/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * * Contributor(s): Joseph Gilbert * * ***** END GPL LICENSE BLOCK ***** */ #include "Mathutils.h" #include "BLI_math.h" #include "BKE_utildefines.h" #include "BLI_blenlib.h" //-------------------------DOC STRINGS --------------------------- static PyObject *Quaternion_Identity( QuaternionObject * self ); static PyObject *Quaternion_Negate( QuaternionObject * self ); static PyObject *Quaternion_Conjugate( QuaternionObject * self ); static PyObject *Quaternion_Inverse( QuaternionObject * self ); static PyObject *Quaternion_Normalize( QuaternionObject * self ); static PyObject *Quaternion_ToEuler( QuaternionObject * self, PyObject *args ); static PyObject *Quaternion_ToMatrix( QuaternionObject * self ); static PyObject *Quaternion_Cross( QuaternionObject * self, QuaternionObject * value ); static PyObject *Quaternion_Dot( QuaternionObject * self, QuaternionObject * value ); static PyObject *Quaternion_copy( QuaternionObject * self ); //-----------------------METHOD DEFINITIONS ---------------------- static struct PyMethodDef Quaternion_methods[] = { {"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, NULL}, {"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, NULL}, {"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, NULL}, {"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, NULL}, {"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, NULL}, {"toEuler", (PyCFunction) Quaternion_ToEuler, METH_VARARGS, NULL}, {"toMatrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, NULL}, {"cross", (PyCFunction) Quaternion_Cross, METH_O, NULL}, {"dot", (PyCFunction) Quaternion_Dot, METH_O, NULL}, {"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, NULL}, {"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, NULL}, {NULL, NULL, 0, NULL} }; //----------------------------------Mathutils.Quaternion() -------------- static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *listObject = NULL, *n, *q; int size, i; float quat[4]; double angle = 0.0f; size = PyTuple_GET_SIZE(args); if (size == 1 || size == 2) { //seq? listObject = PyTuple_GET_ITEM(args, 0); if (PySequence_Check(listObject)) { size = PySequence_Length(listObject); if ((size == 4 && PySequence_Length(args) !=1) || (size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) { // invalid args/size PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } if(size == 3){ //get angle in axis/angle n = PySequence_GetItem(args, 1); if(n == NULL) { // parsed item not a number or getItem fail PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } angle = PyFloat_AsDouble(n); Py_DECREF(n); if (angle==-1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } } }else{ listObject = PyTuple_GET_ITEM(args, 1); if (size>1 && PySequence_Check(listObject)) { size = PySequence_Length(listObject); if (size != 3) { // invalid args/size PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } angle = PyFloat_AsDouble(PyTuple_GET_ITEM(args, 0)); if (angle==-1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } } else { // argument was not a sequence PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } } } else if (size == 0) { //returns a new empty quat return newQuaternionObject(NULL, Py_NEW, NULL); } else { listObject = args; } if (size == 3) { // invalid quat size if(PySequence_Length(args) != 2){ PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } }else{ if(size != 4){ PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n"); return NULL; } } for (i=0; iquat); #ifdef USE_MATHUTILS_DEG { float eul_compatf[3]; int x; for(x = 0; x < 3; x++) { eul_compatf[x] = eul_compat->eul[x] * ((float)Py_PI / 180); } mat3_to_compatible_eul( eul, eul_compatf,mat); } #else mat3_to_compatible_eul( eul, eul_compat->eul,mat); #endif } else { quat_to_eul( eul,self->quat); } #ifdef USE_MATHUTILS_DEG { int x; for(x = 0; x < 3; x++) { eul[x] *= (180 / (float)Py_PI); } } #endif return