/* * * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * This is a new part of Blender. * * Contributor(s): Jordi Rovira i Bonet, Joseph Gilbert * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include "Bone.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "constant.h" #include "gen_utils.h" #include "modules.h" #include "NLA.h" #include "quat.h" #include "matrix.h" #include "vector.h" //------------------------Python API function prototypes for the Bone module--------------------------- static PyObject *M_Bone_New (PyObject * self, PyObject * args); //------------------------Python API Doc strings for the Bone module-------------------------------------- char M_Bone_doc[] = "The Blender Bone module\n\n\ This module provides control over **Bone Data** objects in Blender.\n\n\ Example::\n\n\ from Blender import Armature.Bone\n\ l = Armature.Bone.New()\n"; char M_Bone_New_doc[] = "(name) - return a new Bone of name 'name'."; //--------------- Python method structure definition for Blender.Armature.Bone module------------ struct PyMethodDef M_Bone_methods[] = { {"New", (PyCFunction) M_Bone_New, METH_VARARGS, M_Bone_New_doc}, {NULL, NULL, 0, NULL} }; //--------------- Python BPy_Bone methods declarations:--------------------------------------------------- static PyObject *Bone_getName (BPy_Bone * self); static PyObject *Bone_getRoll (BPy_Bone * self); static PyObject *Bone_getHead (BPy_Bone * self); static PyObject *Bone_getTail (BPy_Bone * self); static PyObject *Bone_getLoc (BPy_Bone * self); static PyObject *Bone_getSize (BPy_Bone * self); static PyObject *Bone_getQuat (BPy_Bone * self); static PyObject *Bone_getParent (BPy_Bone * self); static PyObject *Bone_hasParent (BPy_Bone * self); static PyObject *Bone_getWeight (BPy_Bone * self); static PyObject *Bone_getChildren (BPy_Bone * self); static PyObject *Bone_clearParent (BPy_Bone * self); static PyObject *Bone_clearChildren (BPy_Bone * self); static PyObject *Bone_hide (BPy_Bone * self); static PyObject *Bone_unhide (BPy_Bone * self); static PyObject *Bone_setName (BPy_Bone * self, PyObject * args); static PyObject *Bone_setRoll (BPy_Bone * self, PyObject * args); static PyObject *Bone_setHead (BPy_Bone * self, PyObject * args); static PyObject *Bone_setTail (BPy_Bone * self, PyObject * args); static PyObject *Bone_setLoc (BPy_Bone * self, PyObject * args); static PyObject *Bone_setSize (BPy_Bone * self, PyObject * args); static PyObject *Bone_setQuat (BPy_Bone * self, PyObject * args); static PyObject *Bone_setParent(BPy_Bone *self, PyObject *args); static PyObject *Bone_setWeight(BPy_Bone *self, PyObject *args); static PyObject *Bone_setPose (BPy_Bone *self, PyObject *args); //--------------- Python BPy_Bone methods table:----------------------------------------------------------------- static PyMethodDef BPy_Bone_methods[] = { {"getName", (PyCFunction) Bone_getName, METH_NOARGS, "() - return Bone name"}, {"getRoll", (PyCFunction) Bone_getRoll, METH_NOARGS, "() - return Bone roll"}, {"getHead", (PyCFunction) Bone_getHead, METH_NOARGS, "() - return Bone head"}, {"getTail", (PyCFunction) Bone_getTail, METH_NOARGS, "() - return Bone tail"}, {"getLoc", (PyCFunction) Bone_getLoc, METH_NOARGS, "() - return Bone loc"}, {"getSize", (PyCFunction) Bone_getSize, METH_NOARGS, "() - return Bone size"}, {"getQuat", (PyCFunction) Bone_getQuat, METH_NOARGS, "() - return Bone quat"}, {"hide", (PyCFunction) Bone_hide, METH_NOARGS, "() - hides the bone"}, {"unhide", (PyCFunction) Bone_unhide, METH_NOARGS, "() - unhides the bone"}, {"getWeight", (PyCFunction) Bone_getWeight, METH_NOARGS, "() - return Bone weight"}, {"getParent", (PyCFunction) Bone_getParent, METH_NOARGS, "() - return the parent bone of this one if it exists." " None if not found. You can check this condition with the " "hasParent() method."}, {"hasParent", (PyCFunction) Bone_hasParent, METH_NOARGS, "() - return true if bone has a parent"}, {"getChildren", (PyCFunction) Bone_getChildren, METH_NOARGS, "() - return Bone children list"}, {"clearParent", (PyCFunction) Bone_clearParent, METH_NOARGS, "() - clears the bone's parent in the armature and makes it root"}, {"clearChildren", (PyCFunction) Bone_clearChildren, METH_NOARGS, "() - remove the children associated with this bone"}, {"setName", (PyCFunction) Bone_setName, METH_VARARGS, "(str) - rename Bone"}, {"setRoll", (PyCFunction) Bone_setRoll, METH_VARARGS, "(float) - set Bone roll"}, {"setHead", (PyCFunction) Bone_setHead, METH_VARARGS, "(float,float,float) - set Bone head pos"}, {"setTail", (PyCFunction) Bone_setTail, METH_VARARGS, "(float,float,float) - set Bone tail pos"}, {"setLoc", (PyCFunction) Bone_setLoc, METH_VARARGS, "(float,float,float) - set Bone loc"}, {"setSize", (PyCFunction) Bone_setSize, METH_VARARGS, "(float,float,float) - set Bone size"}, {"setQuat", (PyCFunction) Bone_setQuat, METH_VARARGS, "(float,float,float,float) - set Bone quat"}, {"setParent", (PyCFunction)Bone_setParent, METH_VARARGS, "() - set the Bone parent of this one."}, {"setWeight", (PyCFunction)Bone_setWeight, METH_VARARGS, "() - set the Bone weight."}, {"setPose", (PyCFunction)Bone_setPose, METH_VARARGS, "() - set a pose for this bone at a frame."