/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2005 Blender Foundation. All rights reserved. */ /** \file * \ingroup modifiers */ /* Screw modifier: revolves the edges about an axis */ #include #include "BLI_utildefines.h" #include "BLI_bitmap.h" #include "BLI_math.h" #include "BLI_span.hh" #include "BLT_translation.h" #include "DNA_defaults.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_object_types.h" #include "DNA_screen_types.h" #include "BKE_attribute.hh" #include "BKE_context.h" #include "BKE_lib_id.h" #include "BKE_lib_query.h" #include "BKE_mesh.hh" #include "BKE_screen.h" #include "UI_interface.h" #include "UI_resources.h" #include "RNA_access.h" #include "RNA_prototypes.h" #include "DEG_depsgraph_build.h" #include "DEG_depsgraph_query.h" #include "MEM_guardedalloc.h" #include "MOD_modifiertypes.h" #include "MOD_ui_common.h" #include "BLI_strict_flags.h" #include "GEO_mesh_merge_by_distance.hh" using namespace blender; static void initData(ModifierData *md) { ScrewModifierData *ltmd = (ScrewModifierData *)md; BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(ltmd, modifier)); MEMCPY_STRUCT_AFTER(ltmd, DNA_struct_default_get(ScrewModifierData), modifier); } /** Used for gathering edge connectivity. */ struct ScrewVertConnect { /** Distance from the center axis. */ float dist_sq; /** Location relative to the transformed axis. */ float co[3]; /** 2 verts on either side of this one. */ uint v[2]; /** Edges on either side, a bit of a waste since each edge ref's 2 edges. */ MEdge *e[2]; char flag; }; struct ScrewVertIter { ScrewVertConnect *v_array; ScrewVertConnect *v_poin; uint v, v_other; MEdge *e; }; #define SV_UNUSED (UINT_MAX) #define SV_INVALID ((UINT_MAX)-1) #define SV_IS_VALID(v) ((v) < SV_INVALID) static void screwvert_iter_init(ScrewVertIter *iter, ScrewVertConnect *array, uint v_init, uint dir) { iter->v_array = array; iter->v = v_init; if (SV_IS_VALID(v_init)) { iter->v_poin = &array[v_init]; iter->v_other = iter->v_poin->v[dir]; iter->e = iter->v_poin->e[!dir]; } else { iter->v_poin = nullptr; iter->e = nullptr; } } static void screwvert_iter_step(ScrewVertIter *iter) { if (iter->v_poin->v[0] == iter->v_other) { iter->v_other = iter->v; iter->v = iter->v_poin->v[1]; } else if (iter->v_poin->v[1] == iter->v_other) { iter->v_other = iter->v; iter->v = iter->v_poin->v[0]; } if (SV_IS_VALID(iter->v)) { iter->v_poin = &iter->v_array[iter->v]; iter->e = iter->v_poin->e[(iter->v_poin->e[0] == iter->e)]; } else { iter->e = nullptr; iter->v_poin = nullptr; } } static Mesh *mesh_remove_doubles_on_axis(Mesh *result, float (*vert_positions_new)[3], const uint totvert, const uint step_tot, const float axis_vec[3], const float axis_offset[3], const float merge_threshold) { BLI_bitmap *vert_tag = BLI_BITMAP_NEW(totvert, __func__); const float merge_threshold_sq = square_f(merge_threshold); const bool use_offset = axis_offset != nullptr; uint tot_doubles = 0; for (uint i = 0; i < totvert; i += 1) { float axis_co[3]; if (use_offset) { float offset_co[3]; sub_v3_v3v3(offset_co, vert_positions_new[i], axis_offset); project_v3_v3v3_normalized(axis_co, offset_co, axis_vec); add_v3_v3(axis_co, axis_offset); } else { project_v3_v3v3_normalized(axis_co, vert_positions_new[i], axis_vec); } const float dist_sq = len_squared_v3v3(axis_co, vert_positions_new[i]); if (dist_sq <= merge_threshold_sq) { BLI_BITMAP_ENABLE(vert_tag, i); tot_doubles += 1; copy_v3_v3(vert_positions_new[i], axis_co); } } if (tot_doubles != 0) { uint tot = totvert * step_tot; int *full_doubles_map = static_cast(MEM_malloc_arrayN(tot, sizeof(int), __func__)); copy_vn_i(full_doubles_map, int(tot), -1); uint tot_doubles_left = tot_doubles; for (uint i = 0; i < totvert; i += 1) { if (BLI_BITMAP_TEST(vert_tag, i)) { int *doubles_map = &full_doubles_map[totvert + i]; for (uint step = 1; step < step_tot; step += 1) { *doubles_map = int(i); doubles_map += totvert; } tot_doubles_left -= 1; if (tot_doubles_left == 0) { break; } } } Mesh *tmp = result; /* TODO(mano-wii): Polygons with all vertices merged are the ones that form duplicates. * Therefore the duplicate polygon test can be skipped. */ result = geometry::mesh_merge_verts(*tmp, MutableSpan{full_doubles_map, result->totvert}, int(tot_doubles * (step_tot - 1))); BKE_id_free(nullptr, tmp); MEM_freeN(full_doubles_map); } MEM_freeN(vert_tag); return result; } static Mesh *modifyMesh(ModifierData *md, const ModifierEvalContext *ctx, Mesh *meshData) { using namespace blender; const Mesh *mesh = meshData; Mesh *result; ScrewModifierData *ltmd = (ScrewModifierData *)md; const bool use_render_params = (ctx->flag & MOD_APPLY_RENDER) != 0; int mpoly_index = 0; uint step; uint j; uint i1, i2; uint step_tot = use_render_params ? ltmd->render_steps : ltmd->steps; const bool do_flip = (ltmd->flag & MOD_SCREW_NORMAL_FLIP) != 0; const int quad_ord[4] = { do_flip ? 3 : 0, do_flip ? 2 : 1, do_flip ? 1 : 2, do_flip ? 0 : 3, }; const int quad_ord_ofs[4] = { do_flip ? 2 : 0, 1, do_flip ? 0 : 2, 3, }; uint maxVerts = 0, maxEdges = 0, maxPolys = 0; const uint totvert = uint(mesh->totvert); const uint totedge = uint(mesh->totedge); const uint totpoly = uint(mesh->totpoly); uint *edge_poly_map = nullptr; /* orig edge to orig poly */ uint *vert_loop_map = nullptr; /* orig vert to orig loop */ /* UV Coords */ const uint mloopuv_layers_tot = uint(CustomData_number_of_layers(&mesh->ldata, CD_PROP_FLOAT2)); blender::Array mloopuv_layers(mloopuv_layers_tot); float uv_u_scale; float uv_v_minmax[2] = {FLT_MAX, -FLT_MAX}; float uv_v_range_inv; float uv_axis_plane[4]; char axis_char = 'X'; bool close; float angle = ltmd->angle; float screw_ofs = ltmd->screw_ofs; float axis_vec[3] = {0.0f, 0.0f, 0.0f}; float tmp_vec1[3], tmp_vec2[3]; float mat3[3][3]; /* transform the coords by an object relative to this objects transformation */ float mtx_tx[4][4]; float mtx_tx_inv[4][4]; /* inverted */ float mtx_tmp_a[4][4]; uint vc_tot_linked = 0; short other_axis_1, other_axis_2; const float *tmpf1, *tmpf2; uint edge_offset; MPoly *mp_new; MEdge *edge_new, *med_new_firstloop; Object *ob_axis = ltmd->ob_axis; ScrewVertConnect *vc, *vc_tmp, *vert_connect = nullptr; const bool use_flat_shading = (ltmd->flag & MOD_SCREW_SMOOTH_SHADING) == 0; /* don't do anything? */ if (!totvert) { return BKE_mesh_new_nomain_from_template(mesh, 0, 0, 0, 0); } switch (ltmd->axis) { case 0: other_axis_1 = 1; other_axis_2 = 2; break; case 1: other_axis_1 = 0; other_axis_2 = 2; break; default: /* 2, use default to quiet warnings */ other_axis_1 = 0; other_axis_2 = 1; break; } axis_vec[ltmd->axis] = 1.0f; if (ob_axis != nullptr) { /* Calculate the matrix relative to the axis object. */ invert_m4_m4(mtx_tmp_a, ctx->object->object_to_world); copy_m4_m4(mtx_tx_inv, ob_axis->object_to_world); mul_m4_m4m4(mtx_tx, mtx_tmp_a, mtx_tx_inv); /* Calculate the axis vector. */ mul_mat3_m4_v3(mtx_tx, axis_vec); /* only rotation component */ normalize_v3(axis_vec); /* screw */ if (ltmd->flag & MOD_SCREW_OBJECT_OFFSET) { /* Find the offset along this axis relative to this objects matrix. */ float totlen = len_v3(mtx_tx[3]); if (totlen != 0.0f) { const float zero[3] = {0.0f, 0.0f, 0.0f}; float cp[3]; screw_ofs = closest_to_line_v3(cp, mtx_tx[3], zero, axis_vec); } else { screw_ofs = 0.0f; } } /* angle */ #if 0 /* can't include this, not predictable enough, though quite fun. */ if (ltmd->flag & MOD_SCREW_OBJECT_ANGLE) { float mtx3_tx[3][3]; copy_m3_m4(mtx3_tx, mtx_tx); float vec[3] = {0, 1, 0}; float cross1[3]; float cross2[3]; cross_v3_v3v3(cross1, vec, axis_vec); mul_v3_m3v3(cross2, mtx3_tx, cross1); { float c1[3]; float c2[3]; float axis_tmp[3]; cross_v3_v3v3(c1, cross2, axis_vec); cross_v3_v3v3(c2, axis_vec, c1); angle = angle_v3v3(cross1, c2); cross_v3_v3v3(axis_tmp, cross1, c2); normalize_v3(axis_tmp); if (len_v3v3(axis_tmp, axis_vec) > 1.0f) { angle = -angle; } } } #endif } else { axis_char = char(axis_char + ltmd->axis); /* 'X' + axis */ /* Useful to be able to use the axis vector in some cases still. */ zero_v3(axis_vec); axis_vec[ltmd->axis] = 1.0f; } /* apply the multiplier */ angle *= float(ltmd->iter); screw_ofs *= float(ltmd->iter); uv_u_scale = 1.0f / float(step_tot); /* multiplying the steps is a bit tricky, this works best */ step_tot = ((step_tot + 1) * ltmd->iter) - (ltmd->iter - 1); /* Will the screw be closed? * NOTE: smaller than `FLT_EPSILON * 100` * gives problems with float precision so its never closed. */ if (fabsf(screw_ofs) <= (FLT_EPSILON * 100.0f) && fabsf(fabsf(angle) - (float(M_PI) * 2.0f)) <= (FLT_EPSILON * 100.0f) && step_tot > 3) { close = true; step_tot--; maxVerts = totvert * step_tot; /* -1 because we're joining back up */ maxEdges = (totvert * step_tot) + /* these are the edges between new verts */ (totedge * step_tot); /* -1 because vert edges join */ maxPolys = totedge * step_tot; screw_ofs = 0.0f; } else { close = false; if (step_tot < 2) { step_tot = 2; } maxVerts = totvert * step_tot; /* -1 because we're joining back up */ maxEdges = (totvert * (step_tot - 1)) + /* these are the edges between new verts */ (totedge * step_tot); /* -1 because vert edges join */ maxPolys = totedge * (step_tot - 1); } if ((ltmd->flag & MOD_SCREW_UV_STRETCH_U) == 0) { uv_u_scale = (uv_u_scale / float(ltmd->iter)) * (angle / (float(M_PI) * 2.0f)); } /* The `screw_ofs` cannot change from now on. */ const bool do_remove_doubles = (ltmd->flag & MOD_SCREW_MERGE) && (screw_ofs == 0.0f); result = BKE_mesh_new_nomain_from_template( mesh, int(maxVerts), int(maxEdges), int(maxPolys) * 4, int(maxPolys)); /* The modifier doesn't support original index mapping on the edge or face domains. Remove * original index layers, since otherwise edges aren't displayed at all in wireframe view. */ CustomData_free_layers(&result->edata, CD_ORIGINDEX, result->totedge); CustomData_free_layers(&result->pdata, CD_ORIGINDEX, result->totedge); const float(*vert_positions_orig)[3] = BKE_mesh_vert_positions(mesh); const blender::Span edges_orig = mesh->edges(); const blender::Span polys_orig = mesh->polys(); const blender::Span corner_verts_orig = mesh->corner_verts(); const blender::Span corner_edges_orig = mesh->corner_edges(); float(*vert_positions_new)[3] = BKE_mesh_vert_positions_for_write(result); blender::MutableSpan edges_new = result->edges_for_write(); blender::MutableSpan polys_new = result->polys_for_write(); blender::MutableSpan corner_verts_new = result->corner_verts_for_write(); blender::MutableSpan corner_edges_new = result->corner_edges_for_write(); bke::MutableAttributeAccessor attributes = result->attributes_for_write(); bke::SpanAttributeWriter sharp_faces = attributes.lookup_or_add_for_write_span( "sharp_face", ATTR_DOMAIN_FACE); if (!CustomData_has_layer(&result->pdata, CD_ORIGINDEX)) { CustomData_add_layer(&result->pdata, CD_ORIGINDEX, CD_SET_DEFAULT, int(maxPolys)); } int *origindex = static_cast( CustomData_get_layer_for_write(&result->pdata, CD_ORIGINDEX, result->totpoly)); CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, int(totvert)); if (mloopuv_layers_tot) { const float zero_co[3] = {0}; plane_from_point_normal_v3(uv_axis_plane, zero_co, axis_vec); } if (mloopuv_layers_tot) { uint uv_lay; for (uv_lay = 0; uv_lay < mloopuv_layers_tot; uv_lay++) { mloopuv_layers[uv_lay] = static_cast(CustomData_get_layer_n_for_write( &result->ldata, CD_PROP_FLOAT2, int(uv_lay), result->totloop)); } if (ltmd->flag & MOD_SCREW_UV_STRETCH_V) { for (uint i = 0; i < totvert; i++) { const float v = dist_signed_squared_to_plane_v3(vert_positions_orig[i], uv_axis_plane); uv_v_minmax[0] = min_ff(v, uv_v_minmax[0]); uv_v_minmax[1] = max_ff(v, uv_v_minmax[1]); } uv_v_minmax[0] = sqrtf_signed(uv_v_minmax[0]); uv_v_minmax[1] = sqrtf_signed(uv_v_minmax[1]); } uv_v_range_inv = uv_v_minmax[1] - uv_v_minmax[0]; uv_v_range_inv = uv_v_range_inv ? 