This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/editors/object/object_remesh.cc
Hans Goudey 1af62cb3bf Mesh: Move positions to a generic attribute
**Changes**
As described in T93602, this patch removes all use of the `MVert`
struct, replacing it with a generic named attribute with the name
`"position"`, consistent with other geometry types.

Variable names have been changed from `verts` to `positions`, to align
with the attribute name and the more generic design (positions are not
vertices, they are just an attribute stored on the point domain).

This change is made possible by previous commits that moved all other
data out of `MVert` to runtime data or other generic attributes. What
remains is mostly a simple type change. Though, the type still shows up
859 times, so the patch is quite large.

One compromise is that now `CD_MASK_BAREMESH` now contains
`CD_PROP_FLOAT3`. With the general move towards generic attributes
over custom data types, we are removing use of these type masks anyway.

**Benefits**
The most obvious benefit is reduced memory usage and the benefits
that brings in memory-bound situations. `float3` is only 3 bytes, in
comparison to `MVert` which was 4. When there are millions of vertices
this starts to matter more.

The other benefits come from using a more generic type. Instead of
writing algorithms specifically for `MVert`, code can just use arrays
of vectors. This will allow eliminating many temporary arrays or
wrappers used to extract positions.

Many possible improvements aren't implemented in this patch, though
I did switch simplify or remove the process of creating temporary
position arrays in a few places.

The design clarity that "positions are just another attribute" brings
allows removing explicit copying of vertices in some procedural
operations-- they are just processed like most other attributes.

**Performance**
This touches so many areas that it's hard to benchmark exhaustively,
but I observed some areas as examples.
* The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster.
* The Spring splash screen went from ~4.3 to ~4.5 fps.
* The subdivision surface modifier/node was slightly faster
RNA access through Python may be slightly slower, since now we need
a name lookup instead of just a custom data type lookup for each index.

**Future Improvements**
* Remove uses of "vert_coords" functions:
  * `BKE_mesh_vert_coords_alloc`
  * `BKE_mesh_vert_coords_get`
  * `BKE_mesh_vert_coords_apply{_with_mat4}`
* Remove more hidden copying of positions
* General simplification now possible in many areas
* Convert more code to C++ to use `float3` instead of `float[3]`
  * Currently `reinterpret_cast` is used for those C-API functions

Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00

1218 lines
35 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2019 Blender Foundation. All rights reserved. */
/** \file
* \ingroup edobj
*/
#include <cctype>
#include <cfloat>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_string_utf8.h"
#include "BLI_utildefines.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_userdef_types.h"
#include "BLT_translation.h"
#include "BKE_context.h"
#include "BKE_customdata.h"
#include "BKE_global.h"
#include "BKE_lib_id.h"
#include "BKE_main.h"
#include "BKE_mesh.h"
#include "BKE_mesh_mirror.h"
#include "BKE_mesh_remesh_voxel.h"
#include "BKE_mesh_runtime.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "BKE_paint.h"
#include "BKE_report.h"
#include "BKE_scene.h"
#include "BKE_shrinkwrap.h"
#include "BKE_unit.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_build.h"
#include "ED_mesh.h"
#include "ED_object.h"
#include "ED_screen.h"
#include "ED_sculpt.h"
#include "ED_space_api.h"
#include "ED_undo.h"
#include "ED_view3d.h"
#include "RNA_access.h"
#include "RNA_define.h"
#include "RNA_enum_types.h"
#include "GPU_immediate.h"
#include "GPU_immediate_util.h"
#include "GPU_matrix.h"
#include "GPU_state.h"
#include "WM_api.h"
#include "WM_message.h"
#include "WM_toolsystem.h"
#include "WM_types.h"
#include "UI_interface.h"
#include "BLF_api.h"
#include "object_intern.h" /* own include */
using blender::float3;
using blender::IndexRange;
using blender::Span;
