#define MAX_STEP 256 #define MAX_REFINE_STEP 32 /* Should be max allowed stride */ uniform vec4 ssrParameters; uniform sampler2D depthBuffer; uniform sampler2D maxzBuffer; uniform sampler2D minzBuffer; uniform sampler2DArray planarDepth; #define ssrQuality ssrParameters.x #define ssrThickness ssrParameters.y #define ssrPixelSize ssrParameters.zw float sample_depth(vec2 uv, int index, float lod) { if (index > -1) { return textureLod(planarDepth, vec3(uv, index), 0.0).r; } else { return textureLod(maxzBuffer, uv, lod).r; } } float sample_minz_depth(vec2 uv, int index) { if (index > -1) { return textureLod(planarDepth, vec3(uv, index), 0.0).r; } else { return textureLod(minzBuffer, uv, 0.0).r; } } float sample_maxz_depth(vec2 uv, int index) { if (index > -1) { return textureLod(planarDepth, vec3(uv, index), 0.0).r; } else { return textureLod(maxzBuffer, uv, 0.0).r; } } vec4 sample_depth_grouped(vec4 uv1, vec4 uv2, int index, float lod) { vec4 depths; if (index > -1) { depths.x = textureLod(planarDepth, vec3(uv1.xy, index), 0.0).r; depths.y = textureLod(planarDepth, vec3(uv1.zw, index), 0.0).r; depths.z = textureLod(planarDepth, vec3(uv2.xy, index), 0.0).r; depths.w = textureLod(planarDepth, vec3(uv2.zw, index), 0.0).r; } else { depths.x = textureLod(maxzBuffer, uv1.xy, lod).r; depths.y = textureLod(maxzBuffer, uv1.zw, lod).r; depths.z = textureLod(maxzBuffer, uv2.xy, lod).r; depths.w = textureLod(maxzBuffer, uv2.zw, lod).r; } return depths; } float refine_isect(float prev_delta, float curr_delta) { /** * Simplification of 2D intersection : * r0 = (0.0, prev_ss_ray.z); * r1 = (1.0, curr_ss_ray.z); * d0 = (0.0, prev_hit_depth_sample); * d1 = (1.0, curr_hit_depth_sample); * vec2 r = r1 - r0; * vec2 d = d1 - d0; * vec2 isect = ((d * cross(r1, r0)) - (r * cross(d1, d0))) / cross(r,d); * * We only want isect.x to know how much stride we need. So it simplifies : * * isect_x = (cross(r1, r0) - cross(d1, d0)) / cross(r,d); * isect_x = (prev_ss_ray.z - prev_hit_depth_sample.z) / cross(r,d); */ return saturate(prev_delta / (prev_delta - curr_delta)); } void prepare_raycast(vec3 ray_origin, vec3 ray_dir, out vec4 ss_step, out vec4 ss_ray, out float max_time) { /* Negate the ray direction if it goes towards the camera. * This way we don't need to care if the projected point * is behind the near plane. */ float z_sign = -sign(ray_dir.z); vec3 ray_end = z_sign * ray_dir * 1e16 + ray_origin; /* Project into screen space. */ vec3 ss_start = project_point(ProjectionMatrix, ray_origin); vec3 ss_end = project_point(ProjectionMatrix, ray_end); /* 4th component is current stride */ ss_step = vec4(z_sign * normalize(ss_end - ss_start), 1.0); /* If the line is degenerate, make it cover at least one pixel * to not have to handle zero-pixel extent as a special case later */ ss_step.xy += vec2((dot(ss_step.xy, ss_step.xy) < 0.00001) ? 0.001 : 0.0); /* Make ss_step cover one pixel. */ ss_step.xyz /= max(abs(ss_step.x), abs(ss_step.y)); ss_step.xyz *= ((abs(ss_step.x) > abs(ss_step.y)) ? ssrPixelSize.x : ssrPixelSize.y); /* Clipping to frustum sides. */ max_time = line_unit_box_intersect_dist(ss_start, ss_step.xyz) - 1.0; /* Convert to texture coords. Z component included * since this is how it's stored in the depth buffer. * 4th component how far we are on the ray */ ss_ray = vec4(ss_start * 0.5 + 0.5, 0.0); ss_step.xyz *= 0.5; } /* See times_and_deltas. */ #define curr_time times_and_deltas.x #define prev_time times_and_deltas.y #define curr_delta times_and_deltas.z #define prev_delta times_and_deltas.w // #define GROUPED_FETCHES /* Return the hit position, and