}, {NULL, NULL, 0, NULL} }; //--------------- Python TypeBone callback function prototypes---------------------------------------- static void Bone_dealloc (BPy_Bone * bone); static PyObject *Bone_getAttr (BPy_Bone * bone, char *name); static int Bone_setAttr (BPy_Bone * bone, char *name, PyObject * v); static int Bone_compare (BPy_Bone * a1, BPy_Bone * a2); static PyObject *Bone_repr (BPy_Bone * bone); //--------------- Python TypeBone structure definition------------------------------------------------------ PyTypeObject Bone_Type = { PyObject_HEAD_INIT (NULL) 0, /* ob_size */ "Blender Bone", /* tp_name */ sizeof (BPy_Bone), /* tp_basicsize */ 0, /* tp_itemsize */ /* methods */ (destructor) Bone_dealloc, /* tp_dealloc */ 0, /* tp_print */ (getattrfunc) Bone_getAttr, /* tp_getattr */ (setattrfunc) Bone_setAttr, /* tp_setattr */ (cmpfunc) Bone_compare, /* tp_compare */ (reprfunc) Bone_repr, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_as_hash */ 0, 0, 0, 0, 0, 0, 0, /* tp_doc */ 0, 0, 0, 0, 0, 0, BPy_Bone_methods, /* tp_methods */ 0, /* tp_members */ }; //--------------- Bone Module Init---------------------------------------------------------------------------------------- PyObject * Bone_Init (void) { PyObject *submodule; Bone_Type.ob_type = &PyType_Type; submodule = Py_InitModule3 ("Blender.Armature.Bone", M_Bone_methods, M_Bone_doc); PyModule_AddIntConstant(submodule, "ROT", POSE_ROT); PyModule_AddIntConstant(submodule, "LOC", POSE_LOC); PyModule_AddIntConstant(submodule, "SIZE", POSE_SIZE); return (submodule); } //--------------- Bone module internal callbacks------------------------------------------------------------- //--------------- updatePyBone------------------------------------------------------------------------------------- int updatePyBone(BPy_Bone *self) { int x,y; char *parent_str = ""; if(!self->bone){ //nothing to update - not linked return 0; }else{ BLI_strncpy(self->name, self->bone->name, strlen(self->bone->name) + 1); self->roll = self->bone->roll; self->flag = self->bone->flag; self->boneclass = self->bone->boneclass; self->dist = self->bone->dist; self->weight = self->bone->weight; if(self->bone->parent){ self->parent = BLI_strncpy(self->parent, self->bone->parent->name, strlen(self->bone->parent->name) + 1); }else{ self->parent = BLI_strncpy(self->parent, parent_str, strlen(parent_str) + 1); } for(x = 0; x < 3; x++){ self->head->vec[x] = self->bone->head[x]; self->tail->vec[x] = self->bone->tail[x]; self->loc->vec[x] = self->bone->loc[x]; self->dloc->vec[x] = self->bone->dloc[x]; self->size->vec[x] = self->bone->size[x]; self->dsize->vec[x] = self->bone->dsize[x]; } for(x = 0; x < 4; x++){ self->quat->quat[x] = self->bone->quat[x]; self->dquat->quat[x] = self->bone->dquat[x]; } for(x = 0; x < 4; x++){ for(y = 0; y < 4; y++){ self->obmat->matrix[x][y] = self->bone->obmat[x][y]; self->parmat->matrix[x][y] = self->bone->parmat[x][y]; self->defmat->matrix[x][y] = self->bone->defmat[x][y]; self->irestmat->matrix[x][y] = self->bone->irestmat[x][y]; self->posemat->matrix[x][y] = self->bone->posemat[x][y]; } } return 1; } } //--------------- updateBoneData------------------------------------------------------------------------------------- int updateBoneData(BPy_Bone *self, Bone *parent) { //called from Armature.addBone() int x,y; //called in Armature.addBone() to update the Bone * data if(!self->bone){ //nothing to update - not linked return 0; }else{ BLI_strncpy(self->bone->name, self->name, strlen(self->name) + 1); self->bone->roll = self->roll; self->bone->flag = self->flag; self->bone->boneclass = self->boneclass; self->bone->dist = self->dist; self->bone->weight = self->weight; self->bone->parent = parent; //parent will be checked from self->parent string in addBone() for(x = 0; x < 3; x++){ self->bone->head[x] = self->head->vec[x]; self->bone->tail[x] = self->tail->vec[x]; self->bone->loc[x] = self->loc->vec[x]; self->bone->dloc[x] = self->dloc->vec[x]; self->bone->size[x] = self->size->vec[x]; self->bone->dsize[x] = self->dsize->vec[x]; } for(x = 0; x < 4; x++){ self->bone->quat[x] = self->quat->quat[x]; self->bone->dquat[x] = self->dquat->quat[x]; } for(x = 0; x < 4; x++){ for(y = 0; y < 4; y++){ self->bone->obmat[x][y] = self->obmat->matrix[x][y]; self->bone->parmat[x][y] = self->parmat->matrix[x][y]; self->bone->defmat[x][y] = self->defmat->matrix[x][y]; self->bone->irestmat[x][y] = self->irestmat->matrix[x][y]; self->bone->posemat[x][y] = self->posemat->matrix[x][y]; } } return 1; } } //--------------- testChildbase-------------------------------------------------------------------------------- static int testChildbase(Bone *bone, Bone *test) { Bone *child; for(child = bone->childbase.first; child; child = child->next){ if(child == test){ return 1; } if(child->childbase.first != NULL) testChildbase(child, test); } return 0; } //---------------BPy_Bone internal callbacks/methods--------------------------------------------- //--------------- dealloc--------------------------------------------------------------------------------------- static void Bone_dealloc (BPy_Bone * self) { PyMem_Free (self->name); PyMem_Free (self->parent); PyObject_DEL (self); } //---------------getattr--------------------------------------------------------------------------------------- static PyObject * Bone_getAttr (BPy_Bone * self, char *name) { PyObject *attr = Py_None; if (strcmp (name, "name") == 0) attr = Bone_getName (self); else if (strcmp (name, "roll") == 0) attr = Bone_getRoll (self); else if (strcmp (name, "head") == 0) attr = Bone_getHead (self); else if (strcmp (name, "tail") == 0) attr = Bone_getTail (self); else if (strcmp (name, "size") == 0) attr = Bone_getSize (self); else if (strcmp (name, "loc") == 0) attr = Bone_getLoc (self); else if (strcmp (name, "quat") == 0) attr = Bone_getQuat (self); else if (strcmp (name, "parent") == 0) /* Skip the checks for Py_None as its a valid result to this call. */ return Bone_getParent (self); else if (strcmp (name, "children") == 0) attr = Bone_getChildren (self); else if (strcmp (name, "weight") == 0) attr = Bone_getWeight (self); else if (strcmp (name, "__members__") == 0) { /* 9 entries */ attr = Py_BuildValue ("[s,s,s,s,s,s,s,s,s]", "name", "roll", "head", "tail", "loc", "size", "quat", "parent", "children", "weight"); } if (!attr) return (EXPP_ReturnPyObjError (PyExc_MemoryError, "couldn't create PyObject")); if (attr != Py_None) return attr; /* member attribute found, return it */ /* not an attribute, search the methods table */ return Py_FindMethod (BPy_Bone_methods, (PyObject *) self, name); } //--------------- setattr--------------------------------------------------------------------------------------- static int Bone_setAttr (BPy_Bone * self, char *name, PyObject * value) { PyObject *valtuple; PyObject *error = NULL; valtuple = Py_BuildValue ("(O)", value); /* the set* functions expect a tuple */ if (!valtuple) return EXPP_ReturnIntError (PyExc_MemoryError, "BoneSetAttr: couldn't create tuple"); if (strcmp (name, "name") == 0) error = Bone_setName (self, valtuple); else { /* Error */ Py_DECREF (valtuple); /* ... member with the given name was found */ return (EXPP_ReturnIntError (PyExc_KeyError, "attribute not found")); } Py_DECREF (valtuple); if (error != Py_None) return -1; Py_DECREF (Py_None); /* was incref'ed by the called Bone_set* function */ return 0; /* normal exit */ } //--------------- repr--------------------------------------------------------------------------------------- static PyObject * Bone_repr (BPy_Bone * self) { if (self->bone) return PyString_FromFormat ("[Bone \"%s\"]", self->bone->name); else return PyString_FromString ("NULL"); } //--------------- compare--------------------------------------------------------------------------------------- static int Bone_compare (BPy_Bone * a, BPy_Bone * b) { Bone *pa = a->bone, *pb = b->bone; return (pa == pb) ? 0 : -1; } //--------------- Bone_CreatePyObject-------------------------------------------------------------------- PyObject * Bone_CreatePyObject (struct Bone * bone) { BPy_Bone *blen_bone; blen_bone = (BPy_Bone *) PyObject_NEW (BPy_Bone, &Bone_Type); //set the all important Bone flag blen_bone->bone = bone; //allocate space for python vars blen_bone->name= PyMem_Malloc (32 + 1); blen_bone->parent =PyMem_Malloc (32 + 1); blen_bone->head = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); blen_bone->tail = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); blen_bone->loc = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); blen_bone->dloc = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); blen_bone->size = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); blen_bone->dsize = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); blen_bone->quat = (QuaternionObject*)newQuaternionObject(PyMem_Malloc (4*sizeof (float))); blen_bone->dquat = (QuaternionObject*)newQuaternionObject(PyMem_Malloc (4*sizeof (float))); blen_bone->obmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4); blen_bone->parmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4); blen_bone->defmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4); blen_bone->irestmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4); blen_bone->posemat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4); if(!updatePyBone(blen_bone)) return EXPP_ReturnPyObjError (PyExc_AttributeError , "bone struct empty"); return ((PyObject *) blen_bone); } //--------------- Bone_CheckPyObject-------------------------------------------------------------------- int Bone_CheckPyObject (PyObject * py_obj) { return (py_obj->ob_type == &Bone_Type); } //--------------- Bone_FromPyObject-------------------------------------------------------------------- struct Bone * Bone_FromPyObject (PyObject * py_obj) { BPy_Bone *blen_obj; blen_obj = (BPy_Bone *) py_obj; if (!