/* TODO(sebpa): unstable, can lead to unrecoverable errors. */
// #define USE_MESH_CURVATURE
/* -------------------------------------------------------------------- */
/** \name Voxel Remesh Operator
* \{ */
static bool object_remesh_poll(bContext *C)
{
Object *ob = CTX_data_active_object(C);
if (ob == nullptr || ob->data == nullptr) {
return false;
}
if (ID_IS_LINKED(ob) || ID_IS_LINKED(ob->data) || ID_IS_OVERRIDE_LIBRARY(ob->data)) {
CTX_wm_operator_poll_msg_set(C, "The remesher cannot work on linked or override data");
return false;
}
if (BKE_object_is_in_editmode(ob)) {
CTX_wm_operator_poll_msg_set(C, "The remesher cannot run from edit mode");
return false;
}
if (ob->mode == OB_MODE_SCULPT && ob->sculpt->bm) {
CTX_wm_operator_poll_msg_set(C, "The remesher cannot run with dyntopo activated");
return false;
}
if (BKE_modifiers_uses_multires(ob)) {
CTX_wm_operator_poll_msg_set(
C, "The remesher cannot run with a Multires modifier in the modifier stack");
return false;
}
return ED_operator_object_active_editable_mesh(C);
}
static int voxel_remesh_exec(bContext *C, wmOperator *op)
{
Object *ob = CTX_data_active_object(C);
Mesh *mesh = static_cast<Mesh *>(ob->data);
if (mesh->remesh_voxel_size <= 0.0f) {
BKE_report(op->reports, RPT_ERROR, "Voxel remesher cannot run with a voxel size of 0.0");
return OPERATOR_CANCELLED;
}
if (mesh->totpoly == 0) {
return OPERATOR_CANCELLED;
}
/* Output mesh will be all smooth or all flat shading. */
const Span<MPoly> polys = mesh->polys();
const bool smooth_normals = polys.first().flag & ME_SMOOTH;
float isovalue = 0.0f;
if (mesh->flag & ME_REMESH_REPROJECT_VOLUME) {
isovalue = mesh->remesh_voxel_size * 0.3f;
}
Mesh *new_mesh = BKE_mesh_remesh_voxel(
mesh, mesh->remesh_voxel_size, mesh->remesh_voxel_adaptivity, isovalue);
if (!new_mesh) {
BKE_report(op->reports, RPT_ERROR, "Voxel remesher failed to create mesh");
return OPERATOR_CANCELLED;
}
if (ob->mode == OB_MODE_SCULPT) {
ED_sculpt_undo_geometry_begin(ob, op);
}
if (mesh->flag & ME_REMESH_FIX_POLES && mesh->remesh_voxel_adaptivity <= 0.0f) {
Mesh *mesh_fixed_poles = BKE_mesh_remesh_voxel_fix_poles(new_mesh);
BKE_id_free(nullptr, new_mesh);
new_mesh = mesh_fixed_poles;
}
if (mesh->flag & ME_REMESH_REPROJECT_VOLUME) {
BKE_shrinkwrap_remesh_target_project(new_mesh, mesh, ob);
}
if (mesh->flag & ME_REMESH_REPROJECT_PAINT_MASK) {
BKE_mesh_remesh_reproject_paint_mask(new_mesh, mesh);
}
if (mesh->flag & ME_REMESH_REPROJECT_SCULPT_FACE_SETS) {
BKE_remesh_reproject_sculpt_face_sets(new_mesh, mesh);
}
if (mesh->flag & ME_REMESH_REPROJECT_VERTEX_COLORS) {
BKE_remesh_reproject_vertex_paint(new_mesh, mesh);
}
BKE_mesh_nomain_to_mesh(new_mesh, mesh, ob);
if (smooth_normals) {
BKE_mesh_smooth_flag_set(static_cast<Mesh *>(ob->data), true);
}
if (ob->mode == OB_MODE_SCULPT) {
ED_sculpt_undo_geometry_end(ob);
}
BKE_mesh_batch_cache_dirty_tag(static_cast<Mesh *>(ob->data), BKE_MESH_BATCH_DIRTY_ALL);
DEG_id_tag_update(&ob->id, ID_RECALC_GEOMETRY);
WM_event_add_notifier(C, NC_GEOM | ND_DATA, ob->data);
return OPERATOR_FINISHED;
}
void OBJECT_OT_voxel_remesh(wmOperatorType *ot)
{
/* identifiers */
ot->name = "Voxel Remesh";
ot->description =
"Calculates a new manifold mesh based on the volume of the current mesh. All data layers "
"will be lost";
ot->idname = "OBJECT_OT_voxel_remesh";
/* api callbacks */
ot->poll = object_remesh_poll;
ot->exec = voxel_remesh_exec;
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Voxel Size Operator
* \{ */
#define VOXEL_SIZE_EDIT_MAX_GRIDS_LINES 500
#define VOXEL_SIZE_EDIT_MAX_STR_LEN 20
struct VoxelSizeEditCustomData {
void *draw_handle;
Object *active_object;
float init_mval[2];
float slow_mval[2];
bool slow_mode;
float init_voxel_size;
float slow_voxel_size;
float voxel_size;
float preview_plane[4][3];
float text_mat[4][4];
};
static void voxel_size_parallel_lines_draw(uint pos3d,
const float initial_co[3],
const float end_co[3],
const float length_co[3],
const float spacing)
{
const float total_len = len_v3v3(initial_co, end_co);
const int tot_lines = int(total_len / spacing);
const int tot_lines_half = (tot_lines / 2) + 1;
float spacing_dir[3], lines_start[3];
float line_dir[3];
sub_v3_v3v3(spacing_dir, end_co, initial_co);
normalize_v3(spacing_dir);
