(result, matrix_i, matrix_a, 1.0f); EXPECT_M4_NEAR(result, matrix_a, epsilon); /* This matrix is based on the current implementation of the code, and isn't guaranteed to be * correct. It's just consistent with the current implementation. */ float matrix_halfway[4][4] = { {0.690643f, -0.253244f, 0.484996f, 0.050000f}, {0.271924f, 0.852623f, 0.012348f, 0.100000f}, {-0.414209f, 0.137484f, 0.816778f, 0.150000f}, {0.000000f, 0.000000f, 0.000000f, 1.000000f}, }; transpose_m4(matrix_halfway); interp_m4_m4m4(result, matrix_i, matrix_a, 0.5f); EXPECT_M4_NEAR(result, matrix_halfway, epsilon); } TEST(math_matrix, interp_m3_m3m3_singularity) { /* A singularity means that there is an axis mirror in the rotation component of the matrix. * This is reflected in its negative determinant. * * The interpolation of 4x4 matrices performs linear interpolation on the translation component, * and then uses the 3x3 interpolation function to handle rotation and scale. As a result, this * test for a singularity in the rotation matrix only needs to test the 3x3 case. */ /* Transposed matrix, so that the code here is written in the same way as print_m4() outputs. */ /* This matrix represents R=(4, 5, 6) degrees, S=(-1, 1, 1) */ float matrix_a[3][3] = { {-0.990737f, -0.098227f, 0.093759f}, {-0.104131f, 0.992735f, -0.060286f}, {0.087156f, 0.069491f, 0.993768f}, }; transpose_m3(matrix_a); EXPECT_NEAR(-1.0f, determinant_m3_array(matrix_a), 1e-6); /* This matrix represents R=(0, 0, 0), S=(-1, 1, 1) */ float matrix_b[3][3] = { {-1.0f, 0.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f, 1.0f}, }; transpose_m3(matrix_b); float result[3][3]; interp_m3_m3m3(result, matrix_a, matrix_b, 0.0f); EXPECT_M3_NEAR(result, matrix_a, 1e-5); interp_m3_m3m3(result, matrix_a, matrix_b, 1.0f); EXPECT_M3_NEAR(result, matrix_b, 1e-5); interp_m3_m3m3(result, matrix_a, matrix_b, 0.5f); float expect[3][3] = { {-0.997681f, -0.049995f, 0.046186f}, {-0.051473f, 0.998181f, -0.031385f}, {0.044533f, 0.033689f, 0.998440f}, }; transpose_m3(expect); EXPECT_M3_NEAR(result, expect, 1e-5); /* Interpolating between a matrix with and without axis flip can cause it to go through a zero * point. The determinant det(A) of a matrix represents the change in volume; interpolating * between matrices with det(A)=-1 and det(B)=1 will have to go through a point where * det(result)=0, so where the volume becomes zero. */ float matrix_i[3][3]; unit_m3(matrix_i); zero_m3(expect); interp_m3_m3m3(result, matrix_a, matrix_i, 0.5f); EXPECT_NEAR(0.0f, determinant_m3_array(result), 1e-5); EXPECT_M3_NEAR(result, expect, 1e-5); } TEST(math_matrix, mul_m3_series) { float matrix[3][3] = { {2.0f, 0.0f, 0.0f}, {0.0f, 3.0f, 0.0f}, {0.0f, 0.0f, 5.0f}, }; mul_m3_series(matrix, matrix, matrix, matrix); float expect[3][3] = { {8.0f, 0.0f, 0.0f}, {0.0f, 27.0f, 0.0f}, {0.0f, 0.0f, 125.0f}, }; EXPECT_M3_NEAR(matrix, expect, 1e-5); } TEST(math_matrix, mul_m4_series) { float matrix[4][4] = { {2.0f, 0.0f, 0.0f, 0.0f}, {0.0f, 3.