This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/io/collada/AnimationImporter.cpp
Sergey Sharybin f17fbf8065 Refactor: Rename Object->obmat to Object->object_to_world
Motivation is to disambiguate on the naming level what the matrix
actually means. It is very easy to understand the meaning backwards,
especially since in Python the name goes the opposite way (it is
called `world_matrix` in the Python API).

It is important to disambiguate the naming without making developers
to look into the comment in the header file (which is also not super
clear either). Additionally, more clear naming facilitates the unit
verification (or, in this case, space validation) when reading an
expression.

This patch calls the matrix `object_to_world` which makes it clear
from the local code what is it exactly going on. This is only done
on DNA level, and a lot of local variables still follow the old
naming.

A DNA rename is setup in a way that there is no change on the file
level, so there should be no regressions at all.

The possibility is to add `_matrix` or `_mat` suffix to the name
to make it explicit that it is a matrix. Although, not sure if it
really helps the readability, or is it something redundant.

Differential Revision: https://developer.blender.org/D16328
2022-11-01 10:48:18 +01:00

2192 lines
66 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup collada
*/
#include <cstddef>
/* COLLADABU_ASSERT, may be able to remove later */
#include "COLLADABUPlatform.h"
#include "DNA_armature_types.h"
#include "ED_keyframing.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_string_utils.h"
#include "BLT_translation.h"
#include "BKE_action.h"
#include "BKE_armature.h"
#include "BKE_fcurve.h"
#include "BKE_object.h"
#include "MEM_guardedalloc.h"
#include "AnimationImporter.h"
#include "ArmatureImporter.h"
#include "MaterialExporter.h"
#include "collada_utils.h"
#include <algorithm>
/* first try node name, if not available (since is optional), fall back to original id */
template<class T> static const char *bc_get_joint_name(T *node)
{
const std::string &id = node->getName();
return id.empty() ? node->getOriginalId().c_str() : id.c_str();
}
FCurve *AnimationImporter::create_fcurve(int array_index, const char *rna_path)
{
FCurve *fcu = BKE_fcurve_create();
fcu->flag = (FCURVE_VISIBLE | FCURVE_SELECTED);
fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
fcu->array_index = array_index;
return fcu;
}
void AnimationImporter::add_bezt(FCurve *fcu,
float frame,
float value,
eBezTriple_Interpolation ipo)
{
// float fps = float(FPS);
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
bez.vec[1][0] = frame;
bez.vec[1][1] = value;
bez.ipo = ipo; /* use default interpolation mode here... */
bez.f1 = bez.f2 = bez.f3 = SELECT;
bez.h1 = bez.h2 = HD_AUTO;
insert_bezt_fcurve(fcu, &bez, INSERTKEY_NOFLAGS);
BKE_fcurve_handles_recalc(fcu);
}
void AnimationImporter::animation_to_fcurves(COLLADAFW::AnimationCurve *curve)
{
COLLADAFW::FloatOrDoubleArray &input = curve->getInputValues();
COLLADAFW::FloatOrDoubleArray &output = curve->getOutputValues();
float fps = float(FPS);
size_t dim = curve->getOutDimension();
uint i;
std::vector<FCurve *> &fcurves = curve_map[curve->getUniqueId()];
switch (dim) {
case 1: /* X, Y, Z or angle */
case 3: /* XYZ */
case 4:
case 16: /* matrix */
{
for (i = 0; i < dim; i++) {
FCurve *fcu = BKE_fcurve_create();
fcu->flag = (FCURVE_VISIBLE | FCURVE_SELECTED);
fcu->array_index = 0;
fcu->auto_smoothing = U.auto_smoothing_new;
for (uint j = 0; j < curve->getKeyCount(); j++) {
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