sub_v3_v3v3(line_dir, length_co, initial_co);
if (tot_lines > VOXEL_SIZE_EDIT_MAX_GRIDS_LINES || tot_lines <= 1) {
return;
}
mid_v3_v3v3(lines_start, initial_co, end_co);
immBegin(GPU_PRIM_LINES, uint(tot_lines_half) * 2);
for (int i = 0; i < tot_lines_half; i++) {
float line_start[3];
float line_end[3];
madd_v3_v3v3fl(line_start, lines_start, spacing_dir, spacing * i);
add_v3_v3v3(line_end, line_start, line_dir);
immVertex3fv(pos3d, line_start);
immVertex3fv(pos3d, line_end);
}
immEnd();
mul_v3_fl(spacing_dir, -1.0f);
immBegin(GPU_PRIM_LINES, uint(tot_lines_half - 1) * 2);
for (int i = 1; i < tot_lines_half; i++) {
float line_start[3];
float line_end[3];
madd_v3_v3v3fl(line_start, lines_start, spacing_dir, spacing * i);
add_v3_v3v3(line_end, line_start, line_dir);
immVertex3fv(pos3d, line_start);
immVertex3fv(pos3d, line_end);
}
immEnd();
}
static void voxel_size_edit_draw(const bContext *C, ARegion * /*region*/, void *arg)
{
VoxelSizeEditCustomData *cd = static_cast<VoxelSizeEditCustomData *>(arg);
GPU_blend(GPU_BLEND_ALPHA);
GPU_line_smooth(true);
uint pos3d = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR);
GPU_matrix_push();
GPU_matrix_mul(cd->active_object->object_to_world);
/* Draw Rect */
immUniformColor4f(0.9f, 0.9f, 0.9f, 0.8f);
GPU_line_width(3.0f);
immBegin(GPU_PRIM_LINES, 8);
immVertex3fv(pos3d, cd->preview_plane[0]);
immVertex3fv(pos3d, cd->preview_plane[1]);
immVertex3fv(pos3d, cd->preview_plane[1]);
immVertex3fv(pos3d, cd->preview_plane[2]);
immVertex3fv(pos3d, cd->preview_plane[2]);
immVertex3fv(pos3d, cd->preview_plane[3]);
immVertex3fv(pos3d, cd->preview_plane[3]);
immVertex3fv(pos3d, cd->preview_plane[0]);
immEnd();
/* Draw Grid */
GPU_line_width(1.0f);
const float total_len = len_v3v3(cd->preview_plane[0], cd->preview_plane[1]);
const int tot_lines = int(total_len / cd->voxel_size);
/* Smooth-step to reduce the alpha of the grid as the line number increases. */
const float a = VOXEL_SIZE_EDIT_MAX_GRIDS_LINES * 0.1f;
const float b = VOXEL_SIZE_EDIT_MAX_GRIDS_LINES;
const float x = clamp_f((tot_lines - a) / (b - a), 0.0f, 1.0);
const float alpha_factor = 1.0f - (x * x * (3.0f - 2.0f * x));
immUniformColor4f(0.9f, 0.9f, 0.9f, 0.75f * alpha_factor);
voxel_size_parallel_lines_draw(
pos3d, cd->preview_plane[0], cd->preview_plane[1], cd->preview_plane[3], cd->voxel_size);
voxel_size_parallel_lines_draw(
pos3d, cd->preview_plane[1], cd->preview_plane[2], cd->preview_plane[0], cd->voxel_size);
/* Draw text */
const uiStyle *style = UI_style_get();
const uiFontStyle *fstyle = &style->widget;
const int fontid = fstyle->uifont_id;
float strwidth, strheight;
short fstyle_points = fstyle->points;
char str[VOXEL_SIZE_EDIT_MAX_STR_LEN];
short strdrawlen = 0;
Scene *scene = CTX_data_scene(C);
UnitSettings *unit = &scene->unit;
BKE_unit_value_as_string(str,
VOXEL_SIZE_EDIT_MAX_STR_LEN,
double(cd->voxel_size * unit->scale_length),
-3,
B_UNIT_LENGTH,
unit,
true);
strdrawlen = BLI_strlen_utf8(str);
immUnbindProgram();
GPU_matrix_push();
GPU_matrix_mul(cd->text_mat);
BLF_size(fontid, 10.0f * fstyle_points * U.dpi_fac);
BLF_color3f(fontid, 1.0f, 1.0f, 1.0f);
BLF_width_and_height(fontid, str, strdrawlen, &strwidth, &strheight);
BLF_position(fontid, -0.5f * strwidth, -0.5f * strheight, 0.0f);
BLF_draw(fontid, str, strdrawlen);
GPU_matrix_pop();
GPU_matrix_pop();
GPU_blend(GPU_BLEND_NONE);
GPU_line_smooth(false);
}
static void voxel_size_edit_cancel(bContext *C, wmOperator *op)
{
ARegion *region = CTX_wm_region(C);
VoxelSizeEditCustomData *cd = static_cast<VoxelSizeEditCustomData *>(op->customdata);
ED_region_draw_cb_exit(region->type, cd->draw_handle);
MEM_freeN(op->customdata);
ED_workspace_status_text(C, nullptr);
}
static int voxel_size_edit_modal(bContext *C, wmOperator *op, const wmEvent *event)
{
ARegion *region = CTX_wm_region(C);
VoxelSizeEditCustomData *cd = static_cast<VoxelSizeEditCustomData *>(op->customdata);
Object *active_object = cd->active_object;
Mesh *mesh = (Mesh *)active_object->data;
/* Cancel modal operator */
if ((event->type == EVT_ESCKEY && event->val == KM_PRESS) ||
(event->type == RIGHTMOUSE && event->val == KM_PRESS)) {
voxel_size_edit_cancel(C, op);
ED_region_tag_redraw(region);
return OPERATOR_FINISHED;
}
/* Finish modal operator */