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 5.0f, 0.0f}, {0.0f, 0.0f, 0.0f, 7.0f}, }; mul_m4_series(matrix, matrix, matrix, matrix); float expect[4][4] = { {8.0f, 0.0f, 0.0f, 0.0f}, {0.0f, 27.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 125.0f, 0.0f}, {0.0f, 0.0f, 0.0f, 343.0f}, }; EXPECT_M4_NEAR(matrix, expect, 1e-5); } namespace blender::tests { using namespace blender::math; TEST(math_matrix, MatrixInverse) { float3x3 mat = float3x3::diagonal(2); float3x3 inv = invert(mat); float3x3 expect = float3x3({0.5f, 0.0f, 0.0f}, {0.0f, 0.5f, 0.0f}, {0.0f, 0.0f, 0.5f}); EXPECT_M3_NEAR(inv, expect, 1e-5f); bool success; float3x3 mat2 = float3x3::all(1); float3x3 inv2 = invert(mat2, success); float3x3 expect2 = float3x3::all(0); EXPECT_M3_NEAR(inv2, expect2, 1e-5f); EXPECT_FALSE(success); } TEST(math_matrix, MatrixPseudoInverse) { float4x4 mat = transpose(float4x4({0.224976f, -0.333770f, 0.765074f, 0.100000f}, {0.389669f, 0.647565f, 0.168130f, 0.200000f}, {-0.536231f, 0.330541f, 0.443163f, 0.300000f}, {0.000000f, 0.000000f, 0.000000f, 1.000000f})); float4x4 expect = transpose(float4x4({0.224976f, -0.333770f, 0.765074f, 0.100000f}, {0.389669f, 0.647565f, 0.168130f, 0.200000f}, {-0.536231f, 0.330541f, 0.443163f, 0.300000f}, {0.000000f, 0.000000f, 0.000000f, 1.000000f})); float4x4 inv = pseudo_invert(mat); pseudoinverse_m4_m4(expect.ptr(), mat.ptr(), 1e-8f); EXPECT_M4_NEAR(inv, expect, 1e-5f); float4x4 mat2 = transpose(float4x4({0.000000f, -0.333770f, 0.765074f, 0.100000f}, {0.000000f, 0.647565f, 0.168130f, 0.200000f}, {0.000000f, 0.330541f, 0.443163f, 0.300000f}, {0.000000f, 0.000000f, 0.000000f, 1.000000f})); float4x4 expect2 = transpose(float4x4({0.000000f, 0.000000f, 0.000000f, 0.000000f}, {-0.51311f, 1.02638f, 0.496437f, -0.302896f}, {0.952803f, 0.221885f, 0.527413f, -0.297881f}, {-0.0275438f, -0.0477073f, 0.0656508f, 0.9926f})); float4x4 inv2 = pseudo_invert(mat2); EXPECT_M4_NEAR(inv2, expect2, 1e-5f); } TEST(math_matrix, MatrixDeterminant) { float2x2 m2({1, 2}, {3, 4}); float3x3 m3({1, 2, 3}, {-3, 4, -5}, {5, -6, 7}); float4x4 m4({1, 2, -3, 3}, {3, 4, -5, 3}, {5, 6, 7, -3}, {5, 6, 7, 1}); EXPECT_NEAR(determinant(m2), -2.0f, 1e-8f); EXPECT_NEAR(determinant(m3), -16.0f, 1e-8f); EXPECT_NEAR(determinant(m4), -112.0f, 1e-8f); EXPECT_NEAR(determinant(double2x2(m2)), -2.0f, 1e-8f); EXPECT_NEAR(determinant(double3x3(m3)), -16.0f, 1e-8f); EXPECT_NEAR(determinant(double4x4(m4)), -112.0f, 1e-8f); } TEST(math_matrix, MatrixAdjoint) { float2x2 m2({1, 2}, {3, 4}); float3x3 m3({1, 2, 3}, {-3, 4, -5}, {5, -6, 7}); float4x4 m4({1, 2, -3, 3}, {3, 4, -5, 3}, {5, 6, 7, -3}, {5, 6, 7, 1}); float2x2 expect2 = transpose(float2x2({4, -3}, {-2, 1})); float3x3 expect3 = transpose(float3x3({-2, -4, -2}, {-32, -8, 16}, {-22, -4, 10})); float4x4 expect4 = transpose( float4x4({232, -184, -8, -0}, {-128, 88, 16, 0}, {80, -76, 4, 28}, {-72, 60, -12, -28})); EXPECT_M2_NEAR(adjoint(m2), expect2, 1e-8f); EXPECT_M3_NEAR(adjoint(m3), expect3, 