vec4 white_balance(vec4 color, vec4 black_level, vec4 white_level) { vec4 range = max(white_level - black_level, vec4(1e-5f)); return (color - black_level) / range; } float extrapolate_if_needed(float parameter, float value, float start_slope, float end_slope) { if (parameter < 0.0) { return value + parameter * start_slope; } if (parameter > 1.0) { return value + (parameter - 1.0) * end_slope; } return value; } /* Same as extrapolate_if_needed but vectorized. */ vec3 extrapolate_if_needed(vec3 parameters, vec3 values, vec3 start_slopes, vec3 end_slopes) { vec3 end_or_zero_slopes = mix(vec3(0.0), end_slopes, greaterThan(parameters, vec3(1.0))); vec3 slopes = mix(end_or_zero_slopes, start_slopes, lessThan(parameters, vec3(0.0))); parameters = parameters - mix(vec3(0.0), vec3(1.0), greaterThan(parameters, vec3(1.0))); return values + parameters * slopes; } /* Curve maps are stored in sampler objects that are evaluated in the [0, 1] range, so normalize * parameters accordingly. */ #define NORMALIZE_PARAMETER(parameter, minimum, range) ((parameter - minimum) * range) void curves_combined_rgb(float factor, vec4 color, vec4 black_level, vec4 white_level, sampler1DArray curve_map, const float layer, vec4 range_minimums, vec4 range_dividers, vec4 start_slopes, vec4 end_slopes, out vec4 result) { vec4 balanced = white_balance(color, black_level, white_level); /* First, evaluate alpha curve map at all channels. The alpha curve is the Combined curve in the * UI. */ vec3 parameters = NORMALIZE_PARAMETER(balanced.rgb, range_minimums.aaa, range_dividers.aaa); result.r = texture(curve_map, vec2(parameters.x, layer)).a; result.g = texture(curve_map, vec2(parameters.y, layer)).a; result.b = texture(curve_map, vec2(parameters.z, layer)).a; /* Then, extrapolate if needed. */ result.rgb = extrapolate_if_needed(parameters, result.rgb, start_slopes.aaa, end_slopes.aaa); /* Then, evaluate each channel on its curve map. */ parameters = NORMALIZE_PARAMETER(result.rgb, range_minimums.rgb, range_dividers.rgb); result.r = texture(curve_map, vec2(parameters.r, layer)).r; result.g = texture(curve_map, vec2(parameters.g, layer)).g; result.b = texture(curve_map, vec2(parameters.b, layer)).b; /* Then, extrapolate again if needed. */ result.rgb = extrapolate_if_needed(parameters, result.rgb, start_slopes.rgb, end_slopes.rgb); result.a = color.a; result = mix(color, result, factor); } void curves_combined_only(float factor, vec4 color, vec4 black_level, vec4 white_level, sampler1DArray curve_map, const float layer, float range_minimum, float range_divider, float start_slope, float end_slope, out vec4 result) { vec4 balanced = white_balance(color, black_level, white_level); /* Evaluate alpha curve map at all channels. The alpha curve is the Combined curve in the * UI. */ vec3 parameters = NORMALIZE_PARAMETER(balanced.rgb, range_minimum, range_divider); result.r = texture(curve_map, vec2(parameters.x, layer)).a; result.g = texture(curve_map, vec2(parameters.y, layer)).a; result.b = texture(curve_map, vec2(parameters.z, layer)).a; /* Then, extrapolate if needed. */ result.rgb = extrapolate_if_needed(parameters, result.rgb, vec3(start_slope), vec3(end_slope)); result.a = color.a; result = mix(color, result, factor); } /* Contrary to standard tone curve implementations, the film-like implementation tries to preserve * the hue of the colors as much as possible. To understand why this might be a problem, consider * the violet color (0.5, 0.0, 1.0). If this color was to be evaluated at a power curve x^4, the * color will be blue (0.0625, 0.0, 1.0). So the color changes and not just its luminosity, which * is what film-like tone curves tries to avoid. * * First, the channels with the lowest and highest values are identified and evaluated at the * curve. Then, the third channel---the median---is computed while maintaining the original hue of * the color. To do that, we look at the equation for deriving the hue from RGB values. Assuming * the maximum, minimum, and median channels are known, and ignoring the 1/3 period offset of the * hue, the equation is: * * hue = (median - min) / (max - min) [1] * * Since we have the new values for the minimum and maximum after evaluating at the curve, we also * have: * * hue = (new_median - new_min) / (new_max - new_min) [2] * * Since we want