if ((event->type == LEFTMOUSE && event->val == KM_RELEASE) ||
(event->type == EVT_RETKEY && event->val == KM_PRESS) ||
(event->type == EVT_PADENTER && event->val == KM_PRESS)) {
ED_region_draw_cb_exit(region->type, cd->draw_handle);
mesh->remesh_voxel_size = cd->voxel_size;
MEM_freeN(op->customdata);
ED_region_tag_redraw(region);
ED_workspace_status_text(C, nullptr);
return OPERATOR_FINISHED;
}
const float mval[2] = {float(event->mval[0]), float(event->mval[1])};
float d = cd->init_mval[0] - mval[0];
if (cd->slow_mode) {
d = cd->slow_mval[0] - mval[0];
}
if (event->modifier & KM_CTRL) {
/* Multiply d by the initial voxel size to prevent uncontrollable speeds when using low voxel
* sizes. */
/* When the voxel size is slower, it needs more precision. */
d = d * min_ff(pow2f(cd->init_voxel_size), 0.1f) * 0.05f;
}
else {
/* Linear mode, enables jumping to any voxel size. */
d = d * 0.0005f;
}
if (cd->slow_mode) {
cd->voxel_size = cd->slow_voxel_size + d * 0.05f;
}
else {
cd->voxel_size = cd->init_voxel_size + d;
}
if (event->type == EVT_LEFTSHIFTKEY && event->val == KM_PRESS) {
cd->slow_mode = true;
copy_v2_v2(cd->slow_mval, mval);
cd->slow_voxel_size = cd->voxel_size;
}
if (event->type == EVT_LEFTSHIFTKEY && event->val == KM_RELEASE) {
cd->slow_mode = false;
cd->slow_voxel_size = 0.0f;
}
cd->voxel_size = clamp_f(cd->voxel_size, 0.0001f, 1.0f);
ED_region_tag_redraw(region);
return OPERATOR_RUNNING_MODAL;
}
static int voxel_size_edit_invoke(bContext *C, wmOperator *op, const wmEvent *event)
{
ARegion *region = CTX_wm_region(C);
Object *active_object = CTX_data_active_object(C);
Mesh *mesh = (Mesh *)active_object->data;
VoxelSizeEditCustomData *cd = MEM_cnew<VoxelSizeEditCustomData>(
"Voxel Size Edit OP Custom Data");
/* Initial operator Custom Data setup. */
cd->draw_handle = ED_region_draw_cb_activate(
region->type, voxel_size_edit_draw, cd, REGION_DRAW_POST_VIEW);
cd->active_object = active_object;
cd->init_mval[0] = event->mval[0];
cd->init_mval[1] = event->mval[1];
cd->init_voxel_size = mesh->remesh_voxel_size;
cd->voxel_size = mesh->remesh_voxel_size;
op->customdata = cd;
/* Select the front facing face of the mesh bounding box. */
const BoundBox *bb = BKE_mesh_boundbox_get(cd->active_object);
/* Indices of the Bounding Box faces. */
const int BB_faces[6][4] = {
{3, 0, 4, 7},
{1, 2, 6, 5},
{3, 2, 1, 0},
{4, 5, 6, 7},
{0, 1, 5, 4},
{2, 3, 7, 6},
};
copy_v3_v3(cd->preview_plane[0], bb->vec[BB_faces[0][0]]);
copy_v3_v3(cd->preview_plane[1], bb->vec[BB_faces[0][1]]);
copy_v3_v3(cd->preview_plane[2], bb->vec[BB_faces[0][2]]);
copy_v3_v3(cd->preview_plane[3], bb->vec[BB_faces[0][3]]);
RegionView3D *rv3d = CTX_wm_region_view3d(C);
float mat[3][3];
float current_normal[3];
float view_normal[3] = {0.0f, 0.0f, 1.0f};
/* Calculate the view normal. */
invert_m4_m4(active_object->world_to_object, active_object->object_to_world);
copy_m3_m4(mat, rv3d->viewinv);
mul_m3_v3(mat, view_normal);
copy_m3_m4(mat, active_object->world_to_object);
mul_m3_v3(mat, view_normal);
normalize_v3(view_normal);
normal_tri_v3(current_normal, cd->preview_plane[0], cd->preview_plane[1], cd->preview_plane[2]);
float min_dot = dot_v3v3(current_normal, view_normal);
float current_dot = 1;
/* Check if there is a face that is more aligned towards the view. */
for (int i = 0; i < 6; i++) {
normal_tri_v3(
current_normal, bb->vec[BB_faces[i][0]], bb->vec[BB_faces[i][1]], bb->vec[BB_faces[i][2]]);
current_dot = dot_v3v3(current_normal, view_normal);
if (current_dot < min_dot) {
min_dot = current_dot;
copy_v3_v3(cd->preview_plane[0], bb->vec[BB_faces[i][0]]);
copy_v3_v3(cd->preview_plane[1], bb->vec[BB_faces[i][1]]);
copy_v3_v3(cd->preview_plane[2], bb->vec[BB_faces[i][2]]);
copy_v3_v3(cd->preview_plane[3], bb->vec[BB_faces[i][3]]);
}
}
/* Matrix calculation to position the text in 3D space. */
float text_pos[3];
float scale_mat[4][4];
float d_a[3], d_b[3];
float d_a_proj[2], d_b_proj[2];
float preview_plane_proj[4][2];
const float y_axis_proj[2] = {0.0f, 1.0f};
mid_v3_v3v3(text_pos, cd->preview_plane[0], cd->preview_plane[2]);
/* Project the selected face in the previous step of the Bounding Box. */
for (int i = 0; i < 4; i++) {
float preview_plane_world_space[3];
