This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/material.c
Ton Roosendaal 03e1ec988b - Added "anisotropic" rendering for static particle hair strands.
This means the diffuse and specular shaders don't use the normal
  for hair (which is actually undefined, a hair is micro cylinder) but
  it uses the tangent vector (vector in direction of hair).

For Diffuse, it computes a fake normal now, representing the optimal
hair normal pointing towards the light. All current builtin shaders
work with this, including ramps.

For Specular, it uses another formula to remap dot products for all
lines that now use the tangent vector instead of the normal:

dot = vector * tangent
dot = sqrt(1.0 - dot*dot)

Gives better results than using the 'fake' normal for diffuse. Officially
(according the papers) this could be used for diffuse too, but then hair
becomes very flat. Now you can control the flatness easily with ramps or
using Oren-Nayer for example.

Example image (disappears in some weeks)
http://www.blender.org/bf/rt9.jpg

- Added new texture channel "Strand" to apply textures on hairs over the
  length of hair (1 dimensional). Orco now gives 1 fixed coordinate for
  the entire hair, based on where it starts.
  Note; UV doesn't work yet. Nor vertexcolor.

http://www.blender.org/bf/rt10.jpg
2005-09-29 13:19:07 +00:00

757 lines
16 KiB
C

/* material.c
*
*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_material_types.h"
#include "DNA_texture_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
#include "DNA_curve_types.h"
#include "DNA_meta_types.h"
#include "DNA_scene_types.h"
#include "BLI_blenlib.h"
#include "BKE_bad_level_calls.h"
#include "BKE_utildefines.h"
#include "BKE_global.h"
#include "BKE_main.h"
#include "BKE_mesh.h"
#include "BKE_library.h"
#include "BKE_displist.h"
#include "BKE_material.h"
#include "BPY_extern.h"
void free_material(Material *ma)
{
int a;
MTex *mtex;
BPY_free_scriptlink(&ma->scriptlink);
for(a=0; a<MAX_MTEX; a++) {
mtex= ma->mtex[a];
if(mtex && mtex->tex) mtex->tex->id.us--;
if(mtex) MEM_freeN(mtex);
}
if(ma->ramp_col) MEM_freeN(ma->ramp_col);
if(ma->ramp_spec) MEM_freeN(ma->ramp_spec);
}
void init_material(Material *ma)
{
ma->lay= 1;
ma->r= ma->g= ma->b= ma->ref= 0.8;
ma->specr= ma->specg= ma->specb= 1.0;
ma->mirr= ma->mirg= ma->mirb= 1.0;
ma->spectra= 1.0;
ma->amb= 0.5;
ma->alpha= 1.0;
ma->spec= ma->hasize= 0.5;
ma->har= 50;
ma->starc= ma->ringc= 4;
ma->linec= 12;
ma->flarec= 1;
ma->flaresize= ma->subsize= 1.0;
ma->flareboost= 1;
ma->seed2= 6;
ma->friction= 0.5;
ma->refrac= 4.0;
ma->roughness= 0.5;
ma->param[0]= 0.5;
ma->param[1]= 0.1;
ma->param[2]= 0.5;
ma->param[3]= 0.1;
ma->rms=0.1;
ma->darkness=1.0;
ma->ang= 1.0;
ma->ray_depth= 2;
ma->ray_depth_tra= 2;
ma->fresnel_mir= 0.0;
ma->fresnel_tra= 0.0;
ma->fresnel_tra_i= 1.25;
ma->fresnel_mir_i= 1.25;
ma->rampfac_col= 1.0;
ma->rampfac_spec= 1.0;
ma->pr_lamp= 3; // two lamps, is bits
ma->mode= MA_TRACEBLE+MA_SHADOW+MA_RADIO;
}
