This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/compositor/intern/COM_ExecutionGroup.cpp
Lukas Tönne 09874df135 Structural cleanup and improvements for the compositor.
Many parts of the compositor are unnecessarily complicated. This patch
aims at reducing the complexity of writing nodes and making the code
more transparent.

== Separating Nodes and Operations ==

Currently these are both mixed in the same graph, even though they have
very different purposes and are used at distinct stages in the
compositing process. The patch introduces dedicated graph classes for
nodes and for operations.

This removes the need for a lot of special case checks (isOperation etc.)
and explicit type casts. It simplifies the code since it becomes clear
at every stage what type of node we are dealing with. The compiler can
use static typing to avoid common bugs from mixing up these types and
fewer runtime sanity checks are needed.

== Simplified Node Conversion ==

Converting nodes to operations was previously based on "relinking", i.e.
nodes would start with by mirroring links in the Blender DNA node trees,
then add operations and redirect these links to them. This was very hard
to follow in many cases and required a lot of attention to avoid invalid
states.

Now there is a helper class called the NodeConverter, which is passed to
nodes and implements a much simpler API for this process. Nodes can add
operations and explicit connections as before, but defining "external"
links to the inputs/outputs of the original node now uses mapping
instead of directly modifying link data. Input data (node graph) and
result (operations graph) are cleanly separated.

== Removed Redundant Data Structures ==

A few redundant data structures have been removed, notably the
SocketConnection. These are only needed temporarily during graph
construction. For executing the compositor operations it is perfectly
sufficient to store only the direct input link pointers. A common
pointer indirection is avoided this way (which might also give a little
performance improvement).

== Avoid virtual recursive functions ==

Recursive virtual functions are evil. They are very hard to follow
during debugging. At least in the parts this patch is concerned with
these functions have been replaced by a non-virtual recursive core
function (which might then call virtual non-recursive functions if
needed). See for example NodeOperationBuilder::group_operations.
2014-04-15 16:28:10 +02:00

