/* * $Id$ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * This is a new part of Blender. * * Contributor(s): Jacques Guignot, Stephen Swaney * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include #include "Curve.h" #include #include #include #include #include #include #include #include #include #include /* because we wil be mallocing memory */ #include "CurNurb.h" #include "gen_utils.h" #include "modules.h" /*****************************************************************************/ /* The following string definitions are used for documentation strings. */ /* In Python these will be written to the console when doing a */ /* Blender.Curve.__doc__ */ /*****************************************************************************/ char M_Curve_doc[] = "The Blender Curve module\n\n\ This module provides access to **Curve Data** in Blender.\n\ Functions :\n\ New(opt name) : creates a new curve object with the given name (optional)\n\ Get(name) : retreives a curve with the given name (mandatory)\n\ get(name) : same as Get. Kept for compatibility reasons"; char M_Curve_New_doc[] = ""; char M_Curve_Get_doc[] = "xxx"; /*****************************************************************************/ /* Python API function prototypes for the Curve module. */ /*****************************************************************************/ static PyObject *M_Curve_New (PyObject * self, PyObject * args); static PyObject *M_Curve_Get (PyObject * self, PyObject * args); /*****************************************************************************/ /* Python BPy_Curve instance methods declarations: */ /*****************************************************************************/ static PyObject *Curve_getName (BPy_Curve * self); static PyObject *Curve_setName (BPy_Curve * self, PyObject * args); static PyObject *Curve_getPathLen (BPy_Curve * self); static PyObject *Curve_setPathLen (BPy_Curve * self, PyObject * args); static PyObject *Curve_getTotcol (BPy_Curve * self); static PyObject *Curve_setTotcol (BPy_Curve * self, PyObject * args); static PyObject *Curve_getMode (BPy_Curve * self); static PyObject *Curve_setMode (BPy_Curve * self, PyObject * args); static PyObject *Curve_getBevresol (BPy_Curve * self); static PyObject *Curve_setBevresol (BPy_Curve * self, PyObject * args); static PyObject *Curve_getResolu (BPy_Curve * self); static PyObject *Curve_setResolu (BPy_Curve * self, PyObject * args); static PyObject *Curve_getResolv (BPy_Curve * self); static PyObject *Curve_setResolv (BPy_Curve * self, PyObject * args); static PyObject *Curve_getWidth (BPy_Curve * self); static PyObject *Curve_setWidth (BPy_Curve * self, PyObject * args); static PyObject *Curve_getExt1 (BPy_Curve * self); static PyObject *Curve_setExt1 (BPy_Curve * self, PyObject * args); static PyObject *Curve_getExt2 (BPy_Curve * self); static PyObject *Curve_setExt2 (BPy_Curve * self, PyObject * args); static PyObject *Curve_getControlPoint (BPy_Curve * self, PyObject * args); static PyObject *Curve_setControlPoint (BPy_Curve * self, PyObject * args); static PyObject *Curve_getLoc (BPy_Curve * self); static PyObject *Curve_setLoc (BPy_Curve * self, PyObject * args); static PyObject *Curve_getRot (BPy_Curve * self); static PyObject *Curve_setRot (BPy_Curve * self, PyObject * args); static PyObject *Curve_getSize (BPy_Curve * self); static PyObject *Curve_setSize (BPy_Curve * self, PyObject * args); static PyObject *Curve_getNumCurves (BPy_Curve * self); static PyObject *Curve_isNurb (BPy_Curve * self, PyObject * args); static PyObject *Curve_getNumPoints (BPy_Curve * self, PyObject * args); static PyObject *Curve_getNumPoints (BPy_Curve * self, PyObject * args); static PyObject *Curve_appendPoint (BPy_Curve * self, PyObject * args); static PyObject *Curve_getMaterials (BPy_Curve * self); static PyObject *Curve_getIter (BPy_Curve * self); static PyObject *Curve_iterNext (BPy_Curve * self); static PyObject *Curve_update (BPy_Curve * self); PyObject *Curve_getNurb (BPy_Curve * self, int n); static int Curve_length (PyInstanceObject * inst); void update_displists( void* data ); void makeDispList(Object *ob); struct chartrans *text_to_curve(Object *ob, int mode); /*****************************************************************************/ /* Python method definitions for Blender.Curve module: */ /*****************************************************************************/ struct PyMethodDef M_Curve_methods[] = { {"New", (PyCFunction) M_Curve_New, METH_VARARGS, M_Curve_New_doc}, {"Get", M_Curve_Get, METH_VARARGS, M_Curve_Get_doc}, {"get", M_Curve_Get, METH_VARARGS, M_Curve_Get_doc}, {NULL, NULL, 