1.0f / uv_v_range_inv : 0.0f; } /* Set the locations of the first set of verts */ /* Copy the first set of edges */ const MEdge *edge_orig = edges_orig.data(); edge_new = edges_new.data(); for (uint i = 0; i < totedge; i++, edge_orig++, edge_new++) { edge_new->v1 = edge_orig->v1; edge_new->v2 = edge_orig->v2; } /* build polygon -> edge map */ if (totpoly) { edge_poly_map = static_cast( MEM_malloc_arrayN(totedge, sizeof(*edge_poly_map), __func__)); memset(edge_poly_map, 0xff, sizeof(*edge_poly_map) * totedge); vert_loop_map = static_cast( MEM_malloc_arrayN(totvert, sizeof(*vert_loop_map), __func__)); memset(vert_loop_map, 0xff, sizeof(*vert_loop_map) * totvert); for (const int64_t i : polys_orig.index_range()) { uint loopstart = uint(polys_orig[i].loopstart); uint loopend = loopstart + uint(polys_orig[i].totloop); for (uint k = loopstart; k < loopend; k++) { const uint vert_i = uint(corner_verts_orig[k]); const uint edge_i = uint(corner_edges_orig[k]); edge_poly_map[edge_i] = uint(i); vert_loop_map[vert_i] = k; /* also order edges based on faces */ if (edges_new[edge_i].v1 != vert_i) { std::swap(edges_new[edge_i].v1, edges_new[edge_i].v2); } } } } if (ltmd->flag & MOD_SCREW_NORMAL_CALC) { /* Normal Calculation (for face flipping) * Sort edge verts for correct face flipping * NOT REALLY NEEDED but face flipping is nice. */ vert_connect = static_cast( MEM_malloc_arrayN(totvert, sizeof(ScrewVertConnect), __func__)); /* skip the first slice of verts. */ // vert_connect = (ScrewVertConnect *) &medge_new[totvert]; vc = vert_connect; /* Copy Vert Locations */ if (totedge != 0) { // printf("\n\n\n\n\nStarting Modifier\n"); /* set edge users */ edge_new = edges_new.data(); if (ob_axis != nullptr) { /* `mtx_tx` is initialized early on. */ for (uint i = 0; i < totvert; i++, vc++) { vc->co[0] = vert_positions_new[i][0] = vert_positions_orig[i][0]; vc->co[1] = vert_positions_new[i][1] = vert_positions_orig[i][1]; vc->co[2] = vert_positions_new[i][2] = vert_positions_orig[i][2]; vc->flag = 0; vc->e[0] = vc->e[1] = nullptr; vc->v[0] = vc->v[1] = SV_UNUSED; mul_m4_v3(mtx_tx, vc->co); /* Length in 2D, don't `sqrt` because this is only for comparison. */ vc->dist_sq = vc->co[other_axis_1] * vc->co[other_axis_1] + vc->co[other_axis_2] * vc->co[other_axis_2]; // printf("location %f %f %f -- %f\n", vc->co[0], vc->co[1], vc->co[2], vc->dist_sq); } } else { for (uint i = 0; i < totvert; i++, vc++) { vc->co[0] = vert_positions_new[i][0] = vert_positions_orig[i][0]; vc->co[1] = vert_positions_new[i][1] = vert_positions_orig[i][1]; vc->co[2] = vert_positions_new[i][2] = vert_positions_orig[i][2]; vc->flag = 0; vc->e[0] = vc->e[1] = nullptr; vc->v[0] = vc->v[1] = SV_UNUSED; /* Length in 2D, don't sqrt because this is only for comparison. */ vc->dist_sq = vc->co[other_axis_1] * vc->co[other_axis_1] + vc->co[other_axis_2] * vc->co[other_axis_2]; // printf("location %f %f %f -- %f\n", vc->co[0], vc->co[1], vc->co[2], vc->dist_sq); } } /* this loop builds connectivity info for verts */ for (uint i = 0; i < totedge; i++, edge_new++) { vc = &vert_connect[edge_new->v1]; if (vc->v[0] == SV_UNUSED) { /* unused */ vc->v[0] = edge_new->v2; vc->e[0] = edge_new; } else if (vc->v[1] == SV_UNUSED) { vc->v[1] = edge_new->v2; vc->e[1] = edge_new; } else { vc->v[0] = vc->v[1] = SV_INVALID; /* error value - don't use, 3 edges on vert */ } vc = &vert_connect[edge_new->v2]; /* same as above but swap v1/2 */ if (vc->v[0] == SV_UNUSED) { /* unused */ vc->v[0] = edge_new->v1; vc->e[0] = edge_new; } else if (vc->v[1] == SV_UNUSED) { vc->v[1] = edge_new->v1; vc->e[1] = edge_new; } else { vc->v[0] = vc->v[1] = SV_INVALID; /* error value - don't use, 3 edges on vert */ } } /* find the first vert */ vc = vert_connect; for (uint i = 0; i < totvert; i++, vc++) { /* Now do search for connected verts, order all edges and flip them * so resulting faces are flipped the right