629 lines
20 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor:
* Jeroen Bakker
* Monique Dewanchand
*/
#include <algorithm>
#include <math.h>
#include <sstream>
#include <stdlib.h>
#include "COM_ExecutionGroup.h"
#include "COM_defines.h"
#include "COM_ExecutionSystem.h"
#include "COM_ReadBufferOperation.h"
#include "COM_WriteBufferOperation.h"
#include "COM_ReadBufferOperation.h"
#include "COM_WorkScheduler.h"
#include "COM_ViewerOperation.h"
#include "COM_ChunkOrder.h"
#include "COM_Debug.h"
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_string.h"
#include "BKE_global.h"
#include "PIL_time.h"
#include "WM_api.h"
#include "WM_types.h"
ExecutionGroup::ExecutionGroup()
{
this->m_isOutput = false;
this->m_complex = false;
this->m_chunkExecutionStates = NULL;
this->m_bTree = NULL;
this->m_height = 0;
this->m_width = 0;
this->m_cachedMaxReadBufferOffset = 0;
this->m_numberOfXChunks = 0;
this->m_numberOfYChunks = 0;
this->m_numberOfChunks = 0;
this->m_initialized = false;
this->m_openCL = false;
this->m_singleThreaded = false;
this->m_chunksFinished = 0;
BLI_rcti_init(&this->m_viewerBorder, 0, 0, 0, 0);
this->m_executionStartTime = 0;
}
CompositorPriority ExecutionGroup::getRenderPriotrity()
{
return this->getOutputOperation()->getRenderPriority();
}
bool ExecutionGroup::canContainOperation(NodeOperation *operation)
{
if (!this->m_initialized) { return true; }
if (operation->isReadBufferOperation()) { return true; }
if (operation->isWriteBufferOperation()) { return false; }
if (operation->isSetOperation()) { return true; }
/* complex groups don't allow further ops (except read buffer and values, see above) */
if (m_complex) { return false; }
/* complex ops can't be added to other groups (except their own, which they initialize, see above) */
if (operation->isComplex()) { return false; }
return true;
}
bool ExecutionGroup::addOperation(NodeOperation *operation)
{
if (!canContainOperation(operation))
return false;
if (!operation->isReadBufferOperation() && !operation->isWriteBufferOperation()) {
m_complex = operation->isComplex();
m_openCL = operation->isOpenCL();
m_singleThreaded = operation->isSingleThreaded();
m_initialized = true;
}
m_operations.push_back(operation);
return true;
}
NodeOperation *ExecutionGroup::getOutputOperation() const
{
return this->m_operations[0]; // the first operation of the group is always the output operation.
}
void ExecutionGroup::initExecution()
{
if (this->m_chunkExecutionStates != NULL) {
MEM_freeN(this->m_chunkExecutionStates);
}
unsigned int index;
determineNumberOfChunks();
this->m_chunkExecutionStates = NULL;
if (this->m_numberOfChunks != 0) {
this->m_chunkExecutionStates = (ChunkExecutionState *)MEM_mallocN(sizeof(ChunkExecutionState) * this->m_numberOfChunks, __func__);
for (index = 0; index < this->m_numberOfChunks; index++) {
this->m_chunkExecutionStates[index] = COM_ES_NOT_SCHEDULED;
}
}
unsigned int maxNumber = 0;
for (index = 0; index < this->m_operations.size(); index++) {
NodeOperation *operation = this->m_operations[index];
if (operation->isReadBufferOperation()) {
ReadBufferOperation *readOperation = (ReadBufferOperation *)operation;
this->m_cachedReadOperations.push_back(readOperation);
maxNumber = max(maxNumber, readOperation->getOffset());
}
}
maxNumber++;
this->m_cachedMaxReadBufferOffset = maxNumber;
}
void ExecutionGroup::deinitExecution()
{
if (this->m_chunkExecutionStates != NULL) {
MEM_freeN(this->m_chunkExecutionStates);
this->m_chunkExecutionStates = NULL;
}
this->m_numberOfChunks = 0;
this->m_numberOfXChunks = 0;
this->m_numberOfYChunks = 0;
this->m_cachedReadOperations.clear();
this->m_bTree = NULL;
}
void ExecutionGroup::determineResolution(unsigned int resolution[2])
{
NodeOperation *operation = this->getOutputOperation();
resolution[0] = operation->getWidth();
resolution[1] = operation->getHeight();