mul_v3_m4v3(preview_plane_world_space, active_object->object_to_world, cd->preview_plane[i]);
ED_view3d_project_v2(region, preview_plane_world_space, preview_plane_proj[i]);
}
/* Get the initial X and Y axis of the basis from the edges of the Bounding Box face. */
sub_v3_v3v3(d_a, cd->preview_plane[1], cd->preview_plane[0]);
sub_v3_v3v3(d_b, cd->preview_plane[3], cd->preview_plane[0]);
normalize_v3(d_a);
normalize_v3(d_b);
/* Project the X and Y axis. */
sub_v2_v2v2(d_a_proj, preview_plane_proj[1], preview_plane_proj[0]);
sub_v2_v2v2(d_b_proj, preview_plane_proj[3], preview_plane_proj[0]);
normalize_v2(d_a_proj);
normalize_v2(d_b_proj);
unit_m4(cd->text_mat);
/* Select the axis that is aligned with the view Y axis to use it as the basis Y. */
if (fabsf(dot_v2v2(d_a_proj, y_axis_proj)) > fabsf(dot_v2v2(d_b_proj, y_axis_proj))) {
copy_v3_v3(cd->text_mat[0], d_b);
copy_v3_v3(cd->text_mat[1], d_a);
/* Flip the X and Y basis vectors to make sure they always point upwards and to the right. */
if (d_b_proj[0] < 0.0f) {
mul_v3_fl(cd->text_mat[0], -1.0f);
}
if (d_a_proj[1] < 0.0f) {
mul_v3_fl(cd->text_mat[1], -1.0f);
}
}
else {
copy_v3_v3(cd->text_mat[0], d_a);
copy_v3_v3(cd->text_mat[1], d_b);
if (d_a_proj[0] < 0.0f) {
mul_v3_fl(cd->text_mat[0], -1.0f);
}
if (d_b_proj[1] < 0.0f) {
mul_v3_fl(cd->text_mat[1], -1.0f);
}
}
/* Use the Bounding Box face normal as the basis Z. */
normal_tri_v3(cd->text_mat[2], cd->preview_plane[0], cd->preview_plane[1], cd->preview_plane[2]);
/* Invert object scale. */
float scale[3];
mat4_to_size(scale, active_object->object_to_world);
invert_v3(scale);
size_to_mat4(scale_mat, scale);
mul_m4_m4_pre(cd->text_mat, scale_mat);
/* Write the text position into the matrix. */
copy_v3_v3(cd->text_mat[3], text_pos);
/* Scale the text to constant viewport size. */
float text_pos_word_space[3];
mul_v3_m4v3(text_pos_word_space, active_object->object_to_world, text_pos);
const float pixelsize = ED_view3d_pixel_size(rv3d, text_pos_word_space);
scale_m4_fl(scale_mat, pixelsize * 0.5f);
mul_m4_m4_post(cd->text_mat, scale_mat);
WM_event_add_modal_handler(C, op);
ED_region_tag_redraw(region);
const char *status_str = TIP_(
"Move the mouse to change the voxel size. CTRL: Relative Scale, SHIFT: Precision Mode, "
"ENTER/LMB: Confirm Size, ESC/RMB: Cancel");
ED_workspace_status_text(C, status_str);
return OPERATOR_RUNNING_MODAL;
}
static bool voxel_size_edit_poll(bContext *C)
{
return CTX_wm_region_view3d(C) && object_remesh_poll(C);
}
void OBJECT_OT_voxel_size_edit(wmOperatorType *ot)
{
/* identifiers */
ot->name = "Edit Voxel Size";
ot->description = "Modify the mesh voxel size interactively used in the voxel remesher";
ot->idname = "OBJECT_OT_voxel_size_edit";
/* api callbacks */
ot->poll = voxel_size_edit_poll;
ot->invoke = voxel_size_edit_invoke;
ot->modal = voxel_size_edit_modal;
ot->cancel = voxel_size_edit_cancel;
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Quadriflow Remesh Operator
* \{ */
#define QUADRIFLOW_MIRROR_BISECT_TOLERANCE 0.005f
enum {
QUADRIFLOW_REMESH_RATIO = 1,
QUADRIFLOW_REMESH_EDGE_LENGTH,
QUADRIFLOW_REMESH_FACES,
};
enum eSymmetryAxes {
SYMMETRY_AXES_X = (1 << 0),
SYMMETRY_AXES_Y = (1 << 1),
SYMMETRY_AXES_Z = (1 << 2),
};
struct QuadriFlowJob {
/* from wmJob */
struct Object *owner;
bool *stop, *do_update;
float *progress;
const struct wmOperator *op;
Scene *scene;
int target_faces;
int seed;
bool use_mesh_symmetry;
eSymmetryAxes symmetry_axes;
bool use_preserve_sharp;
bool use_preserve_boundary;
bool use_mesh_curvature;
bool preserve_paint_mask;
bool smooth_normals;
int success;
bool is_nonblocking_job;
};
static bool mesh_is_manifold_consistent(Mesh *mesh)
{
/* In this check we count boundary edges as manifold. Additionally, we also
* check that the direction of the faces are consistent and doesn't suddenly
* flip
*/
const Span<float3> positions = mesh->vert_positions();
const Span<MEdge> edges = mesh->edges();
const Span<MLoop> loops = mesh->loops();
bool is_manifold_consistent = true;
char *edge_faces = (char *)MEM_callocN(mesh->totedge * sizeof(char), "remesh_manifold_check");
int *edge_vert = (int *)MEM_malloc_arrayN(
mesh->totedge, sizeof(uint), "remesh_consistent_check");
for (uint i = 0; i < mesh->totedge; i++) {
edge_vert[i] = -1;
}
for (const MLoop &loop : loops) {