newEulerObject(eul, Py_NEW, NULL); } //----------------------------Quaternion.toMatrix()------------------ //return the quat as a matrix static PyObject *Quaternion_ToMatrix(QuaternionObject * self) { float mat[9]; /* all values are set */ if(!BaseMath_ReadCallback(self)) return NULL; quat_to_mat3( (float (*)[3]) mat,self->quat); return newMatrixObject(mat, 3, 3, Py_NEW, NULL); } //----------------------------Quaternion.cross(other)------------------ //return the cross quat static PyObject *Quaternion_Cross(QuaternionObject * self, QuaternionObject * value) { float quat[4]; if (!QuaternionObject_Check(value)) { PyErr_SetString( PyExc_TypeError, "quat.cross(value): expected a quaternion argument" ); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; mul_qt_qtqt(quat, self->quat, value->quat); return newQuaternionObject(quat, Py_NEW, NULL); } //----------------------------Quaternion.dot(other)------------------ //return the dot quat static PyObject *Quaternion_Dot(QuaternionObject * self, QuaternionObject * value) { if (!QuaternionObject_Check(value)) { PyErr_SetString( PyExc_TypeError, "quat.dot(value): expected a quaternion argument" ); return NULL; } if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value)) return NULL; return PyFloat_FromDouble(dot_qtqt(self->quat, value->quat)); } //----------------------------Quaternion.normalize()---------------- //normalize the axis of rotation of [theta,vector] static PyObject *Quaternion_Normalize(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; normalize_qt(self->quat); BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.inverse()------------------ //invert the quat static PyObject *Quaternion_Inverse(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; invert_qt(self->quat); BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.identity()----------------- //generate the identity quaternion static PyObject *Quaternion_Identity(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; unit_qt(self->quat); BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.negate()------------------- //negate the quat static PyObject *Quaternion_Negate(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; mul_qt_fl(self->quat, -1.0f); BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.conjugate()---------------- //negate the vector part static PyObject *Quaternion_Conjugate(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; conjugate_qt(self->quat); BaseMath_WriteCallback(self); Py_INCREF(self); return (PyObject*)self; } //----------------------------Quaternion.copy()---------------- //return a copy of the quat static PyObject *Quaternion_copy(QuaternionObject * self) { if(!BaseMath_ReadCallback(self)) return NULL; return newQuaternionObject(self->quat, Py_NEW, Py_TYPE(self)); } //----------------------------print object (internal)-------------- //print the object to screen static PyObject *Quaternion_repr(QuaternionObject * self) { char str[64]; if(!BaseMath_ReadCallback(self)) return NULL; sprintf(str, "[%.6f, %.6f, %.6f, %.6f](quaternion)", self->quat[0], self->quat[1], self->quat[2], self->quat[3]); return PyUnicode_FromString(str); } //------------------------tp_richcmpr //returns -1 execption, 0 false, 1 true static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type) { QuaternionObject *quatA = NULL, *quatB = NULL; int result = 0; if(QuaternionObject_Check(objectA)) { quatA = (QuaternionObject*)objectA; if(!BaseMath_ReadCallback(quatA)) return NULL; } if(QuaternionObject_Check(objectB)) { quatB = (QuaternionObject*)objectB; if(!BaseMath_ReadCallback(quatB)) return NULL; } if (!quatA || !quatB){ if (comparison_type == Py_NE){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } switch (comparison_type){ case Py_EQ: result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1); break; case Py_NE: result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1); if (result == 0){ result = 1; }else{ result = 