this->setResolution(resolution);
BLI_rcti_init(&this->m_viewerBorder, 0, this->m_width, 0, this->m_height);
}
void ExecutionGroup::determineNumberOfChunks()
{
if (this->m_singleThreaded) {
this->m_numberOfXChunks = 1;
this->m_numberOfYChunks = 1;
this->m_numberOfChunks = 1;
}
else {
const float chunkSizef = this->m_chunkSize;
const int border_width = BLI_rcti_size_x(&this->m_viewerBorder);
const int border_height = BLI_rcti_size_y(&this->m_viewerBorder);
this->m_numberOfXChunks = ceil(border_width / chunkSizef);
this->m_numberOfYChunks = ceil(border_height / chunkSizef);
this->m_numberOfChunks = this->m_numberOfXChunks * this->m_numberOfYChunks;
}
}
/**
* this method is called for the top execution groups. containing the compositor node or the preview node or the viewer node)
*/
void ExecutionGroup::execute(ExecutionSystem *graph)
{
const CompositorContext &context = graph->getContext();
const bNodeTree *bTree = context.getbNodeTree();
if (this->m_width == 0 || this->m_height == 0) {return; } /// @note: break out... no pixels to calculate.
if (bTree->test_break && bTree->test_break(bTree->tbh)) {return; } /// @note: early break out for blur and preview nodes
if (this->m_numberOfChunks == 0) {return; } /// @note: early break out
unsigned int chunkNumber;
this->m_executionStartTime = PIL_check_seconds_timer();
this->m_chunksFinished = 0;
this->m_bTree = bTree;
unsigned int index;
unsigned int *chunkOrder = (unsigned int *)MEM_mallocN(sizeof(unsigned int) * this->m_numberOfChunks, __func__);
for (chunkNumber = 0; chunkNumber < this->m_numberOfChunks; chunkNumber++) {
chunkOrder[chunkNumber] = chunkNumber;
}
NodeOperation *operation = this->getOutputOperation();
float centerX = 0.5;
float centerY = 0.5;
OrderOfChunks chunkorder = COM_ORDER_OF_CHUNKS_DEFAULT;
if (operation->isViewerOperation()) {
ViewerOperation *viewer = (ViewerOperation *)operation;
centerX = viewer->getCenterX();
centerY = viewer->getCenterY();
chunkorder = viewer->getChunkOrder();
}
const int border_width = BLI_rcti_size_x(&this->m_viewerBorder);
const int border_height = BLI_rcti_size_y(&this->m_viewerBorder);
switch (chunkorder) {
case COM_TO_RANDOM:
for (index = 0; index < 2 * this->m_numberOfChunks; index++) {
int index1 = rand() % this->m_numberOfChunks;
int index2 = rand() % this->m_numberOfChunks;
int s = chunkOrder[index1];
chunkOrder[index1] = chunkOrder[index2];
chunkOrder[index2] = s;
}
break;
case COM_TO_CENTER_OUT:
{
ChunkOrderHotspot *hotspots[1];
hotspots[0] = new ChunkOrderHotspot(border_width * centerX, border_height * centerY, 0.0f);
rcti rect;
ChunkOrder *chunkOrders = (ChunkOrder *)MEM_mallocN(sizeof(ChunkOrder) * this->m_numberOfChunks, __func__);
for (index = 0; index < this->m_numberOfChunks; index++) {
determineChunkRect(&rect, index);
chunkOrders[index].setChunkNumber(index);
chunkOrders[index].setX(rect.xmin - this->m_viewerBorder.xmin);
chunkOrders[index].setY(rect.ymin - this->m_viewerBorder.ymin);
chunkOrders[index].determineDistance(hotspots, 1);
}
sort(&chunkOrders[0], &chunkOrders[this->m_numberOfChunks - 1]);
for (index = 0; index < this->m_numberOfChunks; index++) {
chunkOrder[index] = chunkOrders[index].getChunkNumber();
}
delete hotspots[0];
MEM_freeN(chunkOrders);
break;
}
case COM_TO_RULE_OF_THIRDS:
{
ChunkOrderHotspot *hotspots[9];
unsigned int tx = border_width / 6;
unsigned int ty = border_height / 6;
unsigned int mx = border_width / 2;
unsigned int my = border_height / 2;
unsigned int bx = mx + 2 * tx;
unsigned int by = my + 2 * ty;
float addition = this->m_numberOfChunks / COM_RULE_OF_THIRDS_DIVIDER;
hotspots[0] = new ChunkOrderHotspot(mx, my, addition * 0);
hotspots[1] = new ChunkOrderHotspot(tx, my, addition * 1);
hotspots[2] = new ChunkOrderHotspot(bx, my, addition * 2);
hotspots[3] = new ChunkOrderHotspot(bx, by, addition * 3);
hotspots[4] = new ChunkOrderHotspot(tx, ty, addition * 4);