Material *add_material(char *name)
{
Material *ma;
ma= alloc_libblock(&G.main->mat, ID_MA, name);
init_material(ma);
return ma;
}
Material *copy_material(Material *ma)
{
Material *man;
int a;
man= copy_libblock(ma);
id_us_plus((ID *)man->ipo);
for(a=0; a<MAX_MTEX; a++) {
if(ma->mtex[a]) {
man->mtex[a]= MEM_mallocN(sizeof(MTex), "copymaterial");
memcpy(man->mtex[a], ma->mtex[a], sizeof(MTex));
id_us_plus((ID *)man->mtex[a]->tex);
}
}
BPY_copy_scriptlink(&ma->scriptlink);
if(ma->ramp_col) man->ramp_col= MEM_dupallocN(ma->ramp_col);
if(ma->ramp_spec) man->ramp_spec= MEM_dupallocN(ma->ramp_spec);
return man;
}
void make_local_material(Material *ma)
{
Object *ob;
Mesh *me;
Curve *cu;
MetaBall *mb;
Material *man;
int a, local=0, lib=0;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(ma->id.lib==0) return;
if(ma->id.us==1) {
ma->id.lib= 0;
ma->id.flag= LIB_LOCAL;
new_id(0, (ID *)ma, 0);
for(a=0; a<MAX_MTEX; a++) {
if(ma->mtex[a]) id_lib_extern((ID *)ma->mtex[a]->tex);
}
return;
}
/* test objects */
ob= G.main->object.first;
while(ob) {
if(ob->mat) {
for(a=0; a<ob->totcol; a++) {
if(ob->mat[a]==ma) {
if(ob->id.lib) lib= 1;
else local= 1;
}
}
}
ob= ob->id.next;
}
/* test meshes */
me= G.main->mesh.first;
while(me) {
if(me->mat) {
for(a=0; a<me->totcol; a++) {
if(me->mat[a]==ma) {
if(me->id.lib) lib= 1;
else local= 1;
}
}
}
me= me->id.next;
}
/* test curves */
cu= G.main->curve.first;
while(cu) {
if(cu->mat) {
for(a=0; a<cu->totcol; a++) {
if(cu->mat[a]==ma) {
if(cu->id.lib) lib= 1;
else local= 1;
}
}
}
cu= cu->id.next;
}
/* test mballs */
mb= G.main->mball.first;
while(mb) {
if(mb->mat) {
for(a=0; a<mb->totcol; a++) {
if(mb->mat[a]==ma) {
if(mb->id.lib) lib= 1;
else local= 1;
}
}
}
mb= mb->id.next;
}
if(local && lib==0) {
ma->id.lib= 0;
ma->id.flag= LIB_LOCAL;
for(a=0; a<MAX_MTEX; a++) {
if(ma->mtex[a]) id_lib_extern((ID *)ma->mtex[a]->tex);
}
new_id(0, (ID *)ma, 0);
}
else if(local && lib) {
man= copy_material(ma);
man->id.us= 0;
/* do objects */
ob= G.main->object.first;
while(ob) {
if(ob->mat) {
for(a=0; a<ob->totcol; a++) {
if(ob->mat[a]==ma) {
if(ob->id.lib==0) {
ob->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
ob= ob->id.next;
}
/* do meshes */
me= G.main->mesh.first;
while(me) {
if(me->mat) {
for(a=0; a<me->totcol; a++) {
if(me->mat[a]==ma) {
if(me->id.lib==0) {
me->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
me= me->id.next;
}
/* do curves */
cu= G.main->curve.first;
while(cu) {
if(cu->mat) {
for(a=0; a<cu->totcol; a++) {
if(cu->mat[a]==ma) {
if(cu->id.lib==0) {
cu->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
cu= cu->id.next;
}
/* do mballs */
mb= G.main->mball.first;
while(mb) {
if(mb->mat) {
for(a=0; a<mb->totcol; a++) {
if(mb->mat[a]==ma) {
if(mb->id.lib==0) {
mb->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
mb= mb->id.next;
}
}
}
Material ***give_matarar(Object *ob)
{
Mesh *me;
Curve *cu;
MetaBall *mb;
if(ob->type==OB_MESH) {
me= ob->data;
return &(me->mat);
}
else if ELEM3(ob->type, OB_CURVE, OB_FONT, OB_SURF) {