((BPy_Bone*)py_obj)->bone) { //test to see if linked to armature //use python vars return NULL; }else{ //use bone datastruct return (blen_obj->bone); } } //--------------- Python Bone Module methods------------------------------------------------------------------ //--------------- Blender.Armature.Bone.New()----------------------------------------------------------------- static PyObject * M_Bone_New (PyObject * self, PyObject * args) { char *name_str = "BoneName"; char *parent_str = ""; BPy_Bone *py_bone = NULL; /* for Bone Data object wrapper in Python */ if (!PyArg_ParseTuple (args, "|s", &name_str)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected string or empty argument")); //create python bone py_bone = (BPy_Bone *) PyObject_NEW (BPy_Bone, &Bone_Type); //allocate space for python vars py_bone->name= PyMem_Malloc (32 + 1); py_bone->parent =PyMem_Malloc (32 + 1); py_bone->head = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); py_bone->tail = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); py_bone->loc = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); py_bone->dloc = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); py_bone->size = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); py_bone->dsize = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); py_bone->quat = (QuaternionObject*)newQuaternionObject(PyMem_Malloc (4*sizeof (float))); py_bone->dquat = (QuaternionObject*)newQuaternionObject(PyMem_Malloc (4*sizeof (float))); py_bone->obmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4); py_bone->parmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4); py_bone->defmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4); py_bone->irestmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4); py_bone->posemat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4); //default py values BLI_strncpy(py_bone->name, name_str, strlen(name_str) + 1); BLI_strncpy(py_bone->parent, parent_str, strlen(parent_str) + 1); py_bone->roll = 0.0f; py_bone->flag = 32; py_bone->boneclass = BONE_SKINNABLE; py_bone->dist = 1.0f; py_bone->weight = 1.0f; Vector_Zero(py_bone->head); Vector_Zero(py_bone->loc); Vector_Zero(py_bone->dloc); Vector_Zero(py_bone->size); Vector_Zero(py_bone->dsize); Quaternion_Identity(py_bone->quat); Quaternion_Identity(py_bone->dquat); Matrix_Identity(py_bone->obmat); Matrix_Identity(py_bone->parmat); Matrix_Identity(py_bone->defmat); Matrix_Identity(py_bone->irestmat); Matrix_Identity(py_bone->posemat); //default tail of 2,0,0 py_bone->tail->vec[0] = 2.0f; py_bone->tail->vec[1] = 0.0f; py_bone->tail->vec[2] = 0.0f; //set the datapointer to null (unlinked) py_bone->bone = NULL; return (PyObject *) py_bone; } //--------------- Python BPy_Bone methods------------------------------------------------------------------ //--------------- BPy_Bone.getName()-------------------------------------------------------------------------- static PyObject * Bone_getName (BPy_Bone * self) { PyObject *attr = NULL; if (!self->bone) { //test to see if linked to armature //use python vars attr = PyString_FromString (self->name); }else{ //use bone datastruct attr = PyString_FromString (self->bone->name); } if (attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Bone.name attribute")); } //--------------- BPy_Bone.getRoll()------------------------------------------------------------------------------ static PyObject * Bone_getRoll (BPy_Bone * self) { PyObject *attr = NULL; if (!self->bone) { //test to see if linked to armature //use python vars attr = Py_BuildValue ("f", self->roll); }else{ //use bone datastruct attr = Py_BuildValue ("f", self->bone->roll); } if (attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Bone.roll attribute")); } //--------------- BPy_Bone.getWeight()---------------------------------------------------------------------------- static PyObject * Bone_getWeight (BPy_Bone * self) { PyObject *attr = NULL; if (!self->bone) { //test to see if linked to armature //use python vars attr = Py_BuildValue ("f", self->weight); }else{ //use bone datastruct attr = Py_BuildValue ("f", self->bone->weight); } if (attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Bone.weight attribute")); } //--------------- BPy_Bone.getHead()-------------------------------------------------------------------------- static PyObject * Bone_getHead (BPy_Bone * self) { PyObject *attr = NULL; float *vec; int x; if (!self->bone) { //test to see if linked to armature //use python vars vec = PyMem_Malloc(3 * sizeof(float)); for(x = 0; x < 3; x++) vec[x] = self->head->vec[x]; attr = (PyObject *)newVectorObject(vec, 3); }else{ //use bone datastruct attr = newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); ((VectorObject*)attr)->vec[0] = self->bone->head[0]; ((VectorObject*)attr)->vec[1] = self->bone->head[1]; ((VectorObject*)attr)->vec[2] = self->bone->head[2]; } if (attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Bone.head attribute")); } //--------------- BPy_Bone.getTail()-------------------------------------------------------------------------- static PyObject * Bone_getTail (BPy_Bone * self) { PyObject *attr = NULL; float *vec; int x; if (!self->bone) { //test to see if linked to armature //use python vars vec = PyMem_Malloc(3 * sizeof(float)); for(x = 0; x < 3; x++) vec[x] = self->tail->vec[x]; attr = (PyObject *)newVectorObject(vec, 3); }else{ //use bone datastruct attr = newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); ((VectorObject*)attr)->vec[0] = self->bone->tail[0]; ((VectorObject*)attr)->vec[1] = self->bone->tail[1]; ((VectorObject*)attr)->vec[2] = self->bone->tail[2]; } if (attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Bone.tail attribute")); } //--------------- BPy_Bone.getLoc()---------------------------------------------------------------------------- static PyObject * Bone_getLoc (BPy_Bone * self) { PyObject *attr = NULL; float *vec; int x; if (!self->bone) { //test to see if linked to armature //use python vars vec = PyMem_Malloc(3 * sizeof(float)); for(x = 0; x < 3; x++) vec[x] = self->loc->vec[x]; attr = (PyObject *)newVectorObject(vec, 3); }else{ //use bone datastruct attr = newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); ((VectorObject*)attr)->vec[0] = self->bone->loc[0]; ((VectorObject*)attr)->vec[1] = self->bone->loc[1]; ((VectorObject*)attr)->vec[2] = self->bone->loc[2]; } if (attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Bone.loc attribute")); } //--------------- BPy_Bone.getSize()---------------------------------------------------------------------------- static PyObject * Bone_getSize (BPy_Bone * self) { PyObject *attr = NULL; float *vec; int x; if (!self->bone) { //test to see if linked to armature //use python vars vec = PyMem_Malloc(3 * sizeof(float)); for(x = 0; x < 3; x++) vec[x] = self->size->vec[x]; attr = (PyObject *)newVectorObject(vec, 3); }else{ //use bone datastruct attr = newVectorObject(PyMem_Malloc (3*sizeof (float)), 3); ((VectorObject*)attr)->vec[0] = self->bone->size[0]; ((VectorObject*)attr)->vec[1] = self->bone->size[1]; ((VectorObject*)attr)->vec[2] = self->bone->size[2]; } if (attr) return attr; return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't get Bone.size attribute")); } //--------------- BPy_Bone.getQuat()---------------------------------------------------------------------------- static PyObject * Bone_getQuat (BPy_Bone * self) { PyObject *attr = NULL; float *quat; int x; if (!self->bone) { //test to see if linked to armature //use python vars - p.s. - you must return a copy or else //python will trash the internal var quat = PyMem_Malloc(4 * sizeof(float)); for(x = 0; x < 4; x++) quat[x] = self->quat->quat[x]; attr = (PyObject *)newQuaternionObject(quat); }else{ //use bone datastruct attr = newQuaternionObject(PyMem_Malloc (4*sizeof (float))); ((QuaternionObject*)attr)->quat[0] = self->bone->quat[0]; ((QuaternionObject*)attr)->quat[1] = self->bone->quat[1]; ((QuaternionObject*)attr)->quat[2] = self->bone->quat[2]; ((QuaternionObject*)attr)->quat[3] = self->bone->quat[3]; } return attr; } //--------------- BPy_Bone.hasParent()-------------------------------------------------------------------------- static PyObject * Bone_hasParent (BPy_Bone * self) { char * parent_str = ""; if (!self->bone) { //test to see if linked to armature //use python vars if (BLI_streq(self->parent, parent_str)) { Py_INCREF (Py_False); return Py_False; }else{ Py_INCREF (Py_True); return Py_True; } }else{ //use bone datastruct if (self->bone->parent) { Py_INCREF (Py_True); return Py_True; }else{ Py_INCREF (Py_False); return Py_False; } } } //--------------- BPy_Bone.getParent()-------------------------------------------------------------------------- static PyObject * Bone_getParent (BPy_Bone * self) { char * parent_str = ""; if (!self->bone) { //test to see if linked to armature //use python vars if (BLI_streq(self->parent, parent_str)) { return EXPP_incr_ret (Py_None); }else{ return PyString_FromString(self->parent); } }else{ //use bone datastruct if (self->bone->parent) { return Bone_CreatePyObject (self->bone->parent); }else{ return EXPP_incr_ret (Py_None); } } } //--------------- BPy_Bone.getChildren()-------------------------------------------------------------------------- static PyObject * Bone_getChildren (BPy_Bone * self) { int totbones = 0; Bone *current = NULL; PyObject *listbones = NULL; int i; if (!self->bone) { //test to see if linked to armature //use python vars return EXPP_incr_ret (Py_None); }else{ //use bone datastruct current = self->bone->childbase.first; for (; current; current = current->next) totbones++; /* Create a list with a bone wrapper for each bone */ current = self->bone->childbase.first; listbones = PyList_New (totbones); for (i = 0; i < totbones; i++){ assert (current); PyList_SetItem (listbones, i, Bone_CreatePyObject (current)); current = current->next; } return listbones; } } //--------------- BPy_Bone.setName()-------------------------------------------------------------------------- static PyObject * Bone_setName (BPy_Bone * self, PyObject * args) { char *name; if (!PyArg_ParseTuple (args, "s", &name)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected string argument")); if (!self->bone) { //test to see if linked to armature //use python vars BLI_strncpy(self->name, name, strlen(name) + 1); }else{ //use bone datastruct BLI_strncpy(self->bone->name, name, strlen(name) + 1); } return EXPP_incr_ret (Py_None); } //--------------- BPy_Bone.setRoll()-------------------------------------------------------------------------- PyObject * Bone_setRoll (BPy_Bone * self, PyObject * args) { float roll; if (!PyArg_ParseTuple (args, "f", &roll)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected float