/* SPDX-License-Identifier: GPL-2.0-or-later */ #pragma once /** \file * \ingroup bli * * A `blender::BitVector` is a dynamically growing contiguous arrays of bits. Its main purpose is * to provide a compact way to map indices to bools. It requires 8 times less memory compared to a * `blender::Vector`. * * Advantages of using a bit- instead of byte-vector are: * - Uses less memory. * - Allows checking the state of many elements at the same time (8 times more bits than bytes fit * into a CPU register). This can improve performance. * * The compact nature of storing bools in individual bits has some downsides that have to be kept * in mind: * - Writing to separate bits in the same int is not thread-safe. Therefore, an existing vector of * bool can't easily be replaced with a bit vector, if it is written to from multiple threads. * Read-only access from multiple threads is fine though. * - Writing individual elements is more expensive when the array is in cache already. That is * because changing a bit is always a read-modify-write operation on the int the bit resides in. * - Reading individual elements is more expensive when the array is in cache already. That is * because additional bit-wise operations have to be applied after the corresponding int is * read. * * Comparison to `std::vector`: * - `blender::BitVector` has an interface that is more optimized for dealing with bits. * - `blender::BitVector` has an inline buffer that is used to avoid allocations when the vector is * small. * * Comparison to `BLI_bitmap`: * - `blender::BitVector` offers a more C++ friendly interface. * - `BLI_bitmap` should only be used in C code that can not use `blender::BitVector`. */ #include #include "BLI_allocator.hh" #include "BLI_bit_span.hh" #include "BLI_span.hh" namespace blender::bits { template< /** * Number of bits that can be stored in the vector without doing an allocation. */ int64_t InlineBufferCapacity = 64, /** * The allocator used by this vector. Should rarely be changed, except when you don't want that * MEM_* is used internally. */ typename Allocator = GuardedAllocator> class BitVector { private: static constexpr int64_t required_ints_for_bits(const int64_t number_of_bits) { return (number_of_bits + BitsPerInt - 1) / BitsPerInt; } static constexpr int64_t IntsInInlineBuffer = required_ints_for_bits(InlineBufferCapacity); static constexpr int64_t BitsInInlineBuffer = IntsInInlineBuffer * BitsPerInt; static constexpr int64_t AllocationAlignment = alignof(BitInt); /** * Points to the first integer used by the vector. It might point to the memory in the inline * buffer. */ BitInt *data_; /** Current size of the vector in bits. */ int64_t size_in_bits_; /** Number of bits that fit into the vector until a reallocation has to occur. */ int64_t capacity_in_bits_; /** Used for allocations when the inline buffer is too small. */ BLI_NO_UNIQUE_ADDRESS Allocator allocator_; /** Contains the bits as long as the vector is small enough. */ BLI_NO_UNIQUE_ADDRESS TypedBuffer inline_buffer_; public: BitVector(Allocator allocator = {}) noexcept : allocator_(allocator) { data_ = inline_buffer_; size_in_bits_ = 0; capacity_in_bits_ = BitsInInlineBuffer; uninitialized_fill_n(data_, IntsInInlineBuffer, BitInt(0)); } BitVector(NoExceptConstructor, Allocator allocator = {}) noexcept : BitVector(allocator) { } BitVector(const BitVector &other) : BitVector(NoExceptConstructor(), other.allocator_) { const int64_t ints_to_copy = other.used_ints_amount(); if (other.size_in_bits_ <= BitsInInlineBuffer) { /* The data is copied into the owned inline buffer. */ data_ = inline_buffer_; capacity_in_bits_ = BitsInInlineBuffer; } else { /* Allocate a new array because the inline buffer is too small. */ data_ = static_cast( allocator_.allocate(ints_to_copy * sizeof(BitInt), AllocationAlignment, __func__)); capacity_in_bits_ = ints_to_copy * BitsPerInt; } size_in_bits_ = other.size_in_bits_; uninitialized_copy_n(other.data_, ints_to_copy, data_); } BitVector(BitVector &&other) noexcept : BitVector(NoExceptConstructor(), other.allocator_) { if (other.is_inline()) { /* Copy the data into the inline buffer. */ const int64_t ints_to_copy = other.used_ints_amount(); data_ = inline_buffer_; uninitialized_copy_n(other.data_, ints_to_copy, data_); } else { /* Steal the pointer. */ data_ = other.data_; } size_in_bits_ = other.size_in_bits_; capacity_in_bits_ = other.capacity_in_bits_; /* Clear the other vector because it has been moved from. */ other.data_ = other.inline_buffer_; other.size_in_bits_ = 0; other.capacity_in_bits_ = BitsInInlineBuffer; } /** * Create a new vector with the given size and fill it with #value. */ BitVector(const int64_t size_in_bits, const