hotspots[5] = new ChunkOrderHotspot(bx, ty, addition * 5);
hotspots[6] = new ChunkOrderHotspot(tx, by, addition * 6);
hotspots[7] = new ChunkOrderHotspot(mx, ty, addition * 7);
hotspots[8] = new ChunkOrderHotspot(mx, by, addition * 8);
rcti rect;
ChunkOrder *chunkOrders = (ChunkOrder *)MEM_mallocN(sizeof(ChunkOrder) * this->m_numberOfChunks, __func__);
for (index = 0; index < this->m_numberOfChunks; index++) {
determineChunkRect(&rect, index);
chunkOrders[index].setChunkNumber(index);
chunkOrders[index].setX(rect.xmin - this->m_viewerBorder.xmin);
chunkOrders[index].setY(rect.ymin - this->m_viewerBorder.ymin);
chunkOrders[index].determineDistance(hotspots, 9);
}
sort(&chunkOrders[0], &chunkOrders[this->m_numberOfChunks]);
for (index = 0; index < this->m_numberOfChunks; index++) {
chunkOrder[index] = chunkOrders[index].getChunkNumber();
}
delete hotspots[0];
delete hotspots[1];
delete hotspots[2];
delete hotspots[3];
delete hotspots[4];
delete hotspots[5];
delete hotspots[6];
delete hotspots[7];
delete hotspots[8];
MEM_freeN(chunkOrders);
break;
}
case COM_TO_TOP_DOWN:
default:
break;
}
DebugInfo::execution_group_started(this);
DebugInfo::graphviz(graph);
bool breaked = false;
bool finished = false;
unsigned int startIndex = 0;
const int maxNumberEvaluated = BLI_system_thread_count() * 2;
while (!finished && !breaked) {
bool startEvaluated = false;
finished = true;
int numberEvaluated = 0;
for (index = startIndex; index < this->m_numberOfChunks && numberEvaluated < maxNumberEvaluated; index++) {
chunkNumber = chunkOrder[index];
int yChunk = chunkNumber / this->m_numberOfXChunks;
int xChunk = chunkNumber - (yChunk * this->m_numberOfXChunks);
const ChunkExecutionState state = this->m_chunkExecutionStates[chunkNumber];
if (state == COM_ES_NOT_SCHEDULED) {
scheduleChunkWhenPossible(graph, xChunk, yChunk);
finished = false;
startEvaluated = true;
numberEvaluated++;
if (bTree->update_draw)
bTree->update_draw(bTree->udh);
}
else if (state == COM_ES_SCHEDULED) {
finished = false;
startEvaluated = true;
numberEvaluated++;
}
else if (state == COM_ES_EXECUTED && !startEvaluated) {
startIndex = index + 1;
}
}
WorkScheduler::finish();
if (bTree->test_break && bTree->test_break(bTree->tbh)) {
breaked = true;
}
}
DebugInfo::execution_group_finished(this);
DebugInfo::graphviz(graph);
MEM_freeN(chunkOrder);
}
MemoryBuffer **ExecutionGroup::getInputBuffersOpenCL(int chunkNumber)
{
rcti rect;
vector<MemoryProxy *> memoryproxies;
unsigned int index;
determineChunkRect(&rect, chunkNumber);
this->determineDependingMemoryProxies(&memoryproxies);
MemoryBuffer **memoryBuffers = (MemoryBuffer **)MEM_callocN(sizeof(MemoryBuffer *) * this->m_cachedMaxReadBufferOffset, __func__);
rcti output;
for (index = 0; index < this->m_cachedReadOperations.size(); index++) {
ReadBufferOperation *readOperation = (ReadBufferOperation *)this->m_cachedReadOperations[index];
MemoryProxy *memoryProxy = readOperation->getMemoryProxy();
this->determineDependingAreaOfInterest(&rect, readOperation, &output);
MemoryBuffer *memoryBuffer = memoryProxy->getExecutor()->constructConsolidatedMemoryBuffer(memoryProxy, &output);
memoryBuffers[readOperation->getOffset()] = memoryBuffer;
}
return memoryBuffers;
}
MemoryBuffer *ExecutionGroup::constructConsolidatedMemoryBuffer(MemoryProxy *memoryProxy, rcti *rect)
{
MemoryBuffer *imageBuffer = memoryProxy->getBuffer();
MemoryBuffer *result = new MemoryBuffer(memoryProxy, rect);
result->copyContentFrom(imageBuffer);
return result;
}
void ExecutionGroup::printBackgroundStats(void)
{
uintptr_t mem_in_use, mmap_in_use, peak_memory;
float megs_used_memory, mmap_used_memory, megs_peak_memory;
double execution_time;
char timestr[64];
execution_time = PIL_check_seconds_timer() - this->m_executionStartTime;
mem_in_use = MEM_get_memory_in_use();
mmap_in_use = MEM_get_mapped_memory_in_use();