/* input, output */
bez.vec[1][0] = bc_get_float_value(input, j) * fps;
bez.vec[1][1] = bc_get_float_value(output, j * dim + i);
bez.h1 = bez.h2 = HD_AUTO;
if (curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER ||
curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_STEP) {
COLLADAFW::FloatOrDoubleArray &intan = curve->getInTangentValues();
COLLADAFW::FloatOrDoubleArray &outtan = curve->getOutTangentValues();
/* In-tangent. */
uint index = 2 * (j * dim + i);
bez.vec[0][0] = bc_get_float_value(intan, index) * fps;
bez.vec[0][1] = bc_get_float_value(intan, index + 1);
/* Out-tangent. */
bez.vec[2][0] = bc_get_float_value(outtan, index) * fps;
bez.vec[2][1] = bc_get_float_value(outtan, index + 1);
if (curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER) {
bez.ipo = BEZT_IPO_BEZ;
bez.h1 = bez.h2 = HD_AUTO_ANIM;
}
else {
bez.ipo = BEZT_IPO_CONST;
}
}
else {
bez.ipo = BEZT_IPO_LIN;
}
#if 0
bez.ipo = U.ipo_new; /* use default interpolation mode here... */
#endif
bez.f1 = bez.f2 = bez.f3 = SELECT;
insert_bezt_fcurve(fcu, &bez, INSERTKEY_NOFLAGS);
}
BKE_fcurve_handles_recalc(fcu);
fcurves.push_back(fcu);
unused_curves.push_back(fcu);
}
} break;
default:
fprintf(stderr,
"Output dimension of %d is not yet supported (animation id = %s)\n",
int(dim),
curve->getOriginalId().c_str());
}
}
void AnimationImporter::fcurve_deg_to_rad(FCurve *cu)
{
for (uint i = 0; i < cu->totvert; i++) {
/* TODO: convert handles too. */
cu->bezt[i].vec[1][1] *= DEG2RADF(1.0f);
cu->bezt[i].vec[0][1] *= DEG2RADF(1.0f);
cu->bezt[i].vec[2][1] *= DEG2RADF(1.0f);
}
}
void AnimationImporter::fcurve_scale(FCurve *cu, int scale)
{
for (uint i = 0; i < cu->totvert; i++) {
/* TODO: convert handles too. */
cu->bezt[i].vec[1][1] *= scale;
cu->bezt[i].vec[0][1] *= scale;
cu->bezt[i].vec[2][1] *= scale;
}
}
void AnimationImporter::fcurve_is_used(FCurve *fcu)
{
unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), fcu),
unused_curves.end());
}
void AnimationImporter::add_fcurves_to_object(Main *bmain,
Object *ob,
std::vector<FCurve *> &curves,
char *rna_path,
int array_index,
Animation *animated)
{
bAction *act;
if (!ob->adt || !ob->adt->action) {
act = ED_id_action_ensure(bmain, (ID *)&ob->id);
}
else {
act = ob->adt->action;
}
std::vector<FCurve *>::iterator it;
int i;
#if 0
char *p = strstr(rna_path, "rotation_euler");
bool is_rotation = p && *(p + strlen("rotation_euler")) == '\0';
/* convert degrees to radians for rotation */
if (is_rotation) {
fcurve_deg_to_rad(fcu);
}
#endif
for (it = curves.begin(), i = 0; it != curves.end(); it++, i++) {
FCurve *fcu = *it;
fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
if (array_index == -1) {
fcu->array_index = i;
}
else {
fcu->array_index = array_index;
}
if (ob->type == OB_ARMATURE) {
bActionGroup *grp = nullptr;
const char *bone_name = bc_get_joint_name(animated->node);
if (bone_name) {
/* try to find group */
grp = BKE_action_group_find_name(act, bone_name);
/* no matching groups, so add one */
if (grp == nullptr) {
/* Add a new group, and make it active */
grp = MEM_cnew<bActionGroup>("bActionGroup");
grp->flag = AGRP_SELECTED;
BLI_strncpy(grp->name, bone_name, sizeof(grp->name));
BLI_addtail(&act->groups, grp);
BLI_uniquename(&act->groups,
grp,
CTX_DATA_(BLT_I18NCONTEXT_ID_ACTION, "Group"),
'.',
offsetof(bActionGroup, name),
64);
}
/* add F-Curve to group */
action_groups_add_channel(act, grp, fcu);
fcurve_is_used(fcu);
}
#if 0
if (is_rotation) {
fcurves_actionGroup_map[grp].push_back(fcu);
}
#endif
}
else {
BLI_addtail(&act->curves, fcu);
fcurve_is_used(fcu);
}
}
}
