/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * Contributor(s): Laurence Bourn, Campbell Barton * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenlib/intern/quadric.c * \ingroup bli * * \note This isn't fully complete, * possible there are other useful functions to add here. * * \note follow BLI_math naming convention here. * * \note this uses doubles for internal calculations, * even though input/output are floats in some cases. * * This is done because the cases quadrics are useful * often need high precision, see T44780. */ #include "BLI_math.h" #include "BLI_strict_flags.h" #include "BLI_quadric.h" /* own include */ #define QUADRIC_FLT_TOT (sizeof(Quadric) / sizeof(double)) void BLI_quadric_from_plane(Quadric *q, const double v[4]) { q->a2 = v[0] * v[0]; q->b2 = v[1] * v[1]; q->c2 = v[2] * v[2]; q->ab = v[0] * v[1]; q->ac = v[0] * v[2]; q->bc = v[1] * v[2]; q->ad = v[0] * v[3]; q->bd = v[1] * v[3]; q->cd = v[2] * v[3]; q->d2 = v[3] * v[3]; } void BLI_quadric_to_tensor_m3(const Quadric *q, float m[3][3]) { m[0][0] = (float)q->a2; m[0][1] = (float)q->ab; m[0][2] = (float)q->ac; m[1][0] = (float)q->ab; m[1][1] = (float)q->b2; m[1][2] = (float)q->bc; m[2][0] = (float)q->ac; m[2][1] = (float)q->bc; m[2][2] = (float)q->c2; } void BLI_quadric_to_vector_v3(const Quadric *q, float v[3]) { v[0] = (float)q->ad; v[1] = (float)q->bd; v[2] = (float)q->cd; } void BLI_quadric_clear(Quadric *q) { memset(q, 0, sizeof(*q)); } void BLI_quadric_add_qu_qu(Quadric *a, const Quadric *b) { add_vn_vn_d((double *)a, (double *)b, QUADRIC_FLT_TOT); } void BLI_quadric_add_qu_ququ(Quadric *r, const Quadric *a, const Quadric *b) { add_vn_vnvn_d((double *)r, (const double *)a, (const double *)b, QUADRIC_FLT_TOT); } void BLI_quadric_mul(Quadric *a, const double scalar) { mul_vn_db((double *)a, QUADRIC_FLT_TOT, scalar); } double BLI_quadric_evaluate(const Quadric *q, const float v_fl[3]) { const double v[3] = {UNPACK3(v_fl)}; return ((q->a2 * v[0] * v[0]) + (q->ab * 2 * v[0] * v[1]) + (q->ac * 2 * v[0] * v[2]) + (q->ad * 2 * v[0]) + (q->b2 * v[1] * v[1]) + (q->bc * 2 * v[1] * v[2]) + (q->bd * 2 * v[1]) + (q->c2 * v[2] * v[2]) + (q->cd * 2 * v[2]) + (q->d2)); } bool BLI_quadric_optimize(const Quadric *q, float v[3], const float epsilon) { float m[3][3]; BLI_quadric_to_tensor_m3(q, m); if (invert_m3_ex(m, epsilon)) { BLI_quadric_to_vector_v3(q, v); mul_m3_v3(m, v); negate_v3(v); return true; } else { return false; } }