way */ vc_tot_linked = 0; /* count the number of linked verts for this loop */ if (vc->flag == 0) { uint v_best = SV_UNUSED, ed_loop_closed = 0; /* vert and vert new */ ScrewVertIter lt_iter; float fl = -1.0f; /* compiler complains if not initialized, but it should be initialized below */ bool ed_loop_flip = false; // printf("Loop on connected vert: %i\n", i); for (j = 0; j < 2; j++) { // printf("\tSide: %i\n", j); screwvert_iter_init(<_iter, vert_connect, i, j); if (j == 1) { screwvert_iter_step(<_iter); } while (lt_iter.v_poin) { // printf("\t\tVERT: %i\n", lt_iter.v); if (lt_iter.v_poin->flag) { // printf("\t\t\tBreaking Found end\n"); // endpoints[0] = endpoints[1] = SV_UNUSED; ed_loop_closed = 1; /* circle */ break; } lt_iter.v_poin->flag = 1; vc_tot_linked++; // printf("Testing 2 floats %f : %f\n", fl, lt_iter.v_poin->dist_sq); if (fl <= lt_iter.v_poin->dist_sq) { fl = lt_iter.v_poin->dist_sq; v_best = lt_iter.v; // printf("\t\t\tVERT BEST: %i\n", v_best); } screwvert_iter_step(<_iter); if (!lt_iter.v_poin) { // printf("\t\t\tFound End Also Num %i\n", j); // endpoints[j] = lt_iter.v_other; /* other is still valid */ break; } } } /* Now we have a collection of used edges. flip their edges the right way. */ /* if (v_best != SV_UNUSED) - */ // printf("Done Looking - vc_tot_linked: %i\n", vc_tot_linked); if (vc_tot_linked > 1) { float vf_1, vf_2, vf_best; vc_tmp = &vert_connect[v_best]; tmpf1 = vert_connect[vc_tmp->v[0]].co; tmpf2 = vert_connect[vc_tmp->v[1]].co; /* edge connects on each side! */ if (SV_IS_VALID(vc_tmp->v[0]) && SV_IS_VALID(vc_tmp->v[1])) { // printf("Verts on each side (%i %i)\n", vc_tmp->v[0], vc_tmp->v[1]); /* Find out which is higher. */ vf_1 = tmpf1[ltmd->axis]; vf_2 = tmpf2[ltmd->axis]; vf_best = vc_tmp->co[ltmd->axis]; if (vf_1 < vf_best && vf_best < vf_2) { ed_loop_flip = false; } else if (vf_1 > vf_best && vf_best > vf_2) { ed_loop_flip = true; } else { /* not so simple to work out which edge is higher */ sub_v3_v3v3(tmp_vec1, tmpf1, vc_tmp->co); sub_v3_v3v3(tmp_vec2, tmpf2, vc_tmp->co); normalize_v3(tmp_vec1); normalize_v3(tmp_vec2); if (tmp_vec1[ltmd->axis] < tmp_vec2[ltmd->axis]) { ed_loop_flip = true; } else { ed_loop_flip = false; } } } else if (SV_IS_VALID(vc_tmp->v[0])) { /* Vertex only connected on 1 side. */ // printf("Verts on ONE side (%i %i)\n", vc_tmp->v[0], vc_tmp->v[1]); if (tmpf1[ltmd->axis] < vc_tmp->co[ltmd->axis]) { /* best is above */ ed_loop_flip = true; } else { /* best is below or even... in even case we can't know what to do. */ ed_loop_flip = false; } } #if 0 else { printf("No Connected ___\n"); } #endif // printf("flip direction %i\n", ed_loop_flip); /* Switch the flip option if set * NOTE: flip is now done at face level so copying group slices is easier. */ #if 0 if (do_flip) { ed_loop_flip = !ed_loop_flip; } #endif if (angle < 0.0f) { ed_loop_flip = !ed_loop_flip; } /* if its closed, we only need 1 loop */ for (j = ed_loop_closed; j < 2; j++) { // printf("Ordering Side J %i\n", j); screwvert_iter_init(<_iter, vert_connect, v_best, j); // printf("\n\nStarting - Loop\n"); lt_iter.v_poin->flag = 1; /* so a non loop will traverse the other side */ /* If this is the vert off the best vert and * the best vert has 2 edges connected too it * then swap the flip direction */ if (j == 1 && SV_IS_VALID(vc_tmp->v[0]) && SV_IS_VALID(vc_tmp->v[1])) { ed_loop_flip = !ed_loop_flip; } while (lt_iter.v_poin && lt_iter.v_poin->flag != 2) { // printf("\tOrdering Vert V %i\n", lt_iter.v); lt_iter.v_poin->flag = 2; if (lt_iter.e) { if (lt_iter.v == lt_iter.e->v1) { if (ed_loop_flip == 0) { // printf("\t\t\tFlipping 0\n"); std::swap(lt_iter.e->v1, lt_iter.e->v2); } #if 0 else { printf("\t\t\tFlipping Not 0\n"); } #endif } else if (lt_iter.v == lt_iter.e->v2) { if (ed_loop_flip == 1) { // printf("\t\t\tFlipping 1\n"); std::swap(lt_iter.e->v1, lt_iter.e->v2); } #if 0 else { printf("\t\t\tFlipping Not 1\n"); } #endif } #if 