argument")); if (!self->bone) { //test to see if linked to armature //use python vars self->roll = roll; }else{ //use bone datastruct self->bone->roll = roll; } return EXPP_incr_ret (Py_None); } //--------------- BPy_Bone.setHead()-------------------------------------------------------------------------- static PyObject * Bone_setHead (BPy_Bone * self, PyObject * args) { float f1, f2, f3; int status; if (PyObject_Length (args) == 3) status = PyArg_ParseTuple (args, "fff", &f1, &f2, &f3); else status = PyArg_ParseTuple (args, "(fff)", &f1, &f2, &f3); if (!status) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected 3 (or a list of 3) float arguments")); if (!self->bone) { //test to see if linked to armature //use python vars self->head->vec[0] = f1; self->head->vec[1] = f2; self->head->vec[2] = f3; }else{ //use bone datastruct self->bone->head[0] = f1; self->bone->head[1] = f2; self->bone->head[2] = f3; } return EXPP_incr_ret (Py_None); } //--------------- BPy_Bone.setTail()-------------------------------------------------------------------------- static PyObject * Bone_setTail (BPy_Bone * self, PyObject * args) { float f1, f2, f3; int status; if (PyObject_Length (args) == 3) status = PyArg_ParseTuple (args, "fff", &f1, &f2, &f3); else status = PyArg_ParseTuple (args, "(fff)", &f1, &f2, &f3); if (!status) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected 3 (or a list of 3) float arguments")); if (!self->bone) { //test to see if linked to armature //use python vars self->tail->vec[0] = f1; self->tail->vec[1] = f2; self->tail->vec[2] = f3; }else{ //use bone datastruct self->bone->tail[0] = f1; self->bone->tail[1] = f2; self->bone->tail[2] = f3; } return EXPP_incr_ret (Py_None); } //--------------- BPy_Bone.setLoc()-------------------------------------------------------------------------- static PyObject * Bone_setLoc (BPy_Bone * self, PyObject * args) { float f1, f2, f3; int status; if (PyObject_Length (args) == 3) status = PyArg_ParseTuple (args, "fff", &f1, &f2, &f3); else status = PyArg_ParseTuple (args, "(fff)", &f1, &f2, &f3); if (!status) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected 3 (or a list of 3) float arguments")); if (!self->bone) { //test to see if linked to armature //use python vars self->loc->vec[0] = f1; self->loc->vec[1] = f2; self->loc->vec[2] = f3; }else{ //use bone datastruct self->bone->loc[0] = f1; self->bone->loc[1] = f2; self->bone->loc[2] = f3; } return EXPP_incr_ret (Py_None); } //--------------- BPy_Bone.setSize()-------------------------------------------------------------------------- static PyObject * Bone_setSize (BPy_Bone * self, PyObject * args) { float f1, f2, f3; int status; if (PyObject_Length (args) == 3) status = PyArg_ParseTuple (args, "fff", &f1, &f2, &f3); else status = PyArg_ParseTuple (args, "(fff)", &f1, &f2, &f3); if (!status) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected 3 (or a list of 3) float arguments")); if (!self->bone) { //test to see if linked to armature //use python vars self->size->vec[0] = f1; self->size->vec[1] = f2; self->size->vec[2] = f3; }else{ //use bone datastruct self->bone->size[0] = f1; self->bone->size[1] = f2; self->bone->size[2] = f3; } return EXPP_incr_ret (Py_None); } //--------------- BPy_Bone.setQuat()-------------------------------------------------------------------------- static PyObject * Bone_setQuat (BPy_Bone * self, PyObject * args) { float f1, f2, f3, f4; PyObject *argument; QuaternionObject *quatOb; int status; if (!PyArg_ParseTuple(args, "O", &argument)) return (EXPP_ReturnPyObjError (PyExc_TypeError, "expected quaternion or float list")); if(QuaternionObject_Check(argument)){ status = PyArg_ParseTuple(args, "O!", &quaternion_Type, &quatOb); f1 = quatOb->quat[0]; f2 = quatOb->quat[1]; f3 = quatOb->quat[2]; f4 = quatOb->quat[3]; }else{ status = PyArg_ParseTuple (args, "(ffff)", &f1, &f2, &f3, &f4); } if (!status) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "unable to parse argument")); if (!self->bone) { //test to see if linked to armature //use python vars self->quat->quat[0] = f1; self->quat->quat[1] = f2; self->quat->quat[2] = f3; self->quat->quat[3] = f4; }else{ //use bone datastruct self->bone->quat[0] = f1; self->bone->quat[1] = f2; self->bone->quat[2] = f3; self->bone->quat[3] = f4; } return EXPP_incr_ret (Py_None); } //--------------- BPy_Bone.setParent()------------------------------------------------------------------------- static PyObject * Bone_setParent(BPy_Bone *self, PyObject *args) { BPy_Bone* py_bone; float M_boneObjectspace[4][4]; float iM_parentRest[4][4]; if (!PyArg_ParseTuple(args, "O", &py_bone)) return (EXPP_ReturnPyObjError (PyExc_TypeError, "expected bone object argument")); if (!self->bone) { //test to see if linked to armature //use python vars BLI_strncpy(self->parent, py_bone->name, strlen(py_bone->name) + 1); }else{ //use bone datastruct if(!py_bone->bone) return (EXPP_ReturnPyObjError (PyExc_TypeError, "Parent bone must be linked to armature first!")); if(py_bone->bone == self->bone) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "Cannot parent to self")); //test to see if were creating an illegal loop