0, NULL} }; /*****************************************************************************/ /* Python BPy_Curve instance methods table: */ /*****************************************************************************/ static PyMethodDef BPy_Curve_methods[] = { {"getName", (PyCFunction) Curve_getName, METH_NOARGS, "() - Return Curve Data name"}, {"setName", (PyCFunction) Curve_setName, METH_VARARGS, "() - Sets Curve Data name"}, {"getPathLen", (PyCFunction) Curve_getPathLen, METH_NOARGS, "() - Return Curve path length"}, {"setPathLen", (PyCFunction) Curve_setPathLen, METH_VARARGS, "(int) - Sets Curve path length"}, {"getTotcol", (PyCFunction) Curve_getTotcol, METH_NOARGS, "() - Return the number of materials of the curve"}, {"setTotcol", (PyCFunction) Curve_setTotcol, METH_VARARGS, "(int) - Sets the number of materials of the curve"}, {"getFlag", (PyCFunction) Curve_getMode, METH_NOARGS, "() - Return flag (see the doc for semantic)"}, {"setFlag", (PyCFunction) Curve_setMode, METH_VARARGS, "(int) - Sets flag (see the doc for semantic)"}, {"getBevresol", (PyCFunction) Curve_getBevresol, METH_NOARGS, "() - Return bevel resolution"}, {"setBevresol", (PyCFunction) Curve_setBevresol, METH_VARARGS, "(int) - Sets bevel resolution"}, {"getResolu", (PyCFunction) Curve_getResolu, METH_NOARGS, "() - Return U resolution"}, {"setResolu", (PyCFunction) Curve_setResolu, METH_VARARGS, "(int) - Sets U resolution"}, {"getResolv", (PyCFunction) Curve_getResolv, METH_NOARGS, "() - Return V resolution"}, {"setResolv", (PyCFunction) Curve_setResolv, METH_VARARGS, "(int) - Sets V resolution"}, {"getWidth", (PyCFunction) Curve_getWidth, METH_NOARGS, "() - Return curve width"}, {"setWidth", (PyCFunction) Curve_setWidth, METH_VARARGS, "(int) - Sets curve width"}, {"getExt1", (PyCFunction) Curve_getExt1, METH_NOARGS, "() - Returns extent 1 of the bevel"}, {"setExt1", (PyCFunction) Curve_setExt1, METH_VARARGS, "(int) - Sets extent 1 of the bevel"}, {"getExt2", (PyCFunction) Curve_getExt2, METH_NOARGS, "() - Return extent 2 of the bevel "}, {"setExt2", (PyCFunction) Curve_setExt2, METH_VARARGS, "(int) - Sets extent 2 of the bevel "}, {"getControlPoint", (PyCFunction) Curve_getControlPoint, METH_VARARGS, "(int numcurve,int numpoint) -\ Gets a control point.Depending upon the curve type, returne a list of 4 or 9 floats"}, {"setControlPoint", (PyCFunction) Curve_setControlPoint, METH_VARARGS, "(int numcurve,int numpoint,float x,float y,float z,\ float w)(nurbs) or (int numcurve,int numpoint,float x1,...,x9(bezier)\ Sets a control point "}, {"getLoc", (PyCFunction) Curve_getLoc, METH_NOARGS, "() - Gets Location of the curve (a 3-tuple) "}, {"setLoc", (PyCFunction) Curve_setLoc, METH_VARARGS, "(3-tuple) - Sets Location "}, {"getRot", (PyCFunction) Curve_getRot, METH_NOARGS, "() - Gets curve rotation"}, {"setRot", (PyCFunction) Curve_setRot, METH_VARARGS, "(3-tuple) - Sets curve rotation"}, {"getSize", (PyCFunction) Curve_getSize, METH_NOARGS, "() - Gets curve size"}, {"setSize", (PyCFunction) Curve_setSize, METH_VARARGS, "(3-tuple) - Sets curve size"}, {"getNumCurves", (PyCFunction) Curve_getNumCurves, METH_NOARGS, "() - Gets number of curves in Curve"}, {"isNurb", (PyCFunction) Curve_isNurb, METH_VARARGS, "(nothing or integer) - returns 1 if curve is type Nurb, O otherwise."}, {"getNumPoints", (PyCFunction) Curve_getNumPoints, METH_VARARGS, "(nothing or integer) - returns the number of points of the specified curve"}, {"appendPoint", (PyCFunction) Curve_appendPoint, METH_VARARGS, "( int numcurve, list of coordinates) - adds a new point to end of curve"}, {"update", (PyCFunction) Curve_update, METH_NOARGS, "( ) - updates display lists after changes to Curve"}, {"getMaterials", (PyCFunction) Curve_getMaterials, METH_NOARGS, "() - returns list of materials assigned to this Curve"}, #if 0 // fixme {"getIter", (PyCFunction) Curve_getIter, METH_NOARGS, "() - returns an iterator for the curves that make up the Curve"}, {"iterNext", (PyCFunction) Curve_iterNext, METH_NOARGS, "() - returns the next curve or NULL if at end of list "}, #endif {NULL, NULL, 0, NULL} }; /*****************************************************************************/ /* Python Curve_Type callback function prototypes: */ /*****************************************************************************/ static void CurveDeAlloc (BPy_Curve * msh); /* static int CurvePrint (BPy_Curve *msh, FILE *fp, int flags); */ static int CurveSetAttr (BPy_Curve * msh, char *name, PyObject * v); static PyObject *CurveGetAttr (BPy_Curve * msh, char *name); static PyObject *CurveRepr (BPy_Curve * msh); PyObject *Curve_CreatePyObject (struct Curve *curve); int Curve_CheckPyObject (PyObject * py_obj); struct