0 else { printf("\t\tIncorrect edge topology"); } #endif } #if 0 else { printf("\t\tNo Edge at this point\n"); } #endif screwvert_iter_step(<_iter); } } } } } } } else { for (uint i = 0; i < totvert; i++) { copy_v3_v3(vert_positions_new[i], vert_positions_orig[i]); } } /* done with edge connectivity based normal flipping */ /* Add Faces */ for (step = 1; step < step_tot; step++) { const uint varray_stride = totvert * step; float step_angle; float mat[4][4]; /* Rotation Matrix */ step_angle = (angle / float(step_tot - (!close))) * float(step); if (ob_axis != nullptr) { axis_angle_normalized_to_mat3(mat3, axis_vec, step_angle); } else { axis_angle_to_mat3_single(mat3, axis_char, step_angle); } copy_m4_m3(mat, mat3); if (screw_ofs) { madd_v3_v3fl(mat[3], axis_vec, screw_ofs * (float(step) / float(step_tot - 1))); } /* copy a slice */ CustomData_copy_data(&mesh->vdata, &result->vdata, 0, int(varray_stride), int(totvert)); /* set location */ for (j = 0; j < totvert; j++) { const int vert_new = int(varray_stride) + int(j); copy_v3_v3(vert_positions_new[vert_new], vert_positions_new[j]); /* only need to set these if using non cleared memory */ // mv_new->mat_nr = mv_new->flag = 0; if (ob_axis != nullptr) { sub_v3_v3(vert_positions_new[vert_new], mtx_tx[3]); mul_m4_v3(mat, vert_positions_new[vert_new]); add_v3_v3(vert_positions_new[vert_new], mtx_tx[3]); } else { mul_m4_v3(mat, vert_positions_new[vert_new]); } /* add the new edge */ edge_new->v1 = varray_stride + j; edge_new->v2 = edge_new->v1 - totvert; edge_new++; } } /* we can avoid if using vert alloc trick */ if (vert_connect) { MEM_freeN(vert_connect); vert_connect = nullptr; } if (close) { /* last loop of edges, previous loop doesn't account for the last set of edges */ const uint varray_stride = (step_tot - 1) * totvert; for (uint i = 0; i < totvert; i++) { edge_new->v1 = i; edge_new->v2 = varray_stride + i; edge_new++; } } mp_new = polys_new.data(); int new_loop_index = 0; med_new_firstloop = edges_new.data(); /* more of an offset in this case */ edge_offset = totedge + (totvert * (step_tot - (close ? 0 : 1))); const int *src_material_index = BKE_mesh_material_indices(mesh); int *dst_material_index = BKE_mesh_material_indices_for_write(result); for (uint i = 0; i < totedge; i++, med_new_firstloop++) { const uint step_last = step_tot - (close ? 1 : 2); const uint mpoly_index_orig = totpoly ? edge_poly_map[i] : UINT_MAX; const bool has_mpoly_orig = (mpoly_index_orig != UINT_MAX); float uv_v_offset_a, uv_v_offset_b; const uint mloop_index_orig[2] = { vert_loop_map ? vert_loop_map[edges_new[i].v1] : UINT_MAX, vert_loop_map ? vert_loop_map[edges_new[i].v2] : UINT_MAX, }; const bool has_mloop_orig = mloop_index_orig[0] != UINT_MAX; int mat_nr; /* for each edge, make a cylinder of quads */ i1 = med_new_firstloop->v1; i2 = med_new_firstloop->v2; if (has_mpoly_orig) { mat_nr = src_material_index == nullptr ? 0 : src_material_index[mpoly_index_orig]; } else { mat_nr = 0; } if (has_mloop_orig == false && mloopuv_layers_tot) { uv_v_offset_a = dist_signed_to_plane_v3(vert_positions_new[edges_new[i].v1], uv_axis_plane); uv_v_offset_b = dist_signed_to_plane_v3(vert_positions_new[edges_new[i].v2], uv_axis_plane); if (ltmd->flag & MOD_SCREW_UV_STRETCH_V) { uv_v_offset_a = (uv_v_offset_a - uv_v_minmax[0]) * uv_v_range_inv; uv_v_offset_b = (uv_v_offset_b - uv_v_minmax[0]) * uv_v_range_inv; } } for (step = 0; step <= step_last; step++) { /* Polygon */ if (has_mpoly_orig) { CustomData_copy_data( &mesh->pdata, &result->pdata, int(mpoly_index_orig), int(mpoly_index), 1); origindex[mpoly_index] = int(mpoly_index_orig); } else { origindex[mpoly_index] = ORIGINDEX_NONE; dst_material_index[mpoly_index] = mat_nr; sharp_faces.span[i] = use_flat_shading; } mp_new->loopstart = mpoly_index * 4; mp_new->totloop = 4; /* Loop-Custom-Data */ if (has_mloop_orig) { CustomData_copy_data( &mesh->ldata, &result->ldata, int(mloop_index_orig[0]), new_loop_index + 0, 1); CustomData_copy_data( &mesh->ldata, &result->ldata, int(mloop_index_orig[1]), new_loop_index + 1, 1); CustomData_copy_data( &mesh->ldata, &result->ldata, int(mloop_index_orig[1]), new_loop_index + 2, 1); CustomData_copy_data( &mesh->ldata, &result->ldata, int(mloop_index_orig[0]), new_loop_index + 3, 1); if (mloopuv_layers_tot) { uint uv_lay; const float uv_u_offset_a = float(step) * uv_u_scale; const float uv_u_offset_b = float(step + 1) * uv_u_scale; for (uv_lay = 0; uv_lay < mloopuv_layers_tot; uv_lay++) { blender::float2 *mluv = &mloopuv_layers[uv_lay][new_loop_index]; mluv[quad_ord[0]][0] += uv_u_offset_a; mluv[quad_ord[1]][0] += uv_u_offset_a; mluv[quad_ord[2]][0] += uv_u_offset_b; mluv[quad_ord[3]][0] += uv_u_offset_b; } } } else { if (mloopuv_layers_tot) { uint uv_lay; const float uv_u_offset_a = float(step) * uv_u_scale; const float uv_u_offset_b = float(step + 1) * uv_u_scale; for (uv_lay = 0; uv_lay < mloopuv_layers_tot; uv_lay++) { blender::float2 *mluv = &mloopuv_layers[uv_lay][new_loop_index]; copy_v2_fl2(mluv[quad_ord[0]], uv_u_offset_a, uv_v_offset_a); copy_v2_fl2(mluv[quad_ord[1]], uv_u_offset_a, uv_v_offset_b); copy_v2_fl2(mluv[quad_ord[2]], uv_u_offset_b, uv_v_offset_b); copy_v2_fl2(mluv[quad_ord[3]], uv_u_offset_b, uv_v_offset_a); } } } /* Loop-Data */ if (!(close && step == step_last)) { /* regular segments */ corner_verts_new[new_loop_index + quad_ord[0]] = int(i1); corner_verts_new[new_loop_index + quad_ord[1]] = int(i2); corner_verts_new[new_loop_index + quad_ord[2]] = int(i2 + totvert); corner_verts_new[new_loop_index + quad_ord[3]] = int(i1 + totvert); corner_edges_new[new_loop_index + quad_ord_ofs[0]] = int( step == 0 ? i : (edge_offset + step + (i * (step_tot - 1))) - 1); corner_edges_new[new_loop_index + quad_ord_ofs[1]] = int(totedge + i2); corner_edges_new[new_loop_index + quad_ord_ofs[2]] = int(edge_offset + step + (i * (step_tot - 1))); corner_edges_new[new_loop_index + quad_ord_ofs[3]] = int(totedge + i1); /* new vertical edge */ if (step) { /* The first set is already done */ edge_new->v1 = i1; edge_new->v2 = i2; edge_new++; } i1 += totvert; i2 += totvert; } else { /* last segment */ corner_verts_new[new_loop_index + quad_ord[0]] = int(i1); corner_verts_new[new_loop_index + quad_ord[1]] = int(i2); corner_verts_new[new_loop_index + quad_ord[2]] = int(med_new_firstloop->v2); corner_verts_new[new_loop_index + quad_ord[3]] = int(med_new_firstloop->v1); corner_edges_new[new_loop_index + quad_ord_ofs[0]] = int( (edge_offset + step + (i * (step_tot - 1))) - 1); corner_edges_new[new_loop_index + quad_ord_ofs[1]] = int(totedge + i2); corner_edges_new[new_loop_index + quad_ord_ofs[2]] = int(i); corner_edges_new[new_loop_index + quad_ord_ofs[3]] = int(totedge + i1); } mp_new++; new_loop_index += 4; mpoly_index++; } /* new vertical edge */ edge_new->v1 = i1; edge_new->v2 = i2; edge_new++; } /* validate loop edges */ #if 0 { uint i = 0; printf("\n"); for (; i < maxPolys * 4; i += 4) { uint ii; ml_new = mloop_new + i; ii = findEd(medge_new, maxEdges, ml_new[0].v, ml_new[1].v); printf("%d %d -- ", ii, ml_new[0].e); ml_new[0].e = ii; ii = findEd(medge_new, maxEdges, ml_new[1].v, ml_new[2].v); printf("%d %d -- ", ii, ml_new[1].e); ml_new[1].e = ii; ii = findEd(medge_new, maxEdges, ml_new[2].v, ml_new[3].v); printf("%d %d -- ", ii, ml_new[2].e); ml_new[2].e = ii; ii = findEd(medge_new, maxEdges, ml_new[3].v, ml_new[0].v); printf("%d %d\n", ii, ml_new[3].e); ml_new[3].e = ii; } } #endif sharp_faces.finish(); if (edge_poly_map) { MEM_freeN(edge_poly_map); } if (vert_loop_map) { MEM_freeN(vert_loop_map); } if (do_remove_doubles) { result = mesh_remove_doubles_on_axis(result, vert_positions_new, totvert, step_tot, axis_vec, ob_axis != nullptr ? mtx_tx[3] : nullptr, ltmd->merge_dist); } return result; } static void updateDepsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx) { ScrewModifierData *ltmd = (ScrewModifierData *)md; if (ltmd->ob_axis != nullptr) { DEG_add_object_relation(ctx->node, ltmd->ob_axis, DEG_OB_COMP_TRANSFORM, "Screw Modifier"); DEG_add_depends_on_transform_relation(ctx->node, "Screw Modifier"); } } static void foreachIDLink(ModifierData *md, Object *ob, IDWalkFunc walk, void *userData) { ScrewModifierData *ltmd = (ScrewModifierData *)md; walk(userData, ob, (ID **)<md->ob_axis, IDWALK_CB_NOP); } static void panel_draw(const bContext * /*C*/, Panel *panel) { uiLayout *sub, *row, *col; uiLayout *layout = panel->layout; int toggles_flag = UI_ITEM_R_TOGGLE | UI_ITEM_R_FORCE_BLANK_DECORATE; PointerRNA *ptr = modifier_panel_get_property_pointers(panel, nullptr); PointerRNA screw_obj_ptr = RNA_pointer_get(ptr, "object"); uiLayoutSetPropSep(layout, true); col = uiLayoutColumn(layout, false); uiItemR(col, ptr, "angle", 0, nullptr, ICON_NONE); row = uiLayoutRow(col, false); uiLayoutSetActive(row, RNA_pointer_is_null(&screw_obj_ptr) || !RNA_boolean_get(ptr, "use_object_screw_offset")); uiItemR(row, ptr, "screw_offset", 0, nullptr, ICON_NONE); uiItemR(col, ptr, "iterations", 0, nullptr, ICON_NONE); uiItemS(layout); col = uiLayoutColumn(layout, false); row = uiLayoutRow(col, false); uiItemR(row, ptr, "axis", UI_ITEM_R_EXPAND, nullptr, ICON_NONE); uiItemR(col, ptr, "object", 0, IFACE_("Axis Object"), ICON_NONE); sub = uiLayoutColumn(col, false); uiLayoutSetActive(sub, !RNA_pointer_is_null(&screw_obj_ptr)); uiItemR(sub, ptr, "use_object_screw_offset", 0, nullptr, ICON_NONE); uiItemS(layout); col = uiLayoutColumn(layout, true); uiItemR(col, ptr, "steps", 0, IFACE_("Steps Viewport"), ICON_NONE); uiItemR(col, ptr, "render_steps", 0, IFACE_("Render"), ICON_NONE); uiItemS(layout); row = uiLayoutRowWithHeading(layout, true, IFACE_("Merge")); uiItemR(row, ptr, "use_merge_vertices", 0, "", ICON_NONE); sub = uiLayoutRow(row, true); uiLayoutSetActive(sub, RNA_boolean_get(ptr, "use_merge_vertices")); uiItemR(sub, ptr, "merge_threshold", 0, "", ICON_NONE); uiItemS(layout); row = uiLayoutRowWithHeading(layout, true, IFACE_("Stretch UVs")); uiItemR(row, ptr, "use_stretch_u", toggles_flag, IFACE_("U"), ICON_NONE); uiItemR(row, ptr, "use_stretch_v", toggles_flag, IFACE_("V"), ICON_NONE); modifier_panel_end(layout, ptr); } static void normals_panel_draw(const bContext * /*C*/, Panel *panel) { uiLayout *col; uiLayout *layout = panel->layout; PointerRNA *ptr = modifier_panel_get_property_pointers(panel, nullptr); uiLayoutSetPropSep(layout, true); col = uiLayoutColumn(layout, false); uiItemR(col, ptr, "use_smooth_shade", 0, nullptr, ICON_NONE); uiItemR(col, ptr, "use_normal_calculate", 0, nullptr, ICON_NONE); uiItemR(col, ptr, "use_normal_flip", 0, nullptr, ICON_NONE); } static void panelRegister(ARegionType *region_type) { PanelType *panel_type = modifier_panel_register(region_type, eModifierType_Screw, panel_draw); modifier_subpanel_register( region_type, "normals", "Normals", nullptr, normals_panel_draw, panel_type); } ModifierTypeInfo modifierType_Screw = { /*name*/ N_("Screw"), /*structName*/ "ScrewModifierData", /*structSize*/ sizeof(ScrewModifierData), /*srna*/ &RNA_ScrewModifier, /*type*/ eModifierTypeType_Constructive, /*flags*/ eModifierTypeFlag_AcceptsMesh | eModifierTypeFlag_AcceptsCVs | eModifierTypeFlag_SupportsEditmode | eModifierTypeFlag_EnableInEditmode, /*icon*/ ICON_MOD_SCREW, /*copyData*/ BKE_modifier_copydata_generic, /*deformVerts*/ nullptr, /*deformMatrices*/ nullptr, /*deformVertsEM*/ nullptr, /*deformMatricesEM*/ nullptr, /*modifyMesh*/ modifyMesh, /*modifyGeometrySet*/ nullptr, /*initData*/ initData, /*requiredDataMask*/ nullptr, /*freeData*/ nullptr, /*isDisabled*/ nullptr, /*updateDepsgraph*/ updateDepsgraph, /*dependsOnTime*/ nullptr, /*dependsOnNormals*/ nullptr, /*foreachIDLink*/ foreachIDLink, /*foreachTexLink*/ nullptr, /*freeRuntimeData*/ nullptr, /*panelRegister*/ panelRegister, /*blendWrite*/ nullptr, /*blendRead*/ nullptr, };