AnimationImporter::~AnimationImporter()
{
/* free unused FCurves */
for (FCurve *unused_curve : unused_curves) {
BKE_fcurve_free(unused_curve);
}
if (!unused_curves.empty()) {
fprintf(stderr, "removed %d unused curves\n", int(unused_curves.size()));
}
}
bool AnimationImporter::write_animation(const COLLADAFW::Animation *anim)
{
if (anim->getAnimationType() == COLLADAFW::Animation::ANIMATION_CURVE) {
COLLADAFW::AnimationCurve *curve = (COLLADAFW::AnimationCurve *)anim;
/* XXX Don't know if it's necessary
* Should we check outPhysicalDimension? */
if (curve->getInPhysicalDimension() != COLLADAFW::PHYSICAL_DIMENSION_TIME) {
fprintf(stderr, "Inputs physical dimension is not time.\n");
return true;
}
/* a curve can have mixed interpolation type,
* in this case curve->getInterpolationTypes returns a list of interpolation types per key */
COLLADAFW::AnimationCurve::InterpolationType interp = curve->getInterpolationType();
if (interp != COLLADAFW::AnimationCurve::INTERPOLATION_MIXED) {
switch (interp) {
case COLLADAFW::AnimationCurve::INTERPOLATION_LINEAR:
case COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER:
case COLLADAFW::AnimationCurve::INTERPOLATION_STEP:
animation_to_fcurves(curve);
break;
default:
/* TODO: there are also CARDINAL, HERMITE, BSPLINE and STEP types. */
fprintf(stderr,
"CARDINAL, HERMITE and BSPLINE anim interpolation types not supported yet.\n");
break;
}
}
else {
/* not supported yet */
fprintf(stderr, "MIXED anim interpolation type is not supported yet.\n");
}
}
else {
fprintf(stderr, "FORMULA animation type is not supported yet.\n");
}
return true;
}
bool AnimationImporter::write_animation_list(const COLLADAFW::AnimationList *animlist)
{
const COLLADAFW::UniqueId &animlist_id = animlist->getUniqueId();
animlist_map[animlist_id] = animlist;
#if 0
/* should not happen */
if (uid_animated_map.find(animlist_id) == uid_animated_map.end()) {
return true;
}
/* for bones rna_path is like: pose.bones["bone-name"].rotation */
#endif
return true;
}
void AnimationImporter::read_node_transform(COLLADAFW::Node *node, Object *ob)
{
float mat[4][4];
TransformReader::get_node_mat(mat, node, &uid_animated_map, ob);
if (ob) {
copy_m4_m4(ob->object_to_world, mat);
BKE_object_apply_mat4(ob, ob->object_to_world, false, false);
}
}
#if 0
virtual void AnimationImporter::change_eul_to_quat(Object *ob, bAction *act)
{
bActionGroup *grp;
int i;
for (grp = (bActionGroup *)act->groups.first; grp; grp = grp->next) {
FCurve *eulcu[3] = {NULL, NULL, NULL};
if (fcurves_actionGroup_map.find(grp) == fcurves_actionGroup_map.end()) {
continue;
}
std::vector<FCurve *> &rot_fcurves = fcurves_actionGroup_map[grp];
if (rot_fcurves.size() > 3) {
continue;
}
for (i = 0; i < rot_fcurves.size(); i++) {
eulcu[rot_fcurves[i]->array_index] = rot_fcurves[i];
}
char joint_path[100];
char rna_path[100];
char grp_name_esc[sizeof(grp->name) * 2];
BLI_str_escape(grp_name_esc, grp->name, sizeof(grp_name_esc));
BLI_snprintf(joint_path, sizeof(joint_path), "pose.bones[\"%s\"]", grp_name_esc);
BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_quaternion", joint_path);
FCurve *quatcu[4] = {
create_fcurve(0, rna_path),
create_fcurve(1, rna_path),
create_fcurve(2, rna_path),
create_fcurve(3, rna_path),
};
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, grp->name);
float m4[4][4], irest[3][3];
invert_m4_m4(m4, chan->bone->arm_mat);
copy_m3_m4(irest, m4);
for (i = 0; i < 3; i++) {
FCurve *cu = eulcu[i];
if (!cu) {
continue;
}
for (int j = 0; j < cu->totvert; j++) {
float frame = cu->bezt[j].vec[1][0];
float eul[3] = {
eulcu[0] ? evaluate_fcurve(eulcu[0], frame) : 0.0f,