Curve *Curve_FromPyObject (PyObject * py_obj); static PySequenceMethods Curve_as_sequence = { (inquiry) Curve_length, /* sq_length */ (binaryfunc) 0, /* sq_concat */ (intargfunc) 0, /* sq_repeat */ (intargfunc) Curve_getNurb, /* sq_item */ (intintargfunc) 0, /* sq_slice */ 0, /* sq_ass_item */ 0, /* sq_ass_slice */ (objobjproc) 0, /* sq_contains */ 0, 0 }; /*****************************************************************************/ /* Python Curve_Type structure definition: */ /*****************************************************************************/ PyTypeObject Curve_Type = { PyObject_HEAD_INIT (NULL) /* required macro */ 0, /* ob_size */ "Curve", /* tp_name - for printing */ sizeof (BPy_Curve), /* tp_basicsize - for allocation */ 0, /* tp_itemsize - for allocation */ /* methods for standard operations */ (destructor) CurveDeAlloc, /* tp_dealloc */ 0, /* tp_print */ (getattrfunc) CurveGetAttr, /* tp_getattr */ (setattrfunc) CurveSetAttr, /* tp_setattr */ 0, /* tp_compare */ (reprfunc) CurveRepr, /* tp_repr */ /* methods for standard classes */ 0, /* tp_as_number */ &Curve_as_sequence, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_as_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ /* Flags to define presence of optional/expaned features */ Py_TPFLAGS_HAVE_ITER, /* tp_flags */ 0, /* tp_doc - documentation string */ 0, /* tp_traverse */ /* delete references to contained objects */ 0, /* tp_clear */ 0, /* tp_richcompare - rich comparisions */ 0, /* tp_weaklistoffset - weak reference enabler */ /* new release 2.2 stuff - Iterators */ (getiterfunc) Curve_getIter, /* tp_iter */ (iternextfunc) Curve_iterNext, /* tp_iternext *//* was Curve_iterNext */ /* Attribute descriptor and subclassing stuff */ BPy_Curve_methods, /* tp_methods */ 0, /* tp_members */ 0, /* tp_getset; */ 0, /* tp_base; */ 0, /* tp_dict; */ 0, /* tp_descr_get; */ 0, /* tp_descr_set; */ 0, /* tp_dictoffset; */ 0, /* tp_init; */ 0, /* tp_alloc; */ 0, /* tp_new; */ 0, /* tp_free; Low-level free-memory routine */ 0, /* tp_is_gc */ 0, /* tp_bases; */ 0, /* tp_mro; method resolution order */ 0, /* tp_defined; */ 0, /* tp_weakllst */ 0, 0 }; /*****************************************************************************/ /* Function: M_Curve_New */ /* Python equivalent: Blender.Curve.New */ /*****************************************************************************/ static PyObject *M_Curve_New (PyObject * self, PyObject * args) { char buf[24]; char *name = NULL; BPy_Curve *pycurve; /* for Curve Data object wrapper in Python */ Curve *blcurve = 0; /* for actual Curve Data we create in Blender */ if(!PyArg_ParseTuple (args, "|s", &name)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected string argument or no argument")); blcurve = add_curve (OB_CURVE); /* first create the Curve Data in Blender */ if(blcurve == NULL) /* bail out if add_curve() failed */ return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't create Curve Data in Blender")); /* return user count to zero because add_curve() inc'd it */ blcurve->id.us = 0; /* create python wrapper obj */ pycurve = (BPy_Curve *) PyObject_NEW (BPy_Curve, &Curve_Type); if(pycurve == NULL) return (EXPP_ReturnPyObjError (PyExc_MemoryError, "couldn't create Curve Data object")); pycurve->curve = blcurve; /* link Python curve wrapper to Blender Curve */ if(name) { PyOS_snprintf (buf, sizeof (buf), "%s", name); rename_id (&blcurve->id, buf); } return (PyObject *) pycurve; } /*****************************************************************************/ /* Function: M_Curve_Get */ /* Python equivalent: Blender.Curve.Get */ /*****************************************************************************/ static PyObject *M_Curve_Get (PyObject * self, PyObject * args) { char *name = NULL; Curve *curv_iter; BPy_Curve *wanted_curv; if(!PyArg_ParseTuple (args, "|s", &name)) /* expects nothing or a string */ return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected string argument")); if(name) { /*a name has been given */ /* Use the name to search for the curve requested */ wanted_curv = NULL; curv_iter = G.main->curve.first; while((curv_iter) && (wanted_curv == NULL)) { if(strcmp (name, curv_iter->id.name + 2) == 0) { wanted_curv = (BPy_Curve *) PyObject_NEW (BPy_Curve, &Curve_Type); if(wanted_curv) wanted_curv->curve = curv_iter; } curv_iter = curv_iter->id.next; } if(wanted_curv == NULL) { /* Requested curve doesn't exist */ char error_msg[64]; PyOS_snprintf (error_msg, sizeof (error_msg), "Curve \"%s\" not found", name); return (EXPP_ReturnPyObjError (PyExc_NameError, error_msg)); } return (PyObject *) wanted_curv; } /* end of if(name) */ else { /* no name