bool value = false, Allocator allocator = {}) : BitVector(NoExceptConstructor(), allocator) { this->resize(size_in_bits, value); } /** * Create a bit vector based on an array of bools. Each byte of the input array maps to one bit. */ explicit BitVector(const Span values, Allocator allocator = {}) : BitVector(NoExceptConstructor(), allocator) { this->resize(values.size()); for (const int64_t i : this->index_range()) { (*this)[i].set(values[i]); } } ~BitVector() { if (!this->is_inline()) { allocator_.deallocate(data_); } } BitVector &operator=(const BitVector &other) { return copy_assign_container(*this, other); } BitVector &operator=(BitVector &&other) { return move_assign_container(*this, std::move(other)); } operator BitSpan() const { return {data_, IndexRange(size_in_bits_)}; } operator MutableBitSpan() { return {data_, IndexRange(size_in_bits_)}; } /** * Number of bits in the bit vector. */ int64_t size() const { return size_in_bits_; } bool is_empty() const { return size_in_bits_ == 0; } /** * Get a read-only reference to a specific bit. */ BitRef operator[](const int64_t index) const { BLI_assert(index >= 0); BLI_assert(index < size_in_bits_); return {data_, index}; } /** * Get a mutable reference to a specific bit. */ MutableBitRef operator[](const int64_t index) { BLI_assert(index >= 0); BLI_assert(index < size_in_bits_); return {data_, index}; } IndexRange index_range() const { return {0, size_in_bits_}; } /** * Add a new bit to the end of the vector. */ void append(const bool value) { this->ensure_space_for_one(); MutableBitRef bit{data_, size_in_bits_}; bit.set(value); size_in_bits_++; } BitIterator begin() const { return {data_, 0}; } BitIterator end() const { return {data_, size_in_bits_}; } MutableBitIterator begin() { return {data_, 0}; } MutableBitIterator end() { return {data_, size_in_bits_}; } /** * Change the size of the vector. If the new vector is larger than the old one, the new elements * are filled with #value. */ void resize(const int64_t new_size_in_bits, const bool value = false) { BLI_assert(new_size_in_bits >= 0); const int64_t old_size_in_bits = size_in_bits_; if (new_size_in_bits > old_size_in_bits) { this->reserve(new_size_in_bits); } size_in_bits_ = new_size_in_bits; if (old_size_in_bits < new_size_in_bits) { MutableBitSpan(data_, IndexRange(old_size_in_bits, new_size_in_bits - old_size_in_bits)) .set_all(value); } } /** * Set #value on every element. */ void fill(const bool value) { MutableBitSpan(data_, size_in_bits_).set_all(value); } /** * Make sure that the capacity of the vector is large enough to hold the given amount of bits. * The actual size is not changed. */ void reserve(const int new_capacity_in_bits) { this->realloc_to_at_least(new_capacity_in_bits); } /** * Reset the size of the vector to zero elements, but keep the same memory capacity to be * refilled again. */ void clear() { size_in_bits_ = 0; } /** * Free memory and reset the vector to zero elements. */ void clear_and_shrink() { size_in_bits_ = 0; capacity_in_bits_ = 0; if (!this->is_inline()) { allocator_.deallocate(data_); } data_ = inline_buffer_; } private: void ensure_space_for_one() { if (UNLIKELY(size_in_bits_ >= capacity_in_bits_)) { this->realloc_to_at_least(size_in_bits_ + 1); } } BLI_NOINLINE void realloc_to_at_least(const int64_t min_capacity_in_bits, const BitInt initial_value_for_new_ints = 0) { if (capacity_in_bits_ >= min_capacity_in_bits) { return; } const int64_t min_capacity_in_ints = this->required_ints_for_bits(min_capacity_in_bits); /* At least double the size of the previous allocation. */ const int64_t min_new_capacity_in_ints = 2 * this->required_ints_for_bits(capacity_in_bits_); const int64_t new_capacity_in_ints = std::max(min_capacity_in_ints, min_new_capacity_in_ints); const int64_t ints_to_copy = this->used_ints_amount(); BitInt *new_data = static_cast( allocator_.allocate(new_capacity_in_ints * sizeof(BitInt), AllocationAlignment, __func__)); uninitialized_copy_n(data_, ints_to_copy, new_data); /* Always initialize new capacity even if it isn't used yet. That's necessary to avoid warnings * caused by using uninitialized memory. This happens when e.g. setting a clearing a bit in an * uninitialized int. */ uninitialized_fill_n( new_data + ints_to_copy, new_capacity_in_ints - ints_to_copy, initial_value_for_new_ints); if (!this->is_inline()) { allocator_.deallocate(data_); } data_ = new_data; capacity_in_bits_ = new_capacity_in_ints * BitsPerInt; } bool is_inline() const { return data_ == inline_buffer_; } int64_t used_ints_amount() const { return this->required_ints_for_bits(size_in_bits_); } }; } // namespace blender::bits namespace blender { using bits::BitVector; } // namespace blender