by parenting to child if(testChildbase(self->bone, py_bone->bone)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "Cannot parent to child")); //set the parent of self - in this case we are changing the parenting after this bone //has been linked in it's armature if(self->bone->parent){ //we are parenting something previously parented //remove the childbase link from the parent bone BLI_remlink(&self->bone->parent->childbase, self->bone); //now get rid of the parent transformation get_objectspace_bone_matrix(self->bone->parent, M_boneObjectspace, 0,0); Mat4MulVecfl(M_boneObjectspace, self->bone->head); Mat4MulVecfl(M_boneObjectspace, self->bone->tail); //add to the childbase of new parent BLI_addtail (&py_bone->bone->childbase, self->bone); //transform bone according to new parent get_objectspace_bone_matrix(py_bone->bone, M_boneObjectspace, 0,0); Mat4Invert (iM_parentRest, M_boneObjectspace); Mat4MulVecfl(iM_parentRest, self->bone->head); Mat4MulVecfl(iM_parentRest, self->bone->tail); //set parent self->bone->parent = py_bone->bone; }else{ //not previously parented //add to the childbase of new parent BLI_addtail (&py_bone->bone->childbase, self->bone); //transform bone according to new parent get_objectspace_bone_matrix(py_bone->bone, M_boneObjectspace, 0,0); Mat4Invert (iM_parentRest, M_boneObjectspace); Mat4MulVecfl(iM_parentRest, self->bone->head); Mat4MulVecfl(iM_parentRest, self->bone->tail); self->bone->parent = py_bone->bone; } } return EXPP_incr_ret (Py_None); } //--------------- BPy_Bone.setWeight()------------------------------------------------------------------------- static PyObject * Bone_setWeight(BPy_Bone *self, PyObject *args) { float weight; if (!PyArg_ParseTuple (args, "f", &weight)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected float argument")); if (!self->bone) { //test to see if linked to armature //use python vars self->weight = weight; }else{ //use bone datastruct self->bone->weight = weight; } return EXPP_incr_ret (Py_None); } //--------------- BPy_Bone.clearParent()------------------------------------------------------------------------- static PyObject * Bone_clearParent(BPy_Bone *self) { bArmature *arm = NULL; Bone *bone = NULL; Bone *parent = NULL; Bone *child = NULL; Bone *childPrev = NULL; int firstChild; float M_boneObjectspace[4][4]; char *parent_str = ""; if (!self->bone) { //test to see if linked to armature //use python vars BLI_strncpy(self->parent, parent_str, strlen(parent_str) + 1); }else{ //use bone datastruct if(self->bone->parent == NULL) return EXPP_incr_ret(Py_None); //get parent and remove link parent = self->bone->parent; self->bone->parent = NULL; //remove the childbase link from the parent bone firstChild = 1; for(child = parent->childbase.first; child; child = child->next){ if(child == self->bone && firstChild){ parent->childbase.first = child->next; child->next = NULL; break; } if(child == self->bone && !firstChild){ childPrev->next = child->next; child->next = NULL; break; } firstChild = 0; childPrev = child; } //now get rid of the parent transformation get_objectspace_bone_matrix(parent, M_boneObjectspace, 0,0); //transformation of local bone Mat4MulVecfl(M_boneObjectspace, self->bone->head); Mat4MulVecfl(M_boneObjectspace, self->bone->tail); //get the root bone while(parent->parent != NULL){ parent = parent->parent; } //add unlinked bone to the bonebase of the armature for (arm = G.main->armature.first; arm; arm= arm->id.next) { for(bone = arm->bonebase.first; bone; bone = bone->next){ if(parent == bone){ //we found the correct armature - now add it as root bone BLI_addtail (&arm->bonebase, self->bone); break; } } } } return EXPP_incr_ret (Py_None); } //--------------- BPy_Bone.clearChildren()------------------------------------------------------------------------- static PyObject * Bone_clearChildren(BPy_Bone *self) { Bone *root = NULL; Bone *child = NULL; bArmature *arm = NULL; Bone *bone = NULL; Bone *prev = NULL; Bone *next = NULL; float M_boneObjectspace[4][4]; int first; if (!self->bone) { //test to see if linked to armature //use python vars return EXPP_incr_ret (Py_None); }else{ //use bone datastruct if(self->bone->childbase.first == NULL) return EXPP_incr_ret(Py_None); //is this bone a part of an armature.... //get root bone for testing root = self->bone->parent; if(root != NULL){ while (root->parent != NULL){ root = root->parent; } }else{ root = self->bone; } //test armatures for root bone for(arm= G.main->armature.first; arm; arm = arm->id.next){ for(bone = arm->bonebase.first; bone; bone = bone->next){ if(bone == root) break; } if(bone == root) break; } if(arm == NULL) return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't find armature that contains this bone")); //now get rid of the parent transformation get_objectspace_bone_matrix(self->bone, M_boneObjectspace, 0,0); //set children as root first = 1; for(child = self->bone->childbase.first; child; child = next){ //undo transformation of local bone Mat4MulVecfl(M_boneObjectspace, child->head); Mat4MulVecfl(M_boneObjectspace, child->tail); //set next pointers to NULL if(first){ prev = child; first = 0; }else{ prev->next = NULL; prev = child; } next = child->next; //remove parenting and linking child->parent = NULL; BLI_remlink(&self->bone->childbase, child); //add as root BLI_addtail (&arm->bonebase, child); } } Py_INCREF(Py_None); return Py_None; } //--------------- BPy_Bone.hide()--------------------------------------------------------------------------------- static PyObject * Bone_hide(BPy_Bone *self) { if (!self->bone) { //test to see if linked to armature //use python vars return EXPP_ReturnPyObjError (PyExc_TypeError, "link bone to armature before attempting to hide/unhide"); }else{ //use bone datastruct if(!