1e-8f); EXPECT_M4_NEAR(adjoint(m4), expect4, 1e-8f); } TEST(math_matrix, MatrixAccess) { float4x4 m({1, 2, 3, 4}, {5, 6, 7, 8}, {9, 1, 2, 3}, {4, 5, 6, 7}); /** Access helpers. */ EXPECT_EQ(m.x_axis(), float3(1, 2, 3)); EXPECT_EQ(m.y_axis(), float3(5, 6, 7)); EXPECT_EQ(m.z_axis(), float3(9, 1, 2)); EXPECT_EQ(m.location(), float3(4, 5, 6)); } TEST(math_matrix, MatrixInit) { float4x4 expect; float4x4 m = from_location({1, 2, 3}); expect = float4x4({1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {1, 2, 3, 1}); EXPECT_TRUE(is_equal(m, expect, 0.00001f)); expect = transpose(float4x4({0.411982, -0.833738, -0.36763, 0}, {-0.0587266, -0.426918, 0.902382, 0}, {-0.909297, -0.350175, -0.224845, 0}, {0, 0, 0, 1})); EulerXYZ euler(1, 2, 3); Quaternion quat = to_quaternion(euler); AxisAngle axis_angle = to_axis_angle(euler); m = from_rotation(euler); EXPECT_M3_NEAR(m, expect, 1e-5); m = from_rotation(quat); EXPECT_M3_NEAR(m, expect, 1e-5); m = from_rotation(axis_angle); EXPECT_M3_NEAR(m, expect, 1e-5); expect = transpose(float4x4({0.823964, -1.66748, -0.735261, 3.28334}, {-0.117453, -0.853835, 1.80476, 5.44925}, {-1.81859, -0.700351, -0.44969, -0.330972}, {0, 0, 0, 1})); DualQuaternion dual_quat(quat, Quaternion(0.5f, 0.5f, 0.5f, 1.5f), float4x4::diagonal(2.0f)); m = from_rotation(dual_quat); EXPECT_M3_NEAR(m, expect, 1e-5); m = from_scale(float4(1, 2, 3, 4)); expect = float4x4({1, 0, 0, 0}, {0, 2, 0, 0}, {0, 0, 3, 0}, {0, 0, 0, 4}); EXPECT_TRUE(is_equal(m, expect, 0.00001f)); m = from_scale(float3(1, 2, 3)); expect = float4x4({1, 0, 0, 0}, {0, 2, 0, 0}, {0, 0, 3, 0}, {0, 0, 0, 1}); EXPECT_TRUE(is_equal(m, expect, 0.00001f)); m = from_scale(float2(1, 2)); expect = float4x4({1, 0, 0, 0}, {0, 2, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}); EXPECT_TRUE(is_equal(m, expect, 0.00001f)); m = from_loc_rot({1, 2, 3}, EulerXYZ{1, 2, 3}); expect = float4x4({0.411982, -0.0587266, -0.909297, 0}, {-0.833738, -0.426918, -0.350175, 0}, {-0.36763, 0.902382, -0.224845, 0}, {1, 2, 3, 1}); EXPECT_TRUE(is_equal(m, expect, 0.00001f)); m = from_loc_rot_scale({1, 2, 3}, EulerXYZ{1, 2, 3}, float3{1, 2, 3}); expect = float4x4({0.411982, -0.0587266, -0.909297, 0}, {-1.66748, -0.853835, -0.700351, 0}, {-1.10289, 2.70714, -0.674535, 0}, {1, 2, 3, 1}); EXPECT_TRUE(is_equal(m, expect, 0.00001f)); } TEST(math_matrix, MatrixModify) { const float epsilon = 1e-6; float4x4 result, expect; float4x4 m1 = float4x4({0, 3, 0, 0}, {2, 0, 0, 0}, {0, 0, 2, 0}, {0, 0, 0, 1}); expect = float4x4({0, 3, 0, 0}, {2, 0, 0, 0}, {0, 0, 2, 0}, {4, 9, 2, 1}); result = translate(m1, float3(3, 2, 1)); EXPECT_M4_NEAR(result, expect, epsilon); expect = float4x4({0, 3, 0, 0}, {2, 0, 0, 0}, {0, 0, 2, 0}, {4, 0, 0, 1}); result = translate(m1, float2(0, 2)); EXPECT_M4_NEAR(result, expect, epsilon); expect = float4x4({0, 0, -2, 0}, {2, 0, 0, 0}, {0, 3, 0, 0}, {0, 0, 0, 1}); result = rotate(m1, AxisAngle({0, 1, 0}, M_PI_2)); EXPECT_M4_NEAR(result, expect, epsilon); expect = float4x4({0, 9, 0, 0}, {4, 0, 0, 0}, {0, 0, 8, 0}, {0, 0, 0, 1}); result = scale(m1, float3(3, 2, 4)); EXPECT_M4_NEAR(result, expect, epsilon); expect = float4x4({0, 9, 0, 0}, {4, 0, 0, 0}, {0, 0, 2, 0}, {0, 0, 0, 1}); result = scale(m1, float2(3, 2)); EXPECT_M4_NEAR(result, expect, epsilon); } TEST(math_matrix, MatrixCompareTest) { float4x4 m1 = float4x4({0, 3, 0, 0}, {2, 0, 0, 0}, {0, 0, 2, 0}, {0, 0, 0, 1}); float4x4 m2 = float4x4({0, 3.001, 0, 0}, {1.999, 0, 0, 0}, {0, 0, 2.001, 0}, {0, 0, 0, 1.001}); float4x4 m3 = float4x4({0, 3.001, 0, 0}, {1, 1, 0, 0}, {0, 0, 2.001, 0}, {0, 0, 0, 1.001}); float4x4 m4 = float4x4({0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}); float4x4 m5 = float4x4({0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}); float4x4 m6 = float4x4({1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}); EXPECT_TRUE(is_equal(m1, m2, 0.01f)); EXPECT_FALSE(is_equal(m1, m2, 0.0001f)); EXPECT_FALSE(is_equal(m1, m3, 0.01f)); EXPECT_TRUE(is_orthogonal(m1)); EXPECT_FALSE(is_orthogonal(m3)); EXPECT_TRUE(is_orthonormal(m4)); EXPECT_FALSE(is_orthonormal(m1)); EXPECT_FALSE(is_orthonormal(m3)); EXPECT_FALSE(is_uniformly_scaled(m1)); EXPECT_TRUE(is_uniformly_scaled(m4)); EXPECT_FALSE(is_zero(m4)); EXPECT_TRUE(is_zero(m5)); EXPECT_TRUE(is_negative(m4)); EXPECT_FALSE(is_negative(m5)); EXPECT_FALSE(is_negative(m6)); } TEST(math_matrix, MatrixToNearestEuler) { EulerXYZ eul1 = EulerXYZ(225.08542, -1.12485, -121.23738); Euler3 eul2 = Euler3(float3{4.06112, 100.561928, -18.9063}, EulerOrder::ZXY); float3x3 mat = {{0.808309, -0.578051, -0.111775}, {0.47251, 0.750174, -0.462572}, {0.351241, 0.321087, 0.879507}}; EXPECT_V3_NEAR(float3(to_nearest_euler(mat, eul1)), float3(225.71, 0.112009, -120.001), 1e-3); EXPECT_V3_NEAR(float3(to_nearest_euler(mat, eul2)), float3(5.95631, 100.911, -19.5061), 1e-3); } TEST(math_matrix, MatrixMethods) { float4x4 m = float4x4({0, 3, 0, 0}, {2, 0, 0, 0}, {0, 0, 2, 0}, {0, 1, 0, 1}); auto expect_eul = EulerXYZ(0, 0, M_PI_2); auto expect_qt = Quaternion(0, -M_SQRT1_2, M_SQRT1_2, 0); float3 expect_scale = float3(3, 2, 2); float3 expect_location = float3(0, 1, 0); EXPECT_EQ(to_scale(m), expect_scale); float4 expect_sz = {3, 2, 2, M_SQRT2}; float4 size; float4x4 m1 = normalize_and_get_size(m, size); EXPECT_TRUE(is_unit_scale(m1)); EXPECT_V4_NEAR(size, expect_sz, 0.0002f); float4x4 m2 = normalize(m); EXPECT_TRUE(is_unit_scale(m2)); EXPECT_V3_NEAR(float3(to_euler(m1)), float3(expect_eul), 0.0002f); EXPECT_V4_NEAR(float4(to_quaternion(m1)), float4(expect_qt), 0.0002f); EulerXYZ eul; Quaternion qt; float3 scale; to_rot_scale(float3x3(m), eul, scale); to_rot_scale(float3x3(m), qt, scale); EXPECT_V3_NEAR(scale, expect_scale, 0.00001f); EXPECT_V4_NEAR(float4(qt), float4(expect_qt), 0.0002f); EXPECT_V3_NEAR(float3(eul), float3(expect_eul), 0.0002f); float3 loc; to_loc_rot_scale(m, loc, eul, scale); to_loc_rot_scale(m, loc, qt, scale); EXPECT_V3_NEAR(scale, expect_scale, 