has been given; return a list of all curves by name. */ PyObject *curvlist; curv_iter = G.main->curve.first; curvlist = PyList_New (0); if(curvlist == NULL) return (EXPP_ReturnPyObjError (PyExc_MemoryError, "couldn't create PyList")); while(curv_iter) { BPy_Curve *found_cur = (BPy_Curve *) PyObject_NEW (BPy_Curve, &Curve_Type); found_cur->curve = curv_iter; PyList_Append (curvlist, (PyObject *) found_cur); curv_iter = curv_iter->id.next; } return (curvlist); } /* end of else */ } /*****************************************************************************/ /* Function: Curve_Init */ /*****************************************************************************/ PyObject *Curve_Init (void) { PyObject *submodule; Curve_Type.ob_type = &PyType_Type; submodule = Py_InitModule3 ("Blender.Curve", M_Curve_methods, M_Curve_doc); return (submodule); } /*****************************************************************************/ /* Python BPy_Curve methods: */ /* gives access to */ /* name, pathlen totcol flag bevresol */ /* resolu resolv width ext1 ext2 */ /* controlpoint loc rot size */ /* numpts */ /*****************************************************************************/ static PyObject *Curve_getName (BPy_Curve * self) { PyObject *attr = PyString_FromString (self->curve->id.name + 2); if(attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Curve.name attribute")); } static PyObject *Curve_setName (BPy_Curve * self, PyObject * args) { char *name; char buf[50]; if(!PyArg_ParseTuple (args, "s", &(name))) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected string argument")); PyOS_snprintf (buf, sizeof (buf), "%s", name); rename_id (&self->curve->id, buf); /* proper way in Blender */ Py_INCREF (Py_None); return Py_None; } static PyObject *Curve_getPathLen (BPy_Curve * self) { PyObject *attr = PyInt_FromLong ((long) self->curve->pathlen); if(attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Curve.pathlen attribute")); } static PyObject *Curve_setPathLen (BPy_Curve * self, PyObject * args) { if(!PyArg_ParseTuple (args, "i", &(self->curve->pathlen))) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int argument")); Py_INCREF (Py_None); return Py_None; } static PyObject *Curve_getTotcol (BPy_Curve * self) { PyObject *attr = PyInt_FromLong ((long) self->curve->totcol); if(attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Curve.totcol attribute")); } static PyObject *Curve_setTotcol (BPy_Curve * self, PyObject * args) { if(!PyArg_ParseTuple (args, "i", &(self->curve->totcol))) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int argument")); Py_INCREF (Py_None); return Py_None; } static PyObject *Curve_getMode (BPy_Curve * self) { PyObject *attr = PyInt_FromLong ((long) self->curve->flag); if(attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Curve.flag attribute")); } static PyObject *Curve_setMode (BPy_Curve * self, PyObject * args) { if(!PyArg_ParseTuple (args, "i", &(self->curve->flag))) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int argument")); Py_INCREF (Py_None); return Py_None; } static PyObject *Curve_getBevresol (BPy_Curve * self) { PyObject *attr = PyInt_FromLong ((long) self->curve->bevresol); if(attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Curve.bevresol attribute")); } static PyObject *Curve_setBevresol (BPy_Curve * self, PyObject * args) { if(!PyArg_ParseTuple (args, "i", &(self->curve->bevresol))) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int argument")); Py_INCREF (Py_None); return Py_None; } static PyObject *Curve_getResolu (BPy_Curve * self) { PyObject *attr = PyInt_FromLong ((long) self->curve->resolu); if(attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Curve.resolu attribute")); } static PyObject *Curve_setResolu (BPy_Curve * self, PyObject * args) { if(!PyArg_ParseTuple (args, "i", &(self->curve->resolu))) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int argument")); Py_INCREF (Py_None); return Py_None; } static PyObject *Curve_getResolv (BPy_Curve * self) { PyObject *attr = PyInt_FromLong ((long) self->curve->resolv); if(attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Curve.resolv attribute")); } static PyObject *Curve_setResolv (BPy_Curve * self, PyObject * args) { if(!PyArg_ParseTuple (args, "i", &(self->curve->resolv))) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int argument")); Py_INCREF (Py_None); return Py_None; } static PyObject *Curve_getWidth (BPy_Curve * self) { PyObject *attr = PyFloat_FromDouble ((double) self->curve->width); if(attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Curve.width attribute")); } static PyObject *Curve_setWidth (BPy_Curve * self, PyObject * args) { if(!PyArg_ParseTuple (args, "f", &(self->curve->width))) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected float argument")); Py_INCREF (Py_None); return Py_None; } static PyObject *Curve_getExt1 (BPy_Curve * self) { PyObject *attr = PyFloat_FromDouble ((double) self->curve->ext1); if(attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Curve.ext1 attribute")); } static PyObject *Curve_setExt1 (BPy_Curve * self, PyObject * args) { if(!PyArg_ParseTuple (args, "f", &(self->curve->ext1))) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected float argument")); Py_INCREF (Py_None); return Py_None; } static PyObject *Curve_getExt2 (BPy_Curve * self) { PyObject *attr = PyFloat_FromDouble ((double) self->curve->ext2); if(attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Curve.ext2 attribute")); } static PyObject *Curve_setExt2 (BPy_Curve * self, PyObject * args) { if(!PyArg_ParseTuple (args, "f", &(self->curve->ext2))) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected float argument")); Py_INCREF (Py_None); return Py_None; } /* static PyObject *Curve_setControlPoint(BPy_Curve *self, PyObject *args) { Nurb*ptrnurb = self->curve->nurb.first; int numcourbe,numpoint,i,j; float x,y,z,w; float bez[9]; if (!ptrnurb){ Py_INCREF(Py_None);return Py_None;} if (ptrnurb->bp) if (!PyArg_ParseTuple(args, "iiffff", &numcourbe,&numpoint,&x,&y,&z,&w)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int int float float float float arguments")); if (ptrnurb->bezt) if (!PyArg_ParseTuple(args, "iifffffffff", &numcourbe,&numpoint, bez,bez+1,bez+2,bez+3,bez+4,bez+5,bez+6,bez+7,bez+8)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int int float float float float float float " "float float float arguments")); for(i = 0;i< numcourbe;i++) ptrnurb=ptrnurb->next; if (ptrnurb->bp) { ptrnurb->bp[numpoint].vec[0] = x; ptrnurb->bp[numpoint].vec[1] = y; ptrnurb->bp[numpoint].vec[2] = z; ptrnurb->bp[numpoint].vec[3] = w; } if (ptrnurb->bezt) { for(i = 0;i<3;i++) for(j = 0;j<3;j++) ptrnurb->bezt[numpoint].vec[i][j] = bez[i*3+j]; } Py_INCREF(Py_None); return Py_None; } */ /* * Curve_setControlPoint * this function sets an EXISTING control point. * it does NOT add a new one. */ static PyObject *Curve_setControlPoint (BPy_Curve * self, PyObject * args) { PyObject *listargs = 0; Nurb *ptrnurb = self->curve->nurb.first; int numcourbe, numpoint, i, j; if(!ptrnurb) { Py_INCREF (Py_None); return Py_None; } if(ptrnurb->bp) if(!PyArg_ParseTuple (args, "iiO", &numcourbe, &numpoint, &listargs)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int int list arguments")); if(ptrnurb->bezt) if(!PyArg_ParseTuple (args, "iiO", &numcourbe, &numpoint, &listargs)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int int list arguments")); for(i = 0; i < numcourbe; i++) ptrnurb = ptrnurb->next; /* fixme: case where ->bp && ->bezt are both NULL is not handled */ if(ptrnurb->bp) for(i = 0; i < 4; i++) ptrnurb->bp[numpoint].vec[i] = PyFloat_AsDouble (PyList_GetItem (listargs, i)); if(ptrnurb->bezt) for(i = 0; i < 3; i++) for(j = 0; j < 3; j++) ptrnurb->bezt[numpoint].vec[i][j] = PyFloat_AsDouble (PyList_GetItem (listargs, i * 3 + j)); Py_INCREF (Py_None); return Py_None; } static PyObject *Curve_getControlPoint (BPy_Curve * self, PyObject * args) { PyObject *liste = PyList_New (0); /* return values */ Nurb *ptrnurb; int i, j; /* input args: requested curve and point number on curve */ int numcourbe, numpoint; if(!PyArg_ParseTuple (args, "ii", &numcourbe, &numpoint)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int int arguments")); if((numcourbe < 0) || (numpoint < 0)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, " arguments must be non-negative")); /* if no nurbs in this curve obj */ if(!self->curve->nurb.first) return liste; /* walk the list of nurbs to find requested numcourbe */ ptrnurb = self->curve->nurb.first; for(i = 0; i < numcourbe; i++) { ptrnurb = ptrnurb->next; if(!ptrnurb) /* if zero, we ran just ran out of curves */ return (EXPP_ReturnPyObjError (PyExc_AttributeError, "curve index out of range")); } /* check numpoint param against pntsu */ if(numpoint >= ptrnurb->pntsu) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "point index out of range")); if(ptrnurb->bp) { /* if we are a nurb curve, you get 4 values */ for(i = 0; i < 4; i++) PyList_Append (liste, PyFloat_FromDouble (ptrnurb-> bp[numpoint]. vec[i])); } if(ptrnurb->bezt) { /* if we are a bezier, you get 9 values */ for(i = 0; i < 3; i++) for(j = 0; j < 3; j++) PyList_Append (liste, PyFloat_FromDouble (ptrnurb-> bezt [numpoint]. vec[i][j])); } return liste; } static PyObject *Curve_getLoc (BPy_Curve * self) { int