peak_memory = MEM_get_peak_memory();
megs_used_memory = (mem_in_use - mmap_in_use) / (1024.0 * 1024.0);
mmap_used_memory = (mmap_in_use) / (1024.0 * 1024.0);
megs_peak_memory = (peak_memory) / (1024.0 * 1024.0);
fprintf(stdout, "Mem:%.2fM (%.2fM, Peak %.2fM) ",
megs_used_memory, mmap_used_memory, megs_peak_memory);
BLI_timestr(execution_time, timestr, sizeof(timestr));
printf("| Elapsed %s ", timestr);
printf("| Tree %s, Tile %d-%d ", this->m_bTree->id.name + 2,
this->m_chunksFinished, this->m_numberOfChunks);
fputc('\n', stdout);
fflush(stdout);
}
void ExecutionGroup::finalizeChunkExecution(int chunkNumber, MemoryBuffer **memoryBuffers)
{
if (this->m_chunkExecutionStates[chunkNumber] == COM_ES_SCHEDULED)
this->m_chunkExecutionStates[chunkNumber] = COM_ES_EXECUTED;
this->m_chunksFinished++;
if (memoryBuffers) {
for (unsigned int index = 0; index < this->m_cachedMaxReadBufferOffset; index++) {
MemoryBuffer *buffer = memoryBuffers[index];
if (buffer) {
if (buffer->isTemporarily()) {
memoryBuffers[index] = NULL;
delete buffer;
}
}
}
MEM_freeN(memoryBuffers);
}
if (this->m_bTree) {
// status report is only performed for top level Execution Groups.
float progress = this->m_chunksFinished;
progress /= this->m_numberOfChunks;
this->m_bTree->progress(this->m_bTree->prh, progress);
if (G.background)
printBackgroundStats();
}
}
inline void ExecutionGroup::determineChunkRect(rcti *rect, const unsigned int xChunk, const unsigned int yChunk) const
{
const int border_width = BLI_rcti_size_x(&this->m_viewerBorder);
const int border_height = BLI_rcti_size_y(&this->m_viewerBorder);
if (this->m_singleThreaded) {
BLI_rcti_init(rect, this->m_viewerBorder.xmin, border_width, this->m_viewerBorder.ymin, border_height);
}
else {
const unsigned int minx = xChunk * this->m_chunkSize + this->m_viewerBorder.xmin;
const unsigned int miny = yChunk * this->m_chunkSize + this->m_viewerBorder.ymin;
const unsigned int width = min((unsigned int) this->m_viewerBorder.xmax, this->m_width);
const unsigned int height = min((unsigned int) this->m_viewerBorder.ymax, this->m_height);
BLI_rcti_init(rect, min(minx, this->m_width), min(minx + this->m_chunkSize, width), min(miny, this->m_height), min(miny + this->m_chunkSize, height));
}
}
void ExecutionGroup::determineChunkRect(rcti *rect, const unsigned int chunkNumber) const
{
const unsigned int yChunk = chunkNumber / this->m_numberOfXChunks;
const unsigned int xChunk = chunkNumber - (yChunk * this->m_numberOfXChunks);
determineChunkRect(rect, xChunk, yChunk);
}
MemoryBuffer *ExecutionGroup::allocateOutputBuffer(int chunkNumber, rcti *rect)
{
// we asume that this method is only called from complex execution groups.
NodeOperation *operation = this->getOutputOperation();
if (operation->isWriteBufferOperation()) {
WriteBufferOperation *writeOperation = (WriteBufferOperation *)operation;
MemoryBuffer *buffer = new MemoryBuffer(writeOperation->getMemoryProxy(), rect);
return buffer;
}
return NULL;
}
bool ExecutionGroup::scheduleAreaWhenPossible(ExecutionSystem *graph, rcti *area)
{
if (this->m_singleThreaded) {
return scheduleChunkWhenPossible(graph, 0, 0);
}
// find all chunks inside the rect
// determine minxchunk, minychunk, maxxchunk, maxychunk where x and y are chunknumbers
int indexx, indexy;
int minx = max_ii(area->xmin - m_viewerBorder.xmin, 0);
int maxx = min_ii(area->xmax - m_viewerBorder.xmin, m_viewerBorder.xmax - m_viewerBorder.xmin);
int miny = max_ii(area->ymin - m_viewerBorder.ymin, 0);
int maxy = min_ii(area->ymax - m_viewerBorder.ymin, m_viewerBorder.ymax - m_viewerBorder.ymin);
int minxchunk = minx / (int)m_chunkSize;
int maxxchunk = (maxx + (int)m_chunkSize - 1) / (int)m_chunkSize;
int minychunk = miny / (int)m_chunkSize;
int maxychunk = (maxy + (int)m_chunkSize - 1) / (int)m_chunkSize;
minxchunk = max_ii(minxchunk, 0);
minychunk = max_ii(minychunk, 0);