0.00001f); EXPECT_V3_NEAR(loc, expect_location, 0.00001f); EXPECT_V4_NEAR(float4(qt), float4(expect_qt), 0.0002f); EXPECT_V3_NEAR(float3(eul), float3(expect_eul), 0.0002f); } TEST(math_matrix, MatrixToQuaternionLegacy) { float3x3 mat = {{0.808309, -0.578051, -0.111775}, {0.47251, 0.750174, -0.462572}, {0.351241, 0.321087, 0.879507}}; EXPECT_V4_NEAR(float4(to_quaternion_legacy(mat)), float4(0.927091f, -0.211322f, 0.124857f, -0.283295f), 1e-5f); } TEST(math_matrix, MatrixTranspose) { float4x4 m({1, 2, 3, 4}, {5, 6, 7, 8}, {9, 1, 2, 3}, {2, 5, 6, 7}); float4x4 expect({1, 5, 9, 2}, {2, 6, 1, 5}, {3, 7, 2, 6}, {4, 8, 3, 7}); EXPECT_EQ(transpose(m), expect); } TEST(math_matrix, MatrixInterpolationRegular) { /* Test 4x4 matrix interpolation without singularity, i.e. without axis flip. */ /* Transposed matrix, so that the code here is written in the same way as print_m4() outputs. */ /* This matrix represents T=(0.1, 0.2, 0.3), R=(40, 50, 60) degrees, S=(0.7, 0.8, 0.9) */ float4x4 m2 = transpose(float4x4({0.224976f, -0.333770f, 0.765074f, 0.100000f}, {0.389669f, 0.647565f, 0.168130f, 0.200000f}, {-0.536231f, 0.330541f, 0.443163f, 0.300000f}, {0.000000f, 0.000000f, 0.000000f, 1.000000f})); float4x4 m1 = float4x4::identity(); float4x4 result; const float epsilon = 1e-6; result = interpolate(m1, m2, 0.0f); EXPECT_M4_NEAR(result, m1, epsilon); result = interpolate(m1, m2, 1.0f); EXPECT_M4_NEAR(result, m2, epsilon); /* This matrix is based on the current implementation of the code, and isn't guaranteed to be * correct. It's just consistent with the current implementation. */ float4x4 expect = transpose(float4x4({0.690643f, -0.253244f, 0.484996f, 0.050000f}, {0.271924f, 0.852623f, 0.012348f, 0.100000f}, {-0.414209f, 0.137484f, 0.816778f, 0.150000f}, {0.000000f, 0.000000f, 0.000000f, 1.000000f})); result = interpolate(m1, m2, 0.5f); EXPECT_M4_NEAR(result, expect, epsilon); result = interpolate_fast(m1, m2, 0.5f); EXPECT_M4_NEAR(result, expect, epsilon); } TEST(math_matrix, MatrixInterpolationSingularity) { /* A singularity means that there is an axis mirror in the rotation component of the matrix. * This is reflected in its negative determinant. * * The interpolation of 4x4 matrices performs linear interpolation on the translation component, * and then uses the 3x3 interpolation function to handle rotation and scale. As a result, this * test for a singularity in the rotation matrix only needs to test the 3x3 case. */ /* Transposed matrix, so that the code here is written in the same way as print_m4() outputs. */ /* This matrix represents R=(4, 5, 6) degrees, S=(-1, 1, 1) */ float3x3 matrix_a = transpose(float3x3({-0.990737f, -0.098227f, 0.093759f}, {-0.104131f, 0.992735f, -0.060286f}, {0.087156f, 0.069491f, 0.993768f})); EXPECT_NEAR(-1.0f, determinant(matrix_a), 1e-6); /* This matrix represents R=(0, 0, 0), S=(-1, 1 1) */ float3x3 matrix_b = transpose( float3x3({-1.0f, 0.