the hue to be equivalent, by equating [1] and [2] and rearranging: * * (new_median - new_min) / (new_max - new_min) = (median - min) / (max - min) * new_median - new_min = (new_max - new_min) * (median - min) / (max - min) * new_median = new_min + (new_max - new_min) * (median - min) / (max - min) * new_median = new_min + (median - min) * ((new_max - new_min) / (max - min)) [QED] * * Which gives us the median color that preserves the hue. More intuitively, the median is computed * such that the change in the distance from the median to the minimum is proportional to the * change in the distance from the minimum to the maximum. Finally, each of the new minimum, * maximum, and median values are written to the color channel that they were originally extracted * from. */ void curves_film_like(float factor, vec4 color, vec4 black_level, vec4 white_level, sampler1DArray curve_map, const float layer, float range_minimum, float range_divider, float start_slope, float end_slope, out vec4 result) { vec4 balanced = white_balance(color, black_level, white_level); /* Find the maximum, minimum, and median of the color channels. */ float minimum = min(balanced.r, min(balanced.g, balanced.b)); float maximum = max(balanced.r, max(balanced.g, balanced.b)); float median = max(min(balanced.r, balanced.g), min(balanced.b, max(balanced.r, balanced.g))); /* Evaluate alpha curve map at the maximum and minimum channels. The alpha curve is the Combined * curve in the UI. */ float min_parameter = NORMALIZE_PARAMETER(minimum, range_minimum, range_divider); float max_parameter = NORMALIZE_PARAMETER(maximum, range_minimum, range_divider); float new_min = texture(curve_map, vec2(min_parameter, layer)).a; float new_max = texture(curve_map, vec2(max_parameter, layer)).a; /* Then, extrapolate if needed. */ new_min = extrapolate_if_needed(min_parameter, new_min, start_slope, end_slope); new_max = extrapolate_if_needed(max_parameter, new_max, start_slope, end_slope); /* Compute the new median using the ratio between the new and the original range. */ float scaling_ratio = (new_max - new_min) / (maximum - minimum); float new_median = new_min + (median - minimum) * scaling_ratio; /* Write each value to its original channel. */ bvec3 channel_is_min = equal(balanced.rgb, vec3(minimum)); vec3 median_or_min = mix(vec3(new_median), vec3(new_min), channel_is_min); bvec3 channel_is_max = equal(balanced.rgb, vec3(maximum)); result.rgb = mix(median_or_min, vec3(new_max), channel_is_max); result.a = color.a; result = mix(color, result, clamp(factor, 0.0, 1.0)); } void curves_vector(vec3 vector, sampler1DArray curve_map, const float layer, vec3 range_minimums, vec3 range_dividers, vec3 start_slopes, vec3 end_slopes, out vec3 result) { /* Evaluate each component on its curve map. */ vec3 parameters = NORMALIZE_PARAMETER(vector, range_minimums, range_dividers); result.x = texture(curve_map, vec2(parameters.x, layer)).x; result.y = texture(curve_map, vec2(parameters.y, layer)).y; result.z = texture(curve_map, vec2(parameters.z, layer)).z; /* Then, extrapolate if needed. */ result = extrapolate_if_needed(parameters, result, start_slopes, end_slopes); } void curves_vector_mixed(float factor, vec3 vector, sampler1DArray curve_map, const float layer, vec3 range_minimums, vec3 range_dividers, vec3 start_slopes, vec3 end_slopes, out vec3 result) { curves_vector( vector, curve_map, layer, range_minimums, range_dividers, start_slopes, end_slopes, result); result = mix(vector, result, factor); } void curves_float(float value, sampler1DArray curve_map, const float layer, float range_minimum, float range_divider, float start_slope, float end_slope, out float result) { /* Evaluate the normalized value on the first curve map. */ float parameter = NORMALIZE_PARAMETER(value, range_minimum, range_divider); result = texture(curve_map, vec2(parameter, layer)).x; /* Then, extrapolate if needed. */ result = extrapolate_if_needed(parameter, result, start_slope, end_slope); } void curves_float_mixed(float factor, float value, sampler1DArray curve_map, const float layer, float range_minimum, float range_divider, float start_slope, float end_slope, out float result) { curves_float( value, curve_map, layer, range_minimum, range_divider, start_slope, end_slope, result); result = mix(value, result, factor); }