edge_faces[loop.e] += 1;
if (edge_faces[loop.e] > 2) {
is_manifold_consistent = false;
break;
}
if (edge_vert[loop.e] == -1) {
edge_vert[loop.e] = loop.v;
}
else if (edge_vert[loop.e] == loop.v) {
/* Mesh has flips in the surface so it is non consistent */
is_manifold_consistent = false;
break;
}
}
if (is_manifold_consistent) {
for (const int i : edges.index_range()) {
/* Check for wire edges. */
if (edge_faces[i] == 0) {
is_manifold_consistent = false;
break;
}
/* Check for zero length edges */
if (compare_v3v3(positions[edges[i].v1], positions[edges[i].v2], 1e-4f)) {
is_manifold_consistent = false;
break;
}
}
}
MEM_freeN(edge_faces);
MEM_freeN(edge_vert);
return is_manifold_consistent;
}
static void quadriflow_free_job(void *customdata)
{
QuadriFlowJob *qj = static_cast<QuadriFlowJob *>(customdata);
MEM_freeN(qj);
}
/* called by quadriflowjob, only to check job 'stop' value */
static int quadriflow_break_job(void *customdata)
{
QuadriFlowJob *qj = (QuadriFlowJob *)customdata;
// return *(qj->stop);
/* this is not nice yet, need to make the jobs list template better
* for identifying/acting upon various different jobs */
/* but for now we'll reuse the render break... */
bool should_break = (G.is_break);
if (should_break) {
qj->success = -1;
}
return should_break;
}
/** Called by ocean-bake, #wmJob sends notifier. */
static void quadriflow_update_job(void *customdata, float progress, int *cancel)
{
QuadriFlowJob *qj = static_cast<QuadriFlowJob *>(customdata);
if (quadriflow_break_job(qj)) {
*cancel = 1;
}
else {
*cancel = 0;
}
*(qj->do_update) = true;
*(qj->progress) = progress;
}
static Mesh *remesh_symmetry_bisect(Mesh *mesh, eSymmetryAxes symmetry_axes)
{
MirrorModifierData mmd = {{nullptr}};
mmd.tolerance = QUADRIFLOW_MIRROR_BISECT_TOLERANCE;
Mesh *mesh_bisect, *mesh_bisect_temp;
mesh_bisect = BKE_mesh_copy_for_eval(mesh, false);
int axis;
float plane_co[3], plane_no[3];
zero_v3(plane_co);
for (char i = 0; i < 3; i++) {
eSymmetryAxes symm_it = (eSymmetryAxes)(1 << i);
if (symmetry_axes & symm_it) {
axis = i;
mmd.flag = 0;
mmd.flag &= MOD_MIR_BISECT_AXIS_X << i;
zero_v3(plane_no);
plane_no[axis] = -1.0f;
mesh_bisect_temp = mesh_bisect;
mesh_bisect = BKE_mesh_mirror_bisect_on_mirror_plane_for_modifier(
&mmd, mesh_bisect, axis, plane_co, plane_no);
if (mesh_bisect_temp != mesh_bisect) {
BKE_id_free(nullptr, mesh_bisect_temp);
}
}
}
BKE_id_free(nullptr, mesh);
return mesh_bisect;
}
static Mesh *remesh_symmetry_mirror(Object *ob, Mesh *mesh, eSymmetryAxes symmetry_axes)
{
MirrorModifierData mmd = {{nullptr}};
mmd.tolerance = QUADRIFLOW_MIRROR_BISECT_TOLERANCE;
Mesh *mesh_mirror, *mesh_mirror_temp;
mesh_mirror = mesh;
int axis;
for (char i = 0; i < 3; i++) {
eSymmetryAxes symm_it = (eSymmetryAxes)(1 << i);
if (symmetry_axes & symm_it) {
axis = i;
mmd.flag = 0;
mmd.flag &= MOD_MIR_AXIS_X << i;
mesh_mirror_temp = mesh_mirror;
mesh_mirror = BKE_mesh_mirror_apply_mirror_on_axis_for_modifier(
&mmd, ob, mesh_mirror, axis, true);
if (mesh_mirror_temp != mesh_mirror) {
BKE_id_free(nullptr, mesh_mirror_temp);
}
}
}
return mesh_mirror;
}
static void quadriflow_start_job(void *customdata, bool *stop, bool *do_update, float *progress)
{
QuadriFlowJob *qj = static_cast<QuadriFlowJob *>(customdata);
qj->stop = stop;
qj->do_update = do_update;
qj->progress = progress;
qj->success = 1;
if (qj->is_nonblocking_job) {
G.is_break = false; /* XXX shared with render - replace with job 'stop' switch */
}
Object *ob = qj->owner;
Mesh *mesh = static_cast<Mesh *>(ob->data);
Mesh *new_mesh;
Mesh *bisect_mesh;
/* Check if the mesh is manifold. Quadriflow requires manifold meshes */
if (!mesh_is_manifold_consistent(mesh)) {
qj->success = -2;
return;
}
/* Run Quadriflow bisect operations on a copy of the mesh to keep the code readable without
* freeing the original ID */
bisect_mesh = BKE_mesh_copy_for_eval(mesh, false);
/* Bisect the input mesh using the paint symmetry settings */
bisect_mesh = remesh_symmetry_bisect(bisect_mesh, qj->symmetry_axes);
new_mesh = BKE_mesh_remesh_quadriflow(bisect_mesh,
qj->target_faces,
qj->seed,
qj->use_preserve_sharp,
(qj->use_preserve_boundary || qj->use_mesh_symmetry),
#ifdef USE_MESH_CURVATURE
qj->use_mesh_curvature,
#else
false,