cu= ob->data;
return &(cu->mat);
}
else if(ob->type==OB_MBALL) {
mb= ob->data;
return &(mb->mat);
}
return 0;
}
short *give_totcolp(Object *ob)
{
Mesh *me;
Curve *cu;
MetaBall *mb;
if(ob->type==OB_MESH) {
me= ob->data;
return &(me->totcol);
}
else if ELEM3(ob->type, OB_CURVE, OB_FONT, OB_SURF) {
cu= ob->data;
return &(cu->totcol);
}
else if(ob->type==OB_MBALL) {
mb= ob->data;
return &(mb->totcol);
}
return 0;
}
Material *give_current_material(Object *ob, int act)
{
Material ***matarar, *ma;
if(ob==0) return 0;
if(ob->totcol==0) return 0;
if(act>ob->totcol) act= ob->totcol;
else if(act==0) act= 1;
if( BTST(ob->colbits, act-1) ) { /* in object */
ma= ob->mat[act-1];
}
else { /* in data */
matarar= give_matarar(ob);
if(matarar && *matarar) ma= (*matarar)[act-1];
else ma= 0;
}
return ma;
}
ID *material_from(Object *ob, int act)
{
if(ob==0) return 0;
if(ob->totcol==0) return ob->data;
if(act==0) act= 1;
if( BTST(ob->colbits, act-1) ) return (ID *)ob;
else return ob->data;
}
/* GS reads the memory pointed at in a specific ordering. There are,
* however two definitions for it. I have jotted them down here, both,
* but I think the first one is actually used. The thing is that
* big-endian systems might read this the wrong way round. OTOH, we
* constructed the IDs that are read out with this macro explicitly as
* well. I expect we'll sort it out soon... */
/* from blendef: */
#define GS(a) (*((short *)(a)))
/* from misc_util: flip the bytes from x */
/* #define GS(x) (((unsigned char *)(x))[0] << 8 | ((unsigned char *)(x))[1]) */
void test_object_materials(ID *id)
{
/* make the ob mat-array same size as 'ob->data' mat-array */
Object *ob;
Mesh *me;
Curve *cu;
MetaBall *mb;
Material **newmatar;
int totcol=0;
if(id==0) return;
if( GS(id->name)==ID_ME ) {
me= (Mesh *)id;
totcol= me->totcol;
}
else if( GS(id->name)==ID_CU ) {
cu= (Curve *)id;
totcol= cu->totcol;
}
else if( GS(id->name)==ID_MB ) {
mb= (MetaBall *)id;
totcol= mb->totcol;
}
else return;
ob= G.main->object.first;
while(ob) {
if(ob->data==id) {
if(totcol==0) {
if(ob->totcol) {
MEM_freeN(ob->mat);
ob->mat= 0;
}
}
else if(ob->totcol<totcol) {
newmatar= MEM_callocN(sizeof(void *)*totcol, "newmatar");
if(ob->totcol) {
memcpy(newmatar, ob->mat, sizeof(void *)*ob->totcol);
MEM_freeN(ob->mat);
}
ob->mat= newmatar;
}
ob->totcol= totcol;
if(ob->totcol && ob->actcol==0) ob->actcol= 1;
if(ob->actcol>ob->totcol) ob->actcol= ob->totcol;
}
ob= ob->id.next;
}
}
void assign_material(Object *ob, Material *ma, int act)
{
Material *mao, **matar, ***matarar;
short *totcolp;
if(act>MAXMAT) return;
if(act<1) act= 1;
/* test arraylens */
totcolp= give_totcolp(ob);
matarar= give_matarar(ob);
if(totcolp==0 || matarar==0) return;
if( act > *totcolp) {
matar= MEM_callocN(sizeof(void *)*act, "matarray1");
if( *totcolp) {
memcpy(matar, *matarar, sizeof(void *)*( *totcolp ));
MEM_freeN(*matarar);
}
*matarar= matar;
*totcolp= act;
}
if(act > ob->totcol) {
matar= MEM_callocN(sizeof(void *)*act, "matarray2");
