/** * $Id$ * * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include #include #include #ifdef HAVE_CONFIG_H #include #endif #ifndef WIN32 #include #else #include #include "BLI_winstuff.h" #endif #include "MEM_guardedalloc.h" #include "DNA_action_types.h" #include "DNA_armature_types.h" #include "DNA_camera_types.h" #include "DNA_curve_types.h" #include "DNA_effect_types.h" #include "DNA_ika_types.h" #include "DNA_image_types.h" #include "DNA_ipo_types.h" #include "DNA_key_types.h" #include "DNA_lamp_types.h" #include "DNA_lattice_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_meta_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "DNA_screen_types.h" #include "DNA_texture_types.h" #include "DNA_view3d_types.h" #include "DNA_world_types.h" #include "DNA_userdef_types.h" #include "DNA_property_types.h" #include "DNA_vfont_types.h" #include "DNA_constraint_types.h" #include "BIF_screen.h" #include "BIF_space.h" #include "BIF_editview.h" #include "BIF_resources.h" #include "BIF_mywindow.h" #include "BIF_gl.h" #include "BIF_editlattice.h" #include "BIF_editarmature.h" #include "BIF_editmesh.h" #include "BKE_global.h" #include "BKE_object.h" #include "BKE_utildefines.h" #include "BKE_lattice.h" #include "BKE_armature.h" #include "BKE_curve.h" #include "BKE_displist.h" #include "BSE_view.h" #include "BSE_edit.h" #include "BLI_arithb.h" #include "BLI_editVert.h" #include "BDR_drawobject.h" #include "blendef.h" #include "mydevice.h" #include "transform.h" #include "transform_constraints.h" #include "transform_generics.h" extern ListBase editNurb; extern ListBase editelems; void recalcData(); /* ************************** CONSTRAINTS ************************* */ void getConstraintMatrix(TransInfo *t); void axisProjection(float axis[3], float in[3], float out[3]) { float n[3], vec[3], factor; Normalise(axis); VECCOPY(n, axis); Mat4MulVecfl(G.vd->viewmat, n); n[2] = G.vd->viewmat[3][2]; Mat4MulVecfl(G.vd->viewinv, n); if (Inpf(axis, G.vd->viewinv[2]) != 1.0f) { Projf(vec, in, n); factor = Normalise(vec); factor /= Inpf(axis, vec); VecMulf(axis, factor); VECCOPY(out, axis); } else { out[0] = out[1] = out[2] = 0.0f; } } void planeProjection(float in[3], float out[3]) { float vec[3], factor, angle; VecSubf(vec, out, in); factor = Normalise(vec); angle = Inpf(vec, G.vd->viewinv[2]); if (angle * angle >= 0.000001f) { factor /= angle; VECCOPY(vec, G.vd->viewinv[2]); VecMulf(vec, factor); VecAddf(out, in, vec); } } void applyAxisConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3]) { VECCOPY(out, in); if (!td && t->con.mode & APPLYCON) { Mat3MulVecfl(t->con.imtx, out); if (!(out[0] == out[1] == out[2] == 0.0f)) { if (getConstraintSpaceDimension(t) == 2) { planeProjection(in, out); } else if (getConstraintSpaceDimension(t) == 1) { float c[3]; if (t->con.mode & CONAXIS0) { VECCOPY(c, t->con.mtx[0]); } else if (t->con.mode & CONAXIS1) { VECCOPY(c, t->con.mtx[1]); } else if (t->con.mode & CONAXIS2) { VECCOPY(c, t->con.mtx[2]); } axisProjection(c, in, out); } } /* THIS IS NO GOOD, only works with global axis constraint */ if (t->num.flags & NULLONE && !(t->con.mode & CONAXIS0)) out[0] = 1.0f; if (t->num.flags & NULLONE && !(t->con.mode & CONAXIS1)) out[1] = 1.0f; if (t->num.flags & NULLONE && !(t->con.mode & CONAXIS2)) out[2] = 1.0f; } } /* * Generic callback for constant spacial constraints applied to rotations * * The rotation axis is copied into VEC. * * In the case of single axis constraints, the rotation axis is directly the one constrained to. * For planar constraints (2 axis), the rotation axis is the normal of the plane. * * The vector is then modified to always point away from the screen (in global space) * This insures that the rotation is always logically following the mouse. * (ie: not doing counterclockwise rotations when the mouse moves clockwise). */ void applyAxisConstraintRot(TransInfo *t, TransData *td, float vec[3]) { if (!td && t->con.mode & APPLYCON) { int mode = t->con.mode & (CONAXIS0|CONAXIS1|CONAXIS2); switch(mode) { case CONAXIS0: case (CONAXIS1|CONAXIS2): VECCOPY(vec, t->con.mtx[0]); break; case CONAXIS1: case (CONAXIS0|CONAXIS2): VECCOPY(vec, t->con.mtx[1]); break; case CONAXIS2: case (CONAXIS0|CONAXIS1): VECCOPY(vec, t->con.mtx[2]); break; } if (Inpf(vec, G.vd->viewinv[2]) > 0.0f) { VecMulf(vec, -1.0f); } } } /* * Returns the dimension of