maxxchunk = min_ii(maxxchunk, (int)m_numberOfXChunks);
maxychunk = min_ii(maxychunk, (int)m_numberOfYChunks);
bool result = true;
for (indexx = minxchunk; indexx < maxxchunk; indexx++) {
for (indexy = minychunk; indexy < maxychunk; indexy++) {
if (!scheduleChunkWhenPossible(graph, indexx, indexy)) {
result = false;
}
}
}
return result;
}
bool ExecutionGroup::scheduleChunk(unsigned int chunkNumber)
{
if (this->m_chunkExecutionStates[chunkNumber] == COM_ES_NOT_SCHEDULED) {
this->m_chunkExecutionStates[chunkNumber] = COM_ES_SCHEDULED;
WorkScheduler::schedule(this, chunkNumber);
return true;
}
return false;
}
bool ExecutionGroup::scheduleChunkWhenPossible(ExecutionSystem *graph, int xChunk, int yChunk)
{
if (xChunk < 0 || xChunk >= (int)this->m_numberOfXChunks) {
return true;
}
if (yChunk < 0 || yChunk >= (int)this->m_numberOfYChunks) {
return true;
}
int chunkNumber = yChunk * this->m_numberOfXChunks + xChunk;
// chunk is already executed
if (this->m_chunkExecutionStates[chunkNumber] == COM_ES_EXECUTED) {
return true;
}
// chunk is scheduled, but not executed
if (this->m_chunkExecutionStates[chunkNumber] == COM_ES_SCHEDULED) {
return false;
}
// chunk is nor executed nor scheduled.
vector<MemoryProxy *> memoryProxies;
this->determineDependingMemoryProxies(&memoryProxies);
rcti rect;
determineChunkRect(&rect, xChunk, yChunk);
unsigned int index;
bool canBeExecuted = true;
rcti area;
for (index = 0; index < this->m_cachedReadOperations.size(); index++) {
ReadBufferOperation *readOperation = (ReadBufferOperation *)this->m_cachedReadOperations[index];
BLI_rcti_init(&area, 0, 0, 0, 0);
MemoryProxy *memoryProxy = memoryProxies[index];
determineDependingAreaOfInterest(&rect, readOperation, &area);
ExecutionGroup *group = memoryProxy->getExecutor();
if (group != NULL) {
if (!group->scheduleAreaWhenPossible(graph, &area)) {
canBeExecuted = false;
}
}
else {
throw "ERROR";
}
}
if (canBeExecuted) {
scheduleChunk(chunkNumber);
}
return false;
}
void ExecutionGroup::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output)
{
this->getOutputOperation()->determineDependingAreaOfInterest(input, readOperation, output);
}
void ExecutionGroup::determineDependingMemoryProxies(vector<MemoryProxy *> *memoryProxies)
{
unsigned int index;
for (index = 0; index < this->m_cachedReadOperations.size(); index++) {
ReadBufferOperation *readOperation = (ReadBufferOperation *) this->m_cachedReadOperations[index];
memoryProxies->push_back(readOperation->getMemoryProxy());
}
}
bool ExecutionGroup::isOpenCL()
{
return this->m_openCL;
}
void ExecutionGroup::setViewerBorder(float xmin, float xmax, float ymin, float ymax)
{
NodeOperation *operation = this->getOutputOperation();
if (operation->isViewerOperation() || operation->isPreviewOperation()) {
BLI_rcti_init(&this->m_viewerBorder, xmin * this->m_width, xmax * this->m_width,
ymin * this->m_height, ymax * this->m_height);
}
}
void ExecutionGroup::setRenderBorder(float xmin, float xmax, float ymin, float ymax)
{
NodeOperation *operation = this->getOutputOperation();
if (operation->isOutputOperation(true)) {
/* Basically, setting border need to happen for only operations
* which operates in render resolution buffers (like compositor
* output nodes).
*
* In this cases adding border will lead to mapping coordinates
* from output buffer space to input buffer spaces when executing
* operation.
*
* But nodes like viewer and file output just shall display or
* safe the same exact buffer which goes to their input, no need
* in any kind of coordinates mapping.
*/
bool operationNeedsBorder = !(operation->isViewerOperation() ||
operation->isPreviewOperation() ||
operation->isFileOutputOperation());
if (operationNeedsBorder) {
BLI_rcti_init(&this->m_viewerBorder, xmin * this->m_width, xmax * this->m_width,
ymin * this->m_height, ymax * this->m_height);
}
}
}