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f, 1.0f})); float3x3 result = interpolate(matrix_a, matrix_b, 0.0f); EXPECT_M3_NEAR(result, matrix_a, 1e-5); result = interpolate(matrix_a, matrix_b, 1.0f); EXPECT_M3_NEAR(result, matrix_b, 1e-5); result = interpolate(matrix_a, matrix_b, 0.5f); float3x3 expect = transpose(float3x3({-0.997681f, -0.049995f, 0.046186f}, {-0.051473f, 0.998181f, -0.031385f}, {0.044533f, 0.033689f, 0.998440f})); EXPECT_M3_NEAR(result, expect, 1e-5); result = interpolate_fast(matrix_a, matrix_b, 0.5f); EXPECT_M3_NEAR(result, expect, 1e-5); /* Interpolating between a matrix with and without axis flip can cause it to go through a zero * point. The determinant det(A) of a matrix represents the change in volume; interpolating * between matrices with det(A)=-1 and det(B)=1 will have to go through a point where * det(result)=0, so where the volume becomes zero. */ float3x3 matrix_i = float3x3::identity(); expect = float3x3::zero(); result = interpolate(matrix_a, matrix_i, 0.5f); EXPECT_NEAR(0.0f, determinant(result), 1e-5); EXPECT_M3_NEAR(result, expect, 1e-5); } TEST(math_matrix, MatrixTransform) { float3 expect, result; const float3 p(1, 2, 3); float4x4 m4 = from_loc_rot({10, 0, 0}, EulerXYZ(M_PI_2, M_PI_2, M_PI_2)); float3x3 m3 = from_rotation(EulerXYZ(M_PI_2, M_PI_2, M_PI_2)); float4x4 pers4 = projection::perspective(-0.1f, 0.1f, -0.1f, 0.1f, -0.1f, -1.0f); float3x3 pers3 = float3x3({1, 0, 0.1f}, {0, 1, 0.1f}, {0, 0.1f, 1}); expect = {13, 2, -1}; result = transform_point(m4, p); EXPECT_V3_NEAR(result, expect, 1e-2); expect = {3, 2, -1}; result = transform_point(m3, p); EXPECT_V3_NEAR(result, expect, 1e-5); result = transform_direction(m4, p); EXPECT_V3_NEAR(result, expect, 1e-5); result = transform_direction(m3, p); EXPECT_V3_NEAR(result, expect, 1e-5); expect = {-0.333333, -0.666666, -1.14814}; result = project_point(pers4, p); EXPECT_V3_NEAR(result, expect, 1e-5); float2 expect2 = {0.76923, 1.61538}; float2 result2 = project_point(pers3, float2(p)); EXPECT_V2_NEAR(result2, expect2, 1e-5); } TEST(math_matrix, MatrixProjection) { using namespace math::projection; float4x4 expect; float4x4 ortho = orthographic(-0.2f, 0.3f, -0.2f, 0.4f, -0.2f, -0.5f); float4x4 pers1 = perspective(-0.2f, 0.3f, -0.2f, 0.4f, -0.2f, -0.5f); float4x4 pers2 = perspective_fov( math::atan(-0.2f), math::atan(0.3f), math::atan(-0.2f), math::atan(0.4f), -0.2f, -0.5f); expect = transpose(float4x4({4.0f, 0.0f, 0.0f, -0.2f}, {0.0f, 3.33333f, 0.0f, -0.333333f}, {0.0f, 0.0f, 6.66667f, -2.33333f}, {0.0f, 0.0f, 0.0f, 1.0f})); EXPECT_M4_NEAR(ortho, expect, 1e-5); expect = transpose(float4x4({-0.8f, 0.0f, 0.2f, 0.0f}, {0.0f, -0.666667f, 0.333333f, 0.0f}, {0.0f, 0.0f, -2.33333f, 0.666667f}, {0.0f, 0.0f, -1.0f, 0.0f})); EXPECT_M4_NEAR(pers1, expect, 1e-5); expect = transpose(float4x4({4.0f, 0.0f, 0.2f, 0.0f}, {0.0f, 3.33333f, 0.333333f, 0.0f}, {0.0f, 0.0f, -2.33333f, 0.666667f}, {0.0f, 0.0f, -1.0f, 0.0f})); EXPECT_M4_NEAR(pers2, expect, 1e-5); } } // namespace blender::tests