if( ob->totcol) {
memcpy(matar, ob->mat, sizeof(void *)*( ob->totcol ));
MEM_freeN(ob->mat);
}
ob->mat= matar;
ob->totcol= act;
}
/* do it */
if( BTST(ob->colbits, act-1) ) { /* in object */
mao= ob->mat[act-1];
if(mao) mao->id.us--;
ob->mat[act-1]= ma;
}
else { /* in data */
mao= (*matarar)[act-1];
if(mao) mao->id.us--;
(*matarar)[act-1]= ma;
}
id_us_plus((ID *)ma);
test_object_materials(ob->data);
}
void new_material_to_objectdata(Object *ob)
{
Material *ma;
if(ob==0) return;
if(ob->totcol>=MAXMAT) return;
ma= give_current_material(ob, ob->actcol);
if(ma==0) {
ma= add_material("Material");
ma->id.us= 0;
}
if(ob->actcol) {
if( BTST(ob->colbits, ob->actcol-1) ) {
ob->colbits= BSET(ob->colbits, ob->totcol);
}
}
assign_material(ob, ma, ob->totcol+1);
ob->actcol= ob->totcol;
}
void init_render_material(Material *ma)
{
MTex *mtex;
int a, needuv=0;
if(ma->flarec==0) ma->flarec= 1;
/* add all texcoflags from mtex */
ma->texco= 0;
ma->mapto= 0;
for(a=0; a<MAX_MTEX; a++) {
mtex= ma->mtex[a];
if(mtex && mtex->tex) {
ma->texco |= mtex->texco;
ma->mapto |= mtex->mapto;
if(R.osa) {
if ELEM3(mtex->tex->type, TEX_IMAGE, TEX_PLUGIN, TEX_ENVMAP) ma->texco |= TEXCO_OSA;
}
if(ma->texco & (TEXCO_ORCO|TEXCO_REFL|TEXCO_NORM|TEXCO_STRAND)) needuv= 1;
else if(ma->texco & (TEXCO_GLOB|TEXCO_UV|TEXCO_OBJECT)) needuv= 1;
else if(ma->texco & (TEXCO_LAVECTOR|TEXCO_VIEW|TEXCO_STICKY)) needuv= 1;
if(mtex->object) mtex->object->flag |= OB_DO_IMAT;
}
}
if(ma->mode & MA_ZTRA) {
/* if(ma->alpha==0.0 || ma->alpha==1.0) */
if(R.flag & R_RENDERING) R.flag |= R_ZTRA;
}
if(ma->mode & MA_RADIO) needuv= 1;
if(ma->mode & (MA_VERTEXCOL|MA_VERTEXCOLP|MA_FACETEXTURE)) {
needuv= 1;
if(R.osa) ma->texco |= TEXCO_OSA; /* for texfaces */
}
if(needuv) ma->texco |= NEED_UV;
// since the raytracer doesnt recalc O structs for each ray, we have to preset them all
if(ma->mode & (MA_RAYMIRROR|MA_RAYTRANSP|MA_SHADOW_TRA)) {
ma->texco |= NEED_UV|TEXCO_ORCO|TEXCO_REFL|TEXCO_NORM;
if(R.osa) ma->texco |= TEXCO_OSA;
}
ma->ambr= ma->amb*R.wrld.ambr;
ma->ambg= ma->amb*R.wrld.ambg;
ma->ambb= ma->amb*R.wrld.ambb;
}
void init_render_materials()
{
Material *ma;
ma= G.main->mat.first;
while(ma) {
if(ma->id.us) init_render_material(ma);
ma= ma->id.next;
}
}
void end_render_material(Material *ma)
{
/* XXXX obsolete? check! */
if(ma->mode & (MA_VERTEXCOLP|MA_FACETEXTURE)) {
if( !(ma->mode & MA_HALO) ) {
ma->r= ma->g= ma->b= 1.0;
}
}
}
void end_render_materials()
{
Material *ma;
ma= G.main->mat.first;
while(ma) {
if(ma->id.us) end_render_material(ma);
ma= ma->id.next;
}
}
/* ****************** */
char colname_array[125][20]= {
"Black","DarkRed","HalveRed","Red","Red",
"DarkGreen","DarkOlive","Brown","Chocolate","OrangeRed",
"HalveGreen","GreenOlive","DryOlive","Goldenrod","DarkOrange",
"LightGreen","Chartreuse","YellowGreen","Yellow","Gold",
"Green","LawnGreen","GreenYellow","LightOlive","Yellow",
"DarkBlue","DarkPurple","HotPink","VioletPink","RedPink",