eulcu[1] ? evaluate_fcurve(eulcu[1], frame) : 0.0f,
eulcu[2] ? evaluate_fcurve(eulcu[2], frame) : 0.0f,
};
/* make eul relative to bone rest pose */
float rot[3][3], rel[3][3], quat[4];
# if 0
eul_to_mat3(rot, eul);
mul_m3_m3m3(rel, irest, rot);
mat3_to_quat(quat, rel);
# endif
eul_to_quat(quat, eul);
for (int k = 0; k < 4; k++) {
create_bezt(quatcu[k], frame, quat[k], U.ipo_new);
}
}
}
/* now replace old Euler curves */
for (i = 0; i < 3; i++) {
if (!eulcu[i]) {
continue;
}
action_groups_remove_channel(act, eulcu[i]);
BKE_fcurve_free(eulcu[i]);
}
chan->rotmode = ROT_MODE_QUAT;
for (i = 0; i < 4; i++) {
action_groups_add_channel(act, grp, quatcu[i]);
}
}
bPoseChannel *pchan;
for (pchan = (bPoseChannel *)ob->pose->chanbase.first; pchan; pchan = pchan->next) {
pchan->rotmode = ROT_MODE_QUAT;
}
}
#endif
void AnimationImporter::modify_fcurve(std::vector<FCurve *> *curves,
const char *rna_path,
int array_index,
int scale)
{
std::vector<FCurve *>::iterator it;
int i;
for (it = curves->begin(), i = 0; it != curves->end(); it++, i++) {
FCurve *fcu = *it;
fcu->rna_path = BLI_strdup(rna_path);
if (array_index == -1) {
fcu->array_index = i;
}
else {
fcu->array_index = array_index;
}
if (scale != 1) {
fcurve_scale(fcu, scale);
}
fcurve_is_used(fcu);
}
}
void AnimationImporter::unused_fcurve(std::vector<FCurve *> *curves)
{
/* when an error happens and we can't actually use curve remove it from unused_curves */
std::vector<FCurve *>::iterator it;
for (it = curves->begin(); it != curves->end(); it++) {
FCurve *fcu = *it;
fcurve_is_used(fcu);
}
}
void AnimationImporter::find_frames(std::vector<float> *frames, std::vector<FCurve *> *curves)
{
std::vector<FCurve *>::iterator iter;
for (iter = curves->begin(); iter != curves->end(); iter++) {
FCurve *fcu = *iter;
for (uint k = 0; k < fcu->totvert; k++) {
/* get frame value from bezTriple */
float fra = fcu->bezt[k].vec[1][0];
/* if frame already not added add frame to frames */
if (std::find(frames->begin(), frames->end(), fra) == frames->end()) {
frames->push_back(fra);
}
}
}
}
static int get_animation_axis_index(const COLLADABU::Math::Vector3 &axis)
{
int index;
if (COLLADABU::Math::Vector3::UNIT_X == axis) {
index = 0;
}
else if (COLLADABU::Math::Vector3::UNIT_Y == axis) {
index = 1;
}
else if (COLLADABU::Math::Vector3::UNIT_Z == axis) {
index = 2;
}
else {
index = -1;
}
return index;
}
void AnimationImporter::Assign_transform_animations(
COLLADAFW::Transformation *transform,
const COLLADAFW::AnimationList::AnimationBinding *binding,
std::vector<FCurve *> *curves,
bool is_joint,
char *joint_path)
{
COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
/* to check if the no of curves are valid */
bool xyz =
(ELEM(tm_type, COLLADAFW::Transformation::TRANSLATE, COLLADAFW::Transformation::SCALE) &&
binding->animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
if (!((!xyz && curves->size() == 1) || (xyz && curves->size() == 3) || is_matrix)) {
fprintf(stderr, "expected %d curves, got %d\n", xyz ? 3 : 1, int(curves->size()));
return;
}
char rna_path[100];
switch (tm_type) {
case COLLADAFW::Transformation::TRANSLATE:
case COLLADAFW::Transformation::SCALE: {
bool loc = tm_type == COLLADAFW::Transformation::TRANSLATE;
if (is_joint) {
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, loc ? "location" : "scale");
}
else {
BLI_strncpy(rna_path, loc ? "location" : "scale", sizeof(rna_path));
}
switch (binding->animationClass) {
case COLLADAFW::AnimationList::POSITION_X:
modify_fcurve(curves, rna_path, 0);
break;
case COLLADAFW::AnimationList::POSITION_Y:
modify_fcurve(curves, rna