#endif
quadriflow_update_job,
(void *)qj);
BKE_id_free(nullptr, bisect_mesh);
if (new_mesh == nullptr) {
*do_update = true;
*stop = false;
if (qj->success == 1) {
/* This is not a user cancellation event. */
qj->success = 0;
}
return;
}
/* Mirror the Quadriflow result to build the final mesh */
new_mesh = remesh_symmetry_mirror(qj->owner, new_mesh, qj->symmetry_axes);
if (ob->mode == OB_MODE_SCULPT) {
ED_sculpt_undo_geometry_begin(ob, qj->op);
}
if (qj->preserve_paint_mask) {
BKE_mesh_remesh_reproject_paint_mask(new_mesh, mesh);
}
BKE_mesh_nomain_to_mesh(new_mesh, mesh, ob);
if (qj->smooth_normals) {
BKE_mesh_smooth_flag_set(static_cast<Mesh *>(ob->data), true);
}
if (ob->mode == OB_MODE_SCULPT) {
ED_sculpt_undo_geometry_end(ob);
}
BKE_mesh_batch_cache_dirty_tag(static_cast<Mesh *>(ob->data), BKE_MESH_BATCH_DIRTY_ALL);
*do_update = true;
*stop = false;
}
static void quadriflow_end_job(void *customdata)
{
QuadriFlowJob *qj = (QuadriFlowJob *)customdata;
Object *ob = qj->owner;
if (qj->is_nonblocking_job) {
WM_set_locked_interface(static_cast<wmWindowManager *>(G_MAIN->wm.first), false);
}
switch (qj->success) {
case 1:
DEG_id_tag_update(&ob->id, ID_RECALC_GEOMETRY);
WM_reportf(RPT_INFO, "QuadriFlow: Remeshing completed");
break;
case 0:
WM_reportf(RPT_ERROR, "QuadriFlow: Remeshing failed");
break;
case -1:
WM_report(RPT_WARNING, "QuadriFlow: Remeshing cancelled");
break;
case -2:
WM_report(RPT_WARNING,
"QuadriFlow: The mesh needs to be manifold and have face normals that point in a "
"consistent direction");
break;
}
}
static int quadriflow_remesh_exec(bContext *C, wmOperator *op)
{
QuadriFlowJob *job = (QuadriFlowJob *)MEM_mallocN(sizeof(QuadriFlowJob), "QuadriFlowJob");
job->op = op;
job->owner = CTX_data_active_object(C);
job->scene = CTX_data_scene(C);
job->target_faces = RNA_int_get(op->ptr, "target_faces");
job->seed = RNA_int_get(op->ptr, "seed");
job->use_mesh_symmetry = RNA_boolean_get(op->ptr, "use_mesh_symmetry");
job->use_preserve_sharp = RNA_boolean_get(op->ptr, "use_preserve_sharp");
job->use_preserve_boundary = RNA_boolean_get(op->ptr, "use_preserve_boundary");
#ifdef USE_MESH_CURVATURE
job->use_mesh_curvature = RNA_boolean_get(op->ptr, "use_mesh_curvature");
#endif
job->preserve_paint_mask = RNA_boolean_get(op->ptr, "preserve_paint_mask");
job->smooth_normals = RNA_boolean_get(op->ptr, "smooth_normals");
/* Update the target face count if symmetry is enabled */
Object *ob = CTX_data_active_object(C);
if (ob && job->use_mesh_symmetry) {
Mesh *mesh = BKE_mesh_from_object(ob);
job->symmetry_axes = (eSymmetryAxes)mesh->symmetry;
for (char i = 0; i < 3; i++) {
eSymmetryAxes symm_it = (eSymmetryAxes)(1 << i);
if (job->symmetry_axes & symm_it) {
job->target_faces = job->target_faces / 2;
}
}
}
else {
job->use_mesh_symmetry = false;
job->symmetry_axes = (eSymmetryAxes)0;
}
if (op->flag == 0) {
/* This is called directly from the exec operator, this operation is now blocking */
job->is_nonblocking_job = false;
bool stop = false, do_update = true;
float progress;
quadriflow_start_job(job, &stop, &do_update, &progress);
quadriflow_end_job(job);
quadriflow_free_job(job);
}
else {
/* Non blocking call. For when the operator has been called from the GUI. */
job->is_nonblocking_job = true;
wmJob *wm_job = WM_jobs_get(CTX_wm_manager(C),
CTX_wm_window(C),
CTX_data_scene(C),
"QuadriFlow Remesh",
WM_JOB_PROGRESS,
WM_JOB_TYPE_QUADRIFLOW_REMESH);
WM_jobs_customdata_set(wm_job, job, quadriflow_free_job);
WM_jobs_timer(wm_job, 0.1, NC_GEOM | ND_DATA, NC_GEOM | ND_DATA);
WM_jobs_callbacks(wm_job, quadriflow_start_job, nullptr, nullptr, quadriflow_end_job);
WM_set_locked_interface(CTX_wm_manager(C), true);
WM_jobs_start(CTX_wm_manager(C), wm_job);
}
return OPERATOR_FINISHED;
}
static bool quadriflow_check(bContext *C, wmOperator *op)
{
int mode = RNA_enum_get(op->ptr, "mode");
if (mode == QUADRIFLOW_REMESH_EDGE_LENGTH) {
float area = RNA_float_get(op->ptr, "mesh_area");
if (area < 0.0f) {
Object *ob = CTX_data_active_object(C);
area = BKE_mesh_calc_area(static_cast<const Mesh *>(ob->data));
RNA_float_set(op->ptr, "mesh_area", area);
}
int num_faces;
float edge_len = RNA_float_get(op->ptr, "target_edge_length");
num_faces = area / (edge_len * edge_len);