0; } break; default: printf("The result of the comparison could not be evaluated"); break; } if (result == 1){ Py_RETURN_TRUE; }else{ Py_RETURN_FALSE; } } //---------------------SEQUENCE PROTOCOLS------------------------ //----------------------------len(object)------------------------ //sequence length static int Quaternion_len(QuaternionObject * self) { return 4; } //----------------------------object[]--------------------------- //sequence accessor (get) static PyObject *Quaternion_item(QuaternionObject * self, int i) { if(i<0) i= 4-i; if(i < 0 || i >= 4) { PyErr_SetString(PyExc_IndexError, "quaternion[attribute]: array index out of range\n"); return NULL; } if(!BaseMath_ReadIndexCallback(self, i)) return NULL; return PyFloat_FromDouble(self->quat[i]); } //----------------------------object[]------------------------- //sequence accessor (set) static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob) { float scalar= (float)PyFloat_AsDouble(ob); if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "quaternion[index] = x: index argument not a number\n"); return -1; } if(i<0) i= 4-i; if(i < 0 || i >= 4){ PyErr_SetString(PyExc_IndexError, "quaternion[attribute] = x: array assignment index out of range\n"); return -1; } self->quat[i] = scalar; if(!BaseMath_WriteIndexCallback(self, i)) return -1; return 0; } //----------------------------object[z:y]------------------------ //sequence slice (get) static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end) { PyObject *list = NULL; int count; if(!BaseMath_ReadCallback(self)) return NULL; CLAMP(begin, 0, 4); if (end<0) end= 5+end; CLAMP(end, 0, 4); begin = MIN2(begin,end); list = PyList_New(end - begin); for(count = begin; count < end; count++) { PyList_SetItem(list, count - begin, PyFloat_FromDouble(self->quat[count])); } return list; } //----------------------------object[z:y]------------------------ //sequence slice (set) static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end, PyObject * seq) { int i, y, size = 0; float quat[4]; PyObject *q; if(!BaseMath_ReadCallback(self)) return -1; CLAMP(begin, 0, 4); if (end<0) end= 5+end; CLAMP(end, 0, 4); begin = MIN2(begin,end); size = PySequence_Length(seq); if(size != (end - begin)){ PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: size mismatch in slice assignment\n"); return -1; } for (i = 0; i < size; i++) { q = PySequence_GetItem(seq, i); if (q == NULL) { // Failed to read sequence PyErr_SetString(PyExc_RuntimeError, "quaternion[begin:end] = []: unable to read sequence\n"); return -1; } quat[i]= (float)PyFloat_AsDouble(q); Py_DECREF(q); if(quat[i]==-1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: sequence argument not a number\n"); return -1; } } //parsed well - now set in vector for(y = 0; y < size; y++) self->quat[begin + y] = quat[y]; BaseMath_WriteCallback(self); return 0; } //------------------------NUMERIC PROTOCOLS---------------------- //------------------------obj + obj------------------------------ //addition static PyObject *Quaternion_add(PyObject * q1, PyObject * q2) { float quat[4]; QuaternionObject *quat1 = NULL, *quat2 = NULL; if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) { PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n"); return NULL; } quat1 = (QuaternionObject*)q1; quat2 = (QuaternionObject*)q2; if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2)) return NULL; add_qt_qtqt(quat, quat1->quat, quat2->quat, 1.0f); return newQuaternionObject(quat, Py_NEW, NULL); } //------------------------obj - obj------------------------------ //subtraction static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2) { int x; float quat[4]; QuaternionObject *quat1 = NULL, *quat2 = NULL; if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) { PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n"); return NULL; } quat1 = (QuaternionObject*)q1; quat2 = (QuaternionObject*)q2; if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2)) return