/****************************************************************************** * * MantaFlow fluid solver framework * Copyright 2014 Tobias Pfaff, Nils Thuerey * * This program is free software, distributed under the terms of the * Apache License, Version 2.0 * http://www.apache.org/licenses/LICENSE-2.0 * * Helper functions for higher order interpolation * ******************************************************************************/ #ifndef _INTERPOLHIGH_H #define _INTERPOLHIGH_H #include "vectorbase.h" namespace Manta { template inline T cubicInterp(const Real interp, const T *points) { T d0 = (points[2] - points[0]) * 0.5; T d1 = (points[3] - points[1]) * 0.5; T deltak = (points[2] - points[1]); // disabled: if (deltak * d0 < 0.0) d0 = 0; // disabled: if (deltak * d1 < 0.0) d1 = 0; T a0 = points[1]; T a1 = d0; T a2 = 3.0 * deltak - 2.0 * d0 - d1; T a3 = -2.0 * deltak + d0 + d1; Real squared = interp * interp; Real cubed = squared * interp; return a3 * cubed + a2 * squared + a1 * interp + a0; } template inline T interpolCubic2D(const T *data, const Vec3i &size, const Vec3 &pos) { const Real px = pos.x - 0.5f, py = pos.y - 0.5f; const int x1 = (int)px; const int x2 = x1 + 1; const int x3 = x1 + 2; const int x0 = x1 - 1; const int y1 = (int)py; const int y2 = y1 + 1; const int y3 = y1 + 2; const int y0 = y1 - 1; if (x0 < 0 || y0 < 0 || x3 >= size[0] || y3 >= size[1]) { return interpol(data, size, 0, pos); } const Real xInterp = px - x1; const Real yInterp = py - y1; const int y0x = y0 * size[0]; const int y1x = y1 * size[0]; const int y2x = y2 * size[0]; const int y3x = y3 * size[0]; const T p0[] = {data[x0 + y0x], data[x1 + y0x], data[x2 + y0x], data[x3 + y0x]}; const T p1[] = {data[x0 + y1x], data[x1 + y1x], data[x2 + y1x], data[x3 + y1x]}; const T p2[] = {data[x0 + y2x], data[x1 + y2x], data[x2 + y2x], data[x3 + y2x]}; const T p3[] = {data[x0 + y3x], data[x1 + y3x], data[x2 + y3x], data[x3 + y3x]}; const T finalPoints[] = {cubicInterp(xInterp, p0), cubicInterp(xInterp, p1), cubicInterp(xInterp, p2), cubicInterp(xInterp, p3)}; return cubicInterp(yInterp, finalPoints); } template inline T interpolCubic(const T *data, const Vec3i &size, const int Z, const Vec3 &pos) { if (Z == 0) return interpolCubic2D(data, size, pos); const Real px = pos.x - 0.5f, py = pos.y - 0.5f, pz = pos.z - 0.5f; const int x1 = (int)px; const int x2 = x1 + 1; const int x3 = x1 + 2; const int x0 = x1 - 1; const int y1 = (int)py; const int y2 = y1 + 1; const int y3 = y1 + 2; const int y0 = y1 - 1; const int z1 = (int)pz; const int z2 = z1 + 1; const int z3 = z1 + 2; const int z0 = z1 - 1; if (x0 < 0 || y0 < 0 || z0 < 0 || x3 >= size[0] || y3 >= size[1] || z3 >= size[2]) { return interpol(data, size, Z, pos); } const Real xInterp = px - x1; const Real yInterp = py - y1; const Real zInterp = pz - z1; const int slabsize = size[0] * size[1]; const int z0Slab = z0 * slabsize; const int z1Slab = z1 * slabsize; const int z2Slab = z2 * slabsize; const int z3Slab = z3 * slabsize; const int y0x = y0 * size[0]; const int y1x = y1 * size[0]; const int y2x = y2 * size[0]; const