i; PyObject *liste = PyList_New (3); for(i = 0; i < 3; i++) PyList_SetItem (liste, i, PyFloat_FromDouble (self->curve->loc[i])); return liste; } static PyObject *Curve_setLoc (BPy_Curve * self, PyObject * args) { PyObject *listargs = 0; int i; if(!PyArg_ParseTuple (args, "O", &listargs)) return EXPP_ReturnPyObjError (PyExc_AttributeError, "expected list argument"); if(!PyList_Check (listargs)) return (EXPP_ReturnPyObjError (PyExc_TypeError, "expected a list")); for(i = 0; i < 3; i++) { PyObject *xx = PyList_GetItem (listargs, i); self->curve->loc[i] = PyFloat_AsDouble (xx); } Py_INCREF (Py_None); return Py_None; } static PyObject *Curve_getRot (BPy_Curve * self) { int i; PyObject *liste = PyList_New (3); for(i = 0; i < 3; i++) PyList_SetItem (liste, i, PyFloat_FromDouble (self->curve->rot[i])); return liste; } static PyObject *Curve_setRot (BPy_Curve * self, PyObject * args) { PyObject *listargs = 0; int i; if(!PyArg_ParseTuple (args, "O", &listargs)) return EXPP_ReturnPyObjError (PyExc_AttributeError, "expected list argument"); if(!PyList_Check (listargs)) return (EXPP_ReturnPyObjError (PyExc_TypeError, "expected a list")); for(i = 0; i < 3; i++) { PyObject *xx = PyList_GetItem (listargs, i); self->curve->rot[i] = PyFloat_AsDouble (xx); } Py_INCREF (Py_None); return Py_None; } static PyObject *Curve_getSize (BPy_Curve * self) { int i; PyObject *liste = PyList_New (3); for(i = 0; i < 3; i++) PyList_SetItem (liste, i, PyFloat_FromDouble (self->curve->size[i])); return liste; } static PyObject *Curve_setSize (BPy_Curve * self, PyObject * args) { PyObject *listargs = 0; int i; if(!PyArg_ParseTuple (args, "O", &listargs)) return EXPP_ReturnPyObjError (PyExc_AttributeError, "expected list argument"); if(!PyList_Check (listargs)) return (EXPP_ReturnPyObjError (PyExc_TypeError, "expected a list")); for(i = 0; i < 3; i++) { PyObject *xx = PyList_GetItem (listargs, i); self->curve->size[i] = PyFloat_AsDouble (xx); } Py_INCREF (Py_None); return Py_None; } /* * Count the number of splines in a Curve Object * int getNumCurves() */ static PyObject *Curve_getNumCurves (BPy_Curve * self) { Nurb *ptrnurb; PyObject *ret_val; int num_curves = 0; /* start with no splines */ /* get curve */ ptrnurb = self->curve->nurb.first; if(ptrnurb) { /* we have some nurbs in this curve */ while(1) { ++num_curves; ptrnurb = ptrnurb->next; if(!ptrnurb) /* no more curves */ break; } } ret_val = PyInt_FromLong ((long) num_curves); if(ret_val) return ret_val; /* oops! */ return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get number of curves")); } /* * count the number of points in a given spline * int getNumPoints( curve_num=0 ) * */ static PyObject *Curve_getNumPoints (BPy_Curve * self, PyObject * args) { Nurb *ptrnurb; PyObject *ret_val; int curve_num = 0; /* default spline number */ int i; /* parse input arg */ if(!PyArg_ParseTuple (args, "|i", &curve_num)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int argument")); /* check arg - must be non-negative */ if(curve_num < 0) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "argument must be non-negative")); /* walk the list of curves looking for our curve */ ptrnurb = self->curve->nurb.first; if(!ptrnurb) { /* no splines in this Curve */ return (EXPP_ReturnPyObjError (PyExc_AttributeError, "no splines in this Curve")); } for(i = 0; i < curve_num; i++) { ptrnurb = ptrnurb->next; if(!ptrnurb) /* if zero, we ran just ran out of curves */ return (EXPP_ReturnPyObjError (PyExc_AttributeError, "curve index out of range")); } /* pntsu is the number of points in curve */ ret_val = PyInt_FromLong ((long) ptrnurb->pntsu); if(ret_val) return ret_val; /* oops! */ return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get number of points for curve")); } /* * Test whether a given spline of a Curve is a nurb * as opposed to a bezier * int isNurb( curve_num=0 ) */ static PyObject *Curve_isNurb (BPy_Curve * self, PyObject * args) { int curve_num = 0; /* default value */ int is_nurb; Nurb *ptrnurb; PyObject *ret_val; int i; /* parse and check input args */ if(!PyArg_ParseTuple (args, "|i", &curve_num)) { return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int argument")); } if(curve_num < 0) { return (EXPP_ReturnPyObjError (PyExc_AttributeError, "curve number must be non-negative")); } ptrnurb = self->curve->nurb.first; if(!ptrnurb) /* no splines in this curve */ return (EXPP_ReturnPyObjError (PyExc_AttributeError, "no splines in this Curve")); for(i = 0; i < curve_num; i++) { ptrnurb = ptrnurb->next; if(!ptrnurb) /* if zero, we ran just ran out of curves */ return (EXPP_ReturnPyObjError (PyExc_AttributeError, "curve index out of range")); } /* right now, there are only two curve types, nurb and bezier. */ is_nurb = ptrnurb->bp ? 