NULL; for(x = 0; x < 4; x++) { quat[x] = quat1->quat[x] - quat2->quat[x]; } return newQuaternionObject(quat, Py_NEW, NULL); } //------------------------obj * obj------------------------------ //mulplication static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2) { float quat[4], scalar; QuaternionObject *quat1 = NULL, *quat2 = NULL; VectorObject *vec = NULL; if(QuaternionObject_Check(q1)) { quat1 = (QuaternionObject*)q1; if(!BaseMath_ReadCallback(quat1)) return NULL; } if(QuaternionObject_Check(q2)) { quat2 = (QuaternionObject*)q2; if(!BaseMath_ReadCallback(quat2)) return NULL; } if(quat1 && quat2) { /* QUAT*QUAT (dot product) */ return PyFloat_FromDouble(dot_qtqt(quat1->quat, quat2->quat)); } /* the only case this can happen (for a supported type is "FLOAT*QUAT" ) */ if(!QuaternionObject_Check(q1)) { scalar= PyFloat_AsDouble(q1); if ((scalar == -1.0 && PyErr_Occurred())==0) { /* FLOAT*QUAT */ QUATCOPY(quat, quat2->quat); mul_qt_fl(quat, scalar); return newQuaternionObject(quat, Py_NEW, NULL); } PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: val * quat, val is not an acceptable type"); return NULL; } else { /* QUAT*SOMETHING */ if(VectorObject_Check(q2)){ /* QUAT*VEC */ vec = (VectorObject*)q2; if(vec->size != 3){ PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: only 3D vector rotations currently supported\n"); return NULL; } return quat_rotation((PyObject*)quat1, (PyObject*)vec); /* vector updating done inside the func */ } scalar= PyFloat_AsDouble(q2); if ((scalar == -1.0 && PyErr_Occurred())==0) { /* QUAT*FLOAT */ QUATCOPY(quat, quat1->quat); mul_qt_fl(quat, scalar); return newQuaternionObject(quat, Py_NEW, NULL); } } PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: arguments not acceptable for this operation\n"); return NULL; } //-----------------PROTOCOL DECLARATIONS-------------------------- static PySequenceMethods Quaternion_SeqMethods = { (lenfunc) Quaternion_len, /* sq_length */ (binaryfunc) 0, /* sq_concat */ (ssizeargfunc) 0, /* sq_repeat */ (ssizeargfunc) Quaternion_item, /* sq_item */ (ssizessizeargfunc) Quaternion_slice, /* sq_slice */ (ssizeobjargproc) Quaternion_ass_item, /* sq_ass_item */ (ssizessizeobjargproc) Quaternion_ass_slice, /* sq_ass_slice */ }; static PyNumberMethods Quaternion_NumMethods = { (binaryfunc) Quaternion_add, /*nb_add*/ (binaryfunc) Quaternion_sub, /*nb_subtract*/ (binaryfunc) Quaternion_mul, /*nb_multiply*/ 0, /*nb_remainder*/ 0, /*nb_divmod*/ 0, /*nb_power*/ (unaryfunc) 0, /*nb_negative*/ (unaryfunc) 0, /*tp_positive*/ (unaryfunc) 0, /*tp_absolute*/ (inquiry) 0, /*tp_bool*/ (unaryfunc) 0, /*nb_invert*/ 0, /*nb_lshift*/ (binaryfunc)0, /*nb_rshift*/ 0, /*nb_and*/ 0, /*nb_xor*/ 0, /*nb_or*/ 0, /*nb_int*/ 0, /*nb_reserved*/ 0, /*nb_float*/ 0, /* nb_inplace_add */ 0, /* nb_inplace_subtract */ 0, /* nb_inplace_multiply */ 0, /* nb_inplace_remainder */ 0, /* nb_inplace_power */ 0, /* nb_inplace_lshift */ 0, /* nb_inplace_rshift */ 0, /* nb_inplace_and */ 0, /* nb_inplace_xor */ 0, /* nb_inplace_or */ 0, /* nb_floor_divide */ 0, /* nb_true_divide */ 0, /* nb_inplace_floor_divide */ 0, /* nb_inplace_true_divide */ 0, /* nb_index */ }; static PyObject *Quaternion_getAxis( QuaternionObject * self, void *type ) { return Quaternion_item(self, GET_INT_FROM_POINTER(type)); } static int Quaternion_setAxis( QuaternionObject * self, PyObject * value, void * type ) { return Quaternion_ass_item(self, GET_INT_FROM_POINTER(type), value); } static PyObject *Quaternion_getMagnitude( QuaternionObject * self, void *type ) { return PyFloat_FromDouble(sqrt(dot_qtqt(self->quat, self->quat))); } static PyObject *Quaternion_getAngle( QuaternionObject * self, void *type ) { double ang = self->quat[0]; ang = 2 * (saacos(ang)); #ifdef USE_MATHUTILS_DEG ang *= (180 / Py_PI); #endif return PyFloat_FromDouble(ang); } static PyObject *Quaternion_getAxisVec( QuaternionObject * self, void *type ) { int i; float vec[3]; double