the constraint space. * * For that reason, the flags always needs to be set to properly evaluate here, * even if they aren't actually used in the callback function. (Which could happen * for weird constraints not yet designed. Along a path for example.) */ int getConstraintSpaceDimension(TransInfo *t) { int n = 0; if (t->con.mode & CONAXIS0) n++; if (t->con.mode & CONAXIS1) n++; if (t->con.mode & CONAXIS2) n++; return n; } void BIF_setSingleAxisConstraint(float vec[3]) { TransInfo *t = BIF_GetTransInfo(); float space[3][3], v[3]; VECCOPY(space[0], vec); v[0] = vec[2]; v[1] = vec[0]; v[2] = vec[1]; Crossf(space[1], vec, v); Crossf(space[2], vec, space[1]); Mat3CpyMat3(t->con.mtx, space); t->con.mode = (CONAXIS0|APPLYCON); getConstraintMatrix(t); VECCOPY(t->con.center, t->center); if (G.obedit) { Mat4MulVecfl(G.obedit->obmat, t->con.center); } t->con.applyVec = applyAxisConstraintVec; t->con.applyRot = applyAxisConstraintRot; t->redraw = 1; } void setConstraint(TransInfo *t, float space[3][3], int mode) { Mat3CpyMat3(t->con.mtx, space); t->con.mode = mode; getConstraintMatrix(t); VECCOPY(t->con.center, t->center); if (G.obedit) { Mat4MulVecfl(G.obedit->obmat, t->con.center); } t->con.applyVec = applyAxisConstraintVec; t->con.applyRot = applyAxisConstraintRot; t->redraw = 1; } void BIF_drawConstraint() { int i = -1; TransInfo *t = BIF_GetTransInfo(); TransCon *tc = &(t->con); if (tc->mode == 0) return; if (!(tc->mode & APPLYCON)) { i = nearestAxisIndex(t); } if (tc->mode & CONAXIS0) { if (i == 0) drawLine(tc->center, tc->mtx[0], 255 - 'x'); else drawLine(tc->center, tc->mtx[0], 'x'); } if (tc->mode & CONAXIS1) { if (i == 1) drawLine(tc->center, tc->mtx[1], 255 - 'y'); else drawLine(tc->center, tc->mtx[1], 'y'); } if (tc->mode & CONAXIS2) { if (i == 2) drawLine(tc->center, tc->mtx[2], 255 - 'z'); else drawLine(tc->center, tc->mtx[2], 'z'); } } /* called from drawview.c, as an extra per-window draw option */ void BIF_drawPropCircle() { TransInfo *t = BIF_GetTransInfo(); if (G.f & G_PROPORTIONAL) { float tmat[4][4], imat[4][4]; BIF_ThemeColor(TH_GRID); /* if editmode we need to go into object space */ if(G.obedit) mymultmatrix(G.obedit->obmat); mygetmatrix(tmat); Mat4Invert(imat, tmat); drawcircball(t->center, t->propsize, imat); /* if editmode we restore */ if(G.obedit) myloadmatrix(G.vd->viewmat); } } void getConstraintMatrix(TransInfo *t) { Mat3Inv(t->con.imtx, t->con.mtx); if (!(t->con.mode & CONAXIS0)) { t->con.imtx[0][0] = t->con.imtx[0][1] = t->con.imtx[0][2] = 0.0f; } if (!(t->con.mode & CONAXIS1)) { t->con.imtx[1][0] = t->con.imtx[1][1] = t->con.imtx[1][2] = 0.0f; } if (!(t->con.mode & CONAXIS2)) { t->con.imtx[2][0] = t->con.imtx[2][1] = t->con.imtx[2][2] = 0.0f; } } void selectConstraint(TransInfo *t) { Mat3One(t->con.mtx); Mat3One(t->con.imtx); t->con.mode |= CONAXIS0; t->con.mode |= CONAXIS1; t->con.mode |= CONAXIS2; t->con.mode &= ~APPLYCON; VECCOPY(t->con.center, t->center); if (G.obedit) { Mat4MulVecfl(G.obedit->obmat, t->con.center); } } int nearestAxisIndex(TransInfo *t) { short coord[2]; float mvec[3], axis[3], center[3], proj[3]; float len[3]; int i; VECCOPY(center, t->center); if (G.obedit) { Mat4MulVecfl(G.obedit->obmat, center); } getmouseco_areawin(coord); mvec[0] = (float)(coord[0] - t->center2d[0]); mvec[1] = (float)(coord[1] - t->center2d[1]); mvec[2] = 0.0f; for (i = 0; i<3; i++) { VECCOPY(axis, t->con.mtx[i]); VecAddf(axis, axis, center); project_short_noclip(axis, coord); axis[0] = (float)(coord[0] - t->center2d[0]); axis[1] = (float)(coord[1] - t->center2d[1]); axis[2] = 0.0f; if (Normalise(axis) != 0.0f) { Projf(proj, mvec, axis); VecSubf(axis, mvec, proj); len[i] = Normalise(axis); } else { len[i] = 10000000000.0f; } } if (len[0] < len[1] && len[0] < len[2]) { return 0; } else if (len[1] < len[0] && len[1] < len[2]) { return 1; } else if (len[2] < len[1] && len[2] < len[0]) { return 2; } return -1; } void chooseConstraint(TransInfo *t) { t->con.mode &= ~CONAXIS0; t->con.mode &= ~CONAXIS1; t->con.mode &= ~CONAXIS2; switch(nearestAxisIndex(t)) { case 0: t->con.mode |= CONAXIS0; break; case 1: t->con.mode |= CONAXIS1; break; case 2: t->con.mode |= CONAXIS2; break; } t->con.mode |= APPLYCON; VECCOPY(t->con.center, t->center); getConstraintMatrix(t); t->con.applyVec = applyAxisConstraintVec; t->con.applyRot = applyAxisConstraintRot; t->redraw = 1; }