RNA_int_set(op->ptr, "target_faces", num_faces);
}
else if (mode == QUADRIFLOW_REMESH_RATIO) {
Object *ob = CTX_data_active_object(C);
Mesh *mesh = static_cast<Mesh *>(ob->data);
int num_faces;
float ratio = RNA_float_get(op->ptr, "target_ratio");
num_faces = mesh->totpoly * ratio;
RNA_int_set(op->ptr, "target_faces", num_faces);
}
return true;
}
/* Hide the target variables if they are not active */
static bool quadriflow_poll_property(const bContext *C, wmOperator *op, const PropertyRNA *prop)
{
const char *prop_id = RNA_property_identifier(prop);
if (STRPREFIX(prop_id, "target")) {
int mode = RNA_enum_get(op->ptr, "mode");
if (STREQ(prop_id, "target_edge_length") && mode != QUADRIFLOW_REMESH_EDGE_LENGTH) {
return false;
}
if (STREQ(prop_id, "target_faces")) {
if (mode != QUADRIFLOW_REMESH_FACES) {
/* Make sure we can edit the target_faces value even if it doesn't start as EDITABLE */
float area = RNA_float_get(op->ptr, "mesh_area");
if (area < -0.8f) {
area += 0.2f;
/* Make sure we have up to date values from the start */
RNA_def_property_flag((PropertyRNA *)prop, PROP_EDITABLE);
quadriflow_check((bContext *)C, op);
}
/* Only disable input */
RNA_def_property_clear_flag((PropertyRNA *)prop, PROP_EDITABLE);
}
else {
RNA_def_property_flag((PropertyRNA *)prop, PROP_EDITABLE);
}
}
else if (STREQ(prop_id, "target_ratio") && mode != QUADRIFLOW_REMESH_RATIO) {
return false;
}
}
return true;
}
static const EnumPropertyItem mode_type_items[] = {
{QUADRIFLOW_REMESH_RATIO,
"RATIO",
0,
"Ratio",
"Specify target number of faces relative to the current mesh"},
{QUADRIFLOW_REMESH_EDGE_LENGTH,
"EDGE",
0,
"Edge Length",
"Input target edge length in the new mesh"},
{QUADRIFLOW_REMESH_FACES, "FACES", 0, "Faces", "Input target number of faces in the new mesh"},
{0, nullptr, 0, nullptr, nullptr},
};
void OBJECT_OT_quadriflow_remesh(wmOperatorType *ot)
{
/* identifiers */
ot->name = "QuadriFlow Remesh";
ot->description =
"Create a new quad based mesh using the surface data of the current mesh. All data "
"layers will be lost";
ot->idname = "OBJECT_OT_quadriflow_remesh";
/* api callbacks */
ot->poll = object_remesh_poll;
ot->poll_property = quadriflow_poll_property;
ot->check = quadriflow_check;
ot->invoke = WM_operator_props_popup_confirm;
ot->exec = quadriflow_remesh_exec;
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;
PropertyRNA *prop;
/* properties */
RNA_def_boolean(ot->srna,
"use_mesh_symmetry",
true,
"Use Mesh Symmetry",
"Generates a symmetrical mesh using the mesh symmetry configuration");
RNA_def_boolean(ot->srna,
"use_preserve_sharp",
false,
"Preserve Sharp",
"Try to preserve sharp features on the mesh");
RNA_def_boolean(ot->srna,
"use_preserve_boundary",
false,
"Preserve Mesh Boundary",
"Try to preserve mesh boundary on the mesh");
#ifdef USE_MESH_CURVATURE
RNA_def_boolean(ot->srna,
"use_mesh_curvature",
false,
"Use Mesh Curvature",
"Take the mesh curvature into account when remeshing");
#endif
RNA_def_boolean(ot->srna,
"preserve_paint_mask",
false,
"Preserve Paint Mask",
"Reproject the paint mask onto the new mesh");
RNA_def_boolean(ot->srna,
"smooth_normals",
false,
"Smooth Normals",
"Set the output mesh normals to smooth");
RNA_def_enum(ot->srna,
"mode",
mode_type_items,
QUADRIFLOW_REMESH_FACES,
"Mode",
"How to specify the amount of detail for the new mesh");
prop = RNA_def_float(ot->srna,
"target_ratio",
1,
0,
FLT_MAX,
"Ratio",
"Relative number of faces compared to the current mesh",
0.0f,
1.0f);
prop = RNA_def_float(ot->srna,
"target_edge_length",
0.1f,
0.0000001f,
FLT_MAX,
"Edge Length",
"Target edge length in the new mesh",
0.00001f,
1.0f);
prop = RNA_def_int(ot->srna,
"target_faces",
4000,
1,
INT_MAX,
"Number of Faces",
"Approximate number of faces (quads) in the new mesh",
1,
INT_MAX);
prop = RNA_def_float(
ot->srna,
"mesh_area",
-1.0f,
-FLT_MAX,
FLT_MAX,
"Old Object Face Area",
"This property is only used to cache the object area for later calculations",
0.0f,
FLT_MAX);
RNA_def_property_flag(prop, static_cast<PropertyFlag>(PROP_HIDDEN | PROP_SKIP_SAVE));
RNA_def_int(ot->srna,
"seed",
0,
0,
INT_MAX,
"Seed",
"Random seed to use with the solver. Different seeds will cause the remesher to "
"come up with different quad layouts on the mesh",
0,
255);
}
/** \} */