"SlateGray","DarkGrey","PalePurple","IndianRed","Tomato",
"SeaGreen","PaleGreen","GreenKhaki","LightBrown","LightSalmon",
"SpringGreen","PaleGreen","MediumOlive","YellowBrown","LightGold",
"LightGreen","LightGreen","LightGreen","GreenYellow","PaleYellow",
"HalveBlue","DarkSky","HalveMagenta","VioletRed","DeepPink",
"SteelBlue","SkyBlue","Orchid","LightHotPink","HotPink",
"SeaGreen","SlateGray","MediumGrey","Burlywood","LightPink",
"SpringGreen","Aquamarine","PaleGreen","Khaki","PaleOrange",
"SpringGreen","SeaGreen","PaleGreen","PaleWhite","YellowWhite",
"LightBlue","Purple","MediumOrchid","Magenta","Magenta",
"RoyalBlue","SlateBlue","MediumOrchid","Orchid","Magenta",
"DeepSkyBlue","LightSteelBlue","LightSkyBlue","Violet","LightPink",
"Cyaan","DarkTurquoise","SkyBlue","Grey","Snow",
"Mint","Mint","Aquamarine","MintCream","Ivory",
"Blue","Blue","DarkMagenta","DarkOrchid","Magenta",
"SkyBlue","RoyalBlue","LightSlateBlue","MediumOrchid","Magenta",
"DodgerBlue","SteelBlue","MediumPurple","PalePurple","Plum",
"DeepSkyBlue","PaleBlue","LightSkyBlue","PalePurple","Thistle",
"Cyan","ColdBlue","PaleTurquoise","GhostWhite","White"
};
void automatname(Material *ma)
{
int nr, r, g, b;
float ref;
if(ma==0) return;
if(ma->mode & MA_SHLESS) ref= 1.0;
else ref= ma->ref;
r= (int)(4.99*(ref*ma->r));
g= (int)(4.99*(ref*ma->g));
b= (int)(4.99*(ref*ma->b));
nr= r + 5*g + 25*b;
if(nr>124) nr= 124;
new_id(&G.main->mat, (ID *)ma, colname_array[nr]);
}
void delete_material_index()
{
Material *mao, ***matarar;
Object *ob, *obt;
Curve *cu;
Nurb *nu;
short *totcolp;
int a, actcol;
if(G.obedit) {
error("Unable to perform function in EditMode");
return;
}
ob= ((G.scene->basact)? (G.scene->basact->object) : 0) ;
if(ob==0 || ob->totcol==0) return;
/* take a mesh/curve/mball as starting point, remove 1 index,
* AND with all objects that share the ob->data
*
* after that check indices in mesh/curve/mball!!!
*/
totcolp= give_totcolp(ob);
matarar= give_matarar(ob);
/* we delete the actcol */
if(ob->totcol) {
mao= (*matarar)[ob->actcol-1];
if(mao) mao->id.us--;
}
for(a=ob->actcol; a<ob->totcol; a++) {
(*matarar)[a-1]= (*matarar)[a];
}
(*totcolp)--;
if(*totcolp==0) {
MEM_freeN(*matarar);
*matarar= 0;
}
actcol= ob->actcol;
obt= G.main->object.first;
while(obt) {
if(obt->data==ob->data) {
/* WATCH IT: do not use actcol from ob or from obt (can become zero) */
mao= obt->mat[actcol-1];
if(mao) mao->id.us--;
for(a=actcol; a<obt->totcol; a++) obt->mat[a-1]= obt->mat[a];
obt->totcol--;
if(obt->actcol > obt->totcol) obt->actcol= obt->totcol;
if(obt->totcol==0) {
MEM_freeN(obt->mat);
obt->mat= 0;
}
}
obt= obt->id.next;
}
/* check indices from mesh */
if(ob->type==OB_MESH) {
Mesh *me= get_mesh(ob);
mesh_delete_material_index(me, actcol-1);
freedisplist(&ob->disp);
}
else if ELEM(ob->type, OB_CURVE, OB_SURF) {
cu= ob->data;
nu= cu->nurb.first;
while(nu) {
if(nu->mat_nr && nu->mat_nr>=actcol-1) {
nu->mat_nr--;
if (ob->type == OB_CURVE) nu->charidx--;
}
nu= nu->next;
}
freedisplist(&ob->disp);
}
}