int y3x = y3 * size[0]; const int y0z0 = y0x + z0Slab; const int y1z0 = y1x + z0Slab; const int y2z0 = y2x + z0Slab; const int y3z0 = y3x + z0Slab; const int y0z1 = y0x + z1Slab; const int y1z1 = y1x + z1Slab; const int y2z1 = y2x + z1Slab; const int y3z1 = y3x + z1Slab; const int y0z2 = y0x + z2Slab; const int y1z2 = y1x + z2Slab; const int y2z2 = y2x + z2Slab; const int y3z2 = y3x + z2Slab; const int y0z3 = y0x + z3Slab; const int y1z3 = y1x + z3Slab; const int y2z3 = y2x + z3Slab; const int y3z3 = y3x + z3Slab; // get the z0 slice const T p0[] = {data[x0 + y0z0], data[x1 + y0z0], data[x2 + y0z0], data[x3 + y0z0]}; const T p1[] = {data[x0 + y1z0], data[x1 + y1z0], data[x2 + y1z0], data[x3 + y1z0]}; const T p2[] = {data[x0 + y2z0], data[x1 + y2z0], data[x2 + y2z0], data[x3 + y2z0]}; const T p3[] = {data[x0 + y3z0], data[x1 + y3z0], data[x2 + y3z0], data[x3 + y3z0]}; // get the z1 slice const T p4[] = {data[x0 + y0z1], data[x1 + y0z1], data[x2 + y0z1], data[x3 + y0z1]}; const T p5[] = {data[x0 + y1z1], data[x1 + y1z1], data[x2 + y1z1], data[x3 + y1z1]}; const T p6[] = {data[x0 + y2z1], data[x1 + y2z1], data[x2 + y2z1], data[x3 + y2z1]}; const T p7[] = {data[x0 + y3z1], data[x1 + y3z1], data[x2 + y3z1], data[x3 + y3z1]}; // get the z2 slice const T p8[] = {data[x0 + y0z2], data[x1 + y0z2], data[x2 + y0z2], data[x3 + y0z2]}; const T p9[] = {data[x0 + y1z2], data[x1 + y1z2], data[x2 + y1z2], data[x3 + y1z2]}; const T p10[] = {data[x0 + y2z2], data[x1 + y2z2], data[x2 + y2z2], data[x3 + y2z2]}; const T p11[] = {data[x0 + y3z2], data[x1 + y3z2], data[x2 + y3z2], data[x3 + y3z2]}; // get the z3 slice const T p12[] = {data[x0 + y0z3], data[x1 + y0z3], data[x2 + y0z3], data[x3 + y0z3]}; const T p13[] = {data[x0 + y1z3], data[x1 + y1z3], data[x2 + y1z3], data[x3 + y1z3]}; const T p14[] = {data[x0 + y2z3], data[x1 + y2z3], data[x2 + y2z3], data[x3 + y2z3]}; const T p15[] = {data[x0 + y3z3], data[x1 + y3z3], data[x2 + y3z3], data[x3 + y3z3]}; // interpolate const T z0Points[] = {cubicInterp(xInterp, p0), cubicInterp(xInterp, p1), cubicInterp(xInterp, p2), cubicInterp(xInterp, p3)}; const T z1Points[] = {cubicInterp(xInterp, p4), cubicInterp(xInterp, p5), cubicInterp(xInterp, p6), cubicInterp(xInterp, p7)}; const T z2Points[] = {cubicInterp(xInterp, p8), cubicInterp(xInterp, p9), cubicInterp(xInterp, p10), cubicInterp(xInterp, p11)}; const T z3Points[] = {cubicInterp(xInterp, p12), cubicInterp(xInterp, p13), cubicInterp(xInterp, p14), cubicInterp(xInterp, p15)}; const T finalPoints[] = {cubicInterp(yInterp, z0Points), cubicInterp(yInterp, z1Points), cubicInterp(yInterp, z2Points), cubicInterp(yInterp, z3Points)}; return cubicInterp(zInterp, finalPoints); } inline Vec3 interpolCubicMAC(const Vec3 *data, const Vec3i &size, const int Z, const Vec3 &pos) { // warning - not yet optimized... Real vx = interpolCubic(data, size, Z, pos + Vec3(0.5, 0, 0))[0]; Real vy = interpolCubic(data, size, Z, pos + Vec3(0, 0.5, 0))[1]; Real vz = 0.f; if (Z != 0) vz = interpolCubic(data, size, Z, pos + Vec3(0, 0, 0.5))[2]; return Vec3(vx, vy, vz); } } // namespace Manta #endif