negate the z component (making it positive) if not hit occured. */ vec3 raycast(int index, vec3 ray_origin, vec3 ray_dir, float ray_jitter, float roughness) { vec4 ss_step, ss_start; float max_time; prepare_raycast(ray_origin, ray_dir, ss_step, ss_start, max_time); #ifdef GROUPED_FETCHES ray_jitter *= 0.25; #endif /* x : current_time, y: previous_time, z: previous_delta, w: current_delta */ vec4 times_and_deltas = vec4(0.0, 0.0, 0.001, 0.001); float ray_time = 0.0; float depth_sample; float lod_fac = saturate(fast_sqrt(roughness) * 2.0 - 0.4); bool hit = false; float iter; for (iter = 1.0; !hit && (ray_time <= max_time) && (iter < MAX_STEP); iter++) { /* Minimum stride of 2 because we are using half res minmax zbuffer. */ float stride = max(1.0, iter * ssrQuality) * 2.0; float lod = log2(stride * 0.5 * ssrQuality) * lod_fac; /* Save previous values. */ times_and_deltas.xyzw = times_and_deltas.yxwz; #ifdef GROUPED_FETCHES stride *= 4.0; vec4 jit_stride = mix(vec4(2.0), vec4(stride), vec4(0.0, 0.25, 0.5, 0.75) + ray_jitter); vec4 times = vec4(ray_time) + jit_stride; vec4 uv1 = ss_start.xyxy + ss_step.xyxy * times.xxyy; vec4 uv2 = ss_start.xyxy + ss_step.xyxy * times.zzww; vec4 depth_samples = sample_depth_grouped(uv1, uv2, index, lod); vec4 ray_z = ss_start.zzzz + ss_step.zzzz * times.xyzw; vec4 deltas = depth_samples - ray_z; /* Same as component wise (depth_samples <= ray_z) && (ray_time <= max_time). */ bvec4 test = equal(step(deltas, vec4(0.0)) * step(times, vec4(max_time)), vec4(1.0)); hit = any(test); if (hit) { vec2 m = vec2(1.0, 0.0); /* Mask */ vec4 ret_times_and_deltas = times.wzzz * m.xxyy + deltas.wwwz * m.yyxx; ret_times_and_deltas = (test.z) ? times.zyyy * m.xxyy + deltas.zzzy * m.yyxx : ret_times_and_deltas; ret_times_and_deltas = (test.y) ? times.yxxx * m.xxyy + deltas.yyyx * m.yyxx : ret_times_and_deltas; times_and_deltas = (test.x) ? times.xxxx * m.xyyy + deltas.xxxx * m.yyxy + times_and_deltas.yyww * m.yxyx : ret_times_and_deltas; depth_sample = depth_samples.w; depth_sample = (test.z) ? depth_samples.z : depth_sample; depth_sample = (test.y) ? depth_samples.y : depth_sample; depth_sample = (test.x) ? depth_samples.x : depth_sample; break; } curr_time = times.w; curr_delta = deltas.w; ray_time += stride; #else float jit_stride = mix(2.0, stride, ray_jitter); curr_time = ray_time + jit_stride; vec4 ss_ray = ss_start + ss_step * curr_time; depth_sample = sample_depth(ss_ray.xy, index, lod); curr_delta = depth_sample - ss_ray.z; hit = (curr_delta <= 0.0) && (curr_time <= max_time); ray_time += stride; #endif } curr_time = (hit) ? mix(prev_time, curr_time, refine_isect(prev_delta, curr_delta)) : curr_time; ray_time = (hit) ? curr_time : ray_time; #if 0 /* Not needed if using refine_isect() */ /* Binary search */ for (float time_step = (curr_time - prev_time) * 0.5; time_step > 1.0; time_step /= 2.0) { ray_time -= time_step; vec4 ss_ray = ss_start + ss_step * ray_time; float depth_sample = sample_maxz_depth(ss_ray.xy, index); bool is_hit = (depth_sample - ss_ray.z <= 0.0); ray_time = (is_hit) ? ray_time : ray_time + time_step; } #endif /* Clip to frustum. */ ray_time = min(ray_time, max_time - 0.5); vec4 ss_ray = ss_start + ss_step * ray_time; vec3 hit_pos = get_view_space_from_depth(ss_ray.xy, ss_ray.z); /* Reject hit if not within threshold. */ /* TODO do this check while tracing. Potentially higher quality */ if (hit && (index == -1)) { float z = get_view_z_from_depth(depth_sample); hit = hit && ((z - hit_pos.z - ssrThickness) <= ssrThickness); } /* Tag Z if ray failed. */ hit_pos.z *= (hit) ? 1.0 : -1.0; return hit_pos; }