1 : 0; ret_val = PyInt_FromLong ((long) is_nurb); if(ret_val) return ret_val; /* oops */ return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get curve type")); } /* * Curve_appendPoint( numcurve, new_point ) * append a new point to indicated spline */ static PyObject *Curve_appendPoint (BPy_Curve * self, PyObject * args) { int i; int nurb_num; /* index of curve we append to */ PyObject* coord_args; /* coords for new point */ Nurb* nurb = self->curve->nurb.first; /* first nurb in Curve */ // fixme - need to malloc new Nurb if( ! nurb ) return( EXPP_ReturnPyObjError ( PyExc_AttributeError, "no nurbs in this Curve")); if( ! PyArg_ParseTuple( args,"iO", &nurb_num, &coord_args )) return( EXPP_ReturnPyObjError (PyExc_AttributeError, "expected int, coords as arguments")); /* chase down the list of Nurbs looking for our curve. */ for( i = 0; i < nurb_num; i++){ nurb = nurb->next; if( ! nurb ) /* we ran off end of list */ return( EXPP_ReturnPyObjError ( PyExc_AttributeError, "curve index out of range")); } return CurNurb_appendPointToNurb( nurb, coord_args ); } /* * Curve_update( ) * method to update display list for a Curve. * used. after messing with control points */ static PyObject *Curve_update( BPy_Curve *self ) { update_displists( (void*) self->curve ); Py_INCREF (Py_None); return Py_None; } /* * Curve_getMaterials * */ static PyObject *Curve_getMaterials (BPy_Curve * self) { return (EXPP_PyList_fromMaterialList (self->curve->mat, self->curve->totcol, 1 ) ); } /* * Curve_getIter * * create an iterator for our Curve. * this iterator returns the Nurbs for this Curve. * the iter_pointer always points to the next available item or null */ static PyObject *Curve_getIter (BPy_Curve * self) { self->iter_pointer = self->curve->nurb.first; Py_INCREF( self ); return (PyObject*) self; } /* * Curve_iterNext * get the next item. * iter_pointer always points to the next available element * or NULL if at the end of the list. */ static PyObject *Curve_iterNext (BPy_Curve * self) { PyObject *po; /* return value */ Nurb *pnurb; if(self->iter_pointer) { pnurb = self->iter_pointer; self->iter_pointer = pnurb->next; /* advance iterator */ po = CurNurb_CreatePyObject (pnurb); /* make a bpy_nurb */ return (PyObject *) po; } /* if iter_pointer was null, we are at end */ return (EXPP_ReturnPyObjError (PyExc_StopIteration, "iterator at end")); } /* tp_sequence methods */ /* * Curve_length * returns the number of curves in a Curve * this is a tp_as_sequence method, not a regular instance method. */ static int Curve_length (PyInstanceObject * inst) { if(Curve_CheckPyObject ((PyObject *) inst)) return( (int) PyInt_AsLong (Curve_getNumCurves ((BPy_Curve *) inst))); return EXPP_ReturnIntError (PyExc_RuntimeError, "arg is not a BPy_Curve"); } /* * Curve_getNurb * returns the Nth nurb in a Curve. * this is one of the tp_as_sequence methods, hence the int N argument. * it is called via the [] operator, not as a usual instance method. */ PyObject *Curve_getNurb (BPy_Curve * self, int n) { PyObject *pyo; Nurb *pNurb; int i; /* bail if index < 0 */ if(n < 0) return (EXPP_ReturnPyObjError (PyExc_IndexError, "index less than 0")); /* bail if no Nurbs in Curve */ if(self->curve->nurb.first == 0) return (EXPP_ReturnPyObjError (PyExc_IndexError, "no Nurbs in this Curve")); /* set pointer to nth Nurb */ for(pNurb = self->curve->nurb.first, i = 0; pNurb != 0 && i < n; pNurb = pNurb->next, ++i) /**/; if(!pNurb) /* we came to the end of the list */ return (EXPP_ReturnPyObjError (PyExc_IndexError, "index out of range")); pyo = CurNurb_CreatePyObject (pNurb); /* make a bpy_curnurb */ return (PyObject *) pyo; } /*****************************************************************************/ /* Function: CurveDeAlloc */ /* Description: This is a callback function for the BPy_Curve type. It is */ /* the destructor function. */ /*****************************************************************************/ static void CurveDeAlloc (BPy_Curve * self) { PyObject_DEL (self); } /*****************************************************************************/ /* Function: CurveGetAttr */ /* Description: This is a callback function for the BPy_Curve type. It is */ /* the function that accesses BPy_Curve "member variables" and */ /* methods. */ /*****************************************************************************/ static PyObject *CurveGetAttr (BPy_Curve * self, char *name) { /* getattr */ PyObject *attr = Py_None; if(strcmp (name, "name") == 0) attr = PyString_FromString (self->curve->id.name + 2); if(strcmp (name, "pathlen") == 0) attr = PyInt_FromLong (self->curve->pathlen); if(strcmp (name, "totcol") == 0) attr = PyInt_FromLong (self->curve->totcol); if(strcmp (name, "flag") == 0) attr = PyInt_FromLong (self->curve->flag); if(strcmp (name, "bevresol") == 0) attr = PyInt_FromLong (self->curve->bevresol); if(strcmp (name, "resolu") == 0) attr = PyInt_FromLong (self->curve->resolu); if(strcmp (name, "resolv") == 0) attr = PyInt_FromLong (self->curve->resolv); if(strcmp (name, "width") == 0) attr = PyFloat_FromDouble (self->curve->width); if(strcmp (name, "ext1") == 0) attr = PyFloat_FromDouble (self->curve->ext1); if(strcmp (name, "ext2") == 0) attr = PyFloat_FromDouble (self->curve->ext2); if(strcmp (name, "loc") == 0) return Curve_getLoc (self); if(strcmp (name, "rot") == 0) return Curve_getRot (self); if(strcmp (name, "size") == 0) return Curve_getSize (self); #if 0 if(strcmp (name, "numpts") == 0) return Curve_getNumPoints (self); #endif if(!attr) return (EXPP_ReturnPyObjError (PyExc_MemoryError, "couldn't create PyObject")); if(attr != Py_None) return attr; /* member attribute found, return it */ /* not an attribute, search the methods table */ return Py_FindMethod (BPy_Curve_methods, (PyObject *) self, name); } /*****************************************************************************/ /* Function: CurveSetAttr */ /* Description: This is a callback function for the BPy_Curve type. It is the */ /* function that sets Curve Data attributes (member variables). */ /*****************************************************************************/ static int CurveSetAttr (BPy_Curve * self, char *name, PyObject * value) { PyObject *valtuple; PyObject *error = NULL; valtuple = Py_BuildValue ("(O)", value); /* resolu resolv width ext1 ext2 */ if(!valtuple) return EXPP_ReturnIntError (PyExc_MemoryError, "CurveSetAttr: couldn't create PyTuple"); if(strcmp (name, "name") == 0) error = Curve_setName (self, valtuple); else if(strcmp (name, "pathlen") == 0) error = Curve_setPathLen (self, valtuple); else if(strcmp (name, "resolu") == 0) error = Curve_setResolu (self, valtuple); else if(strcmp (name, "resolv") == 0) error = Curve_setResolv (self, valtuple); else if(strcmp (name, "width") == 0) error = Curve_setWidth (self, valtuple); else if(strcmp (name, "ext1") == 0) error = Curve_setExt1 (self, valtuple); else if(strcmp (name, "ext2") == 0) error = Curve_setExt2 (self, valtuple); else if(strcmp (name, "loc") == 0) error = Curve_setLoc (self, valtuple); else if(strcmp (name, "rot") == 0) error = Curve_setRot (self, valtuple); else if(strcmp (name, "size") == 0) error = Curve_setSize (self, valtuple); else { /* Error */ Py_DECREF (valtuple); if((strcmp (name, "Types") == 0) || (strcmp (name, "Modes") == 0)) return (EXPP_ReturnIntError (PyExc_AttributeError, "constant dictionary -- cannot be changed")); else return (EXPP_ReturnIntError (PyExc_KeyError, "attribute not found")); } Py_DECREF (valtuple); if(error != Py_None) return -1; Py_DECREF (Py_None); return 0; } /*****************************************************************************/ /* Function: CurveRepr */ /* Description: This is a callback function for the BPy_Curve type. It */ /* builds a meaninful string to represent curve objects. */ /*****************************************************************************/ static PyObject *CurveRepr (BPy_Curve * self) { /* used by 'repr' */ return PyString_FromFormat ("[Curve \"%s\"]", self->curve->id.name + 2); } /* * Curve_CreatePyObject * constructor to build a py object from blender data */ PyObject *Curve_CreatePyObject (struct Curve * curve) { BPy_Curve *blen_object; blen_object = (BPy_Curve *) PyObject_NEW (BPy_Curve, &Curve_Type); if(blen_object == NULL) { return (NULL); } blen_object->curve = curve; return ((PyObject *) blen_object); } int Curve_CheckPyObject (PyObject * py_obj) { return (py_obj->ob_type == &Curve_Type); } struct Curve *Curve_FromPyObject (PyObject * py_obj) { BPy_Curve *blen_obj; blen_obj = (BPy_Curve *) py_obj; return (blen_obj->curve); } /* * walk across all objects looking for curves * so we can update their ob's disp list */ void update_displists( void* data ) { Base *base; Object *ob; unsigned int layer; /* background */ layer = G.scene->lay; base = G.scene->base.first; while(base) { if(base->lay & layer) { ob = base->object; if ELEM(ob->type, OB_CURVE, OB_SURF) { if(ob != G.obedit) { if ( ob->data == data ){ makeDispList( ob ); } } } else if(ob->type == OB_FONT) { Curve *cu= ob->data; if(cu->textoncurve) { if( ((Curve *)cu->textoncurve->data)->key ) { text_to_curve(ob, 0); makeDispList(ob); } } } } if( base->next == 0 && G.scene->set && base == G.scene->base.last) base= G.scene->set->base.first; else base= base->next; } }