mag = self->quat[0] * (Py_PI / 180); mag = 2 * (saacos(mag)); mag = sin(mag / 2); for(i = 0; i < 3; i++) vec[i] = (float)(self->quat[i + 1] / mag); normalize_v3(vec); //If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations if( EXPP_FloatsAreEqual(vec[0], 0.0f, 10) && EXPP_FloatsAreEqual(vec[1], 0.0f, 10) && EXPP_FloatsAreEqual(vec[2], 0.0f, 10) ){ vec[0] = 1.0f; } return (PyObject *) newVectorObject(vec, 3, Py_NEW, NULL); } /*****************************************************************************/ /* Python attributes get/set structure: */ /*****************************************************************************/ static PyGetSetDef Quaternion_getseters[] = { {"w", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion W value", (void *)0}, {"x", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion X axis", (void *)1}, {"y", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Y axis", (void *)2}, {"z", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Z axis", (void *)3}, {"magnitude", (getter)Quaternion_getMagnitude, (setter)NULL, "Size of the quaternion", NULL}, {"angle", (getter)Quaternion_getAngle, (setter)NULL, "angle of the quaternion", NULL}, {"axis", (getter)Quaternion_getAxisVec, (setter)NULL, "quaternion axis as a vector", NULL}, {"wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, "True when this wraps blenders internal data", NULL}, {"_owner", (getter)BaseMathObject_getOwner, (setter)NULL, "Read only owner for vectors that depend on another object", NULL}, {NULL,NULL,NULL,NULL,NULL} /* Sentinel */ }; //------------------PY_OBECT DEFINITION-------------------------- PyTypeObject quaternion_Type = { PyVarObject_HEAD_INIT(NULL, 0) "quaternion", //tp_name sizeof(QuaternionObject), //tp_basicsize 0, //tp_itemsize (destructor)BaseMathObject_dealloc, //tp_dealloc 0, //tp_print 0, //tp_getattr 0, //tp_setattr 0, //tp_compare (reprfunc) Quaternion_repr, //tp_repr &Quaternion_NumMethods, //tp_as_number &Quaternion_SeqMethods, //tp_as_sequence 0, //tp_as_mapping 0, //tp_hash 0, //tp_call 0, //tp_str 0, //tp_getattro 0, //tp_setattro 0, //tp_as_buffer Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags 0, //tp_doc 0, //tp_traverse 0, //tp_clear (richcmpfunc)Quaternion_richcmpr, //tp_richcompare 0, //tp_weaklistoffset 0, //tp_iter 0, //tp_iternext Quaternion_methods, //tp_methods 0, //tp_members Quaternion_getseters, //tp_getset 0, //tp_base 0, //tp_dict 0, //tp_descr_get 0, //tp_descr_set 0, //tp_dictoffset 0, //tp_init 0, //tp_alloc Quaternion_new, //tp_new 0, //tp_free 0, //tp_is_gc 0, //tp_bases 0, //tp_mro 0, //tp_cache 0, //tp_subclasses 0, //tp_weaklist 0 //tp_del }; //------------------------newQuaternionObject (internal)------------- //creates a new quaternion object /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER (i.e. it was allocated elsewhere by MEM_mallocN()) pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON (i.e. it must be created here with PyMEM_malloc())*/ PyObject *newQuaternionObject(float *quat, int type, PyTypeObject *base_type) { QuaternionObject *self; if(base_type) self = (QuaternionObject *)base_type->tp_alloc(base_type, 0); else self = PyObject_NEW(QuaternionObject, &quaternion_Type); /* init callbacks as NULL */ self->cb_user= NULL; self->cb_type= self->cb_subtype= 0; if(type == Py_WRAP){ self->quat = quat; self->wrapped = Py_WRAP; }else if (type == Py_NEW){ self->quat = PyMem_Malloc(4 * sizeof(float)); if(!quat) { //new empty unit_qt(self->quat); }else{ QUATCOPY(self->quat, quat); } self->wrapped = Py_NEW; }else{ //bad type return NULL; } return (PyObject *) self; } PyObject *newQuaternionObject_cb(PyObject *cb_user, int cb_type, int cb_subtype) { QuaternionObject *self= (QuaternionObject *)newQuaternionObject(NULL, Py_NEW, NULL); if(self) { Py_INCREF(cb_user); self->cb_user= cb_user; self->cb_type= (unsigned char)cb_type; self->cb_subtype= (unsigned char)cb_subtype; } return (PyObject *)self; }