(self->bone->flag & BONE_HIDDEN)) self->bone->flag |= BONE_HIDDEN; } return EXPP_incr_ret (Py_None); } //--------------- BPy_Bone.unhide()--------------------------------------------------------------------------------- static PyObject * Bone_unhide(BPy_Bone *self) { if (!self->bone) { //test to see if linked to armature //use python vars return EXPP_ReturnPyObjError (PyExc_TypeError, "link bone to armature before attempting to hide/unhide"); }else{ //use bone datastruct if(self->bone->flag & BONE_HIDDEN) self->bone->flag &= ~BONE_HIDDEN; } return EXPP_incr_ret (Py_None); } //--------------- BPy_Bone.setPose()----------------------------------------------------------------------------------- static PyObject * Bone_setPose (BPy_Bone *self, PyObject *args) { Bone *root = NULL; bPoseChannel *chan = NULL; bPoseChannel *setChan = NULL; bPoseChannel *test = NULL; Object *object =NULL; bArmature *arm = NULL; Bone *bone = NULL; PyObject *flaglist = NULL; PyObject *item = NULL; BPy_Action *py_action = NULL; int x; int flagValue = 0; int makeCurve = 1; if (!self->bone) { //test to see if linked to armature //use python vars return EXPP_ReturnPyObjError (PyExc_TypeError, "cannot set pose unless bone is linked to armature"); }else{ //use bone datastruct if (!PyArg_ParseTuple (args, "O!|O!", &PyList_Type, &flaglist, &Action_Type, &py_action)) return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected list of flags and optional action")); for(x = 0; x < PyList_Size(flaglist); x++){ item = PyList_GetItem(flaglist, x); if(PyInt_Check(item)){ flagValue |= PyInt_AsLong(item); }else{ return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected list of flags (ints)")); } } //is this bone a part of an armature.... //get root bone for testing root = self->bone->parent; if(root != NULL){ while (root->parent != NULL){ root = root->parent; } }else{ root = self->bone; } //test armatures for root bone for(arm= G.main->armature.first; arm; arm = arm->id.next){ for(bone = arm->bonebase.first; bone; bone = bone->next){ if(bone == root) break; } if(bone == root) break; } if(arm == NULL) return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "bone must belong to an armature to set it's pose!")); //find if armature is object linked.... for(object = G.main->object.first; object; object = object->id.next){ if(object->data == arm){ break; } } if(object == NULL) return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "armature must be linked to an object to set a pose!")); //set the active action as this one if(py_action !=NULL){ if(py_action->action != NULL){ object->action = py_action->action; } } //if object doesn't have a pose create one if (!object->pose) object->pose = MEM_callocN(sizeof(bPose), "Pose"); //if bone does have a channel create one verify_pose_channel(object->pose, self->bone->name); //create temp Pose Channel chan = MEM_callocN(sizeof(bPoseChannel), "PoseChannel"); //set the variables for this pose memcpy (chan->loc, self->bone->loc, sizeof (chan->loc)); memcpy (chan->quat, self->bone->quat, sizeof (chan->quat)); memcpy (chan->size, self->bone->size, sizeof (chan->size)); strcpy (chan->name, self->bone->name); chan->flag |= flagValue; //set it to the channel setChan = set_pose_channel(object->pose, chan); //frees unlinked pose/bone channels from object collect_pose_garbage(object); //create an action if one not already assigned to object if (!py_action && !object->action){ object->action = (bAction*)add_empty_action(); object->ipowin= ID_AC; }else{ //test if posechannel is already in action for(test = object->action->chanbase.first; test; test = test->next){ if(test == setChan) makeCurve = 0; //already there } } //set action keys if (setChan->flag & POSE_ROT){ set_action_key(object->action, setChan, AC_QUAT_X, makeCurve); set_action_key(object->action, setChan, AC_QUAT_Y, makeCurve); set_action_key(object->action, setChan, AC_QUAT_Z, makeCurve); set_action_key(object->action, setChan, AC_QUAT_W, makeCurve); } if (setChan->flag & POSE_SIZE){ set_action_key(object->action, setChan, AC_SIZE_X, makeCurve); set_action_key(object->action, setChan, AC_SIZE_Y, makeCurve); set_action_key(object->action, setChan, AC_SIZE_Z, makeCurve); } if (setChan->flag & POSE_LOC){ set_action_key(object->action, setChan, AC_LOC_X, makeCurve); set_action_key(object->action, setChan, AC_LOC_Y, makeCurve); set_action_key(object->action, setChan, AC_LOC_Z, makeCurve); } //rebuild ipos remake_action_ipos(object->action); //rebuild displists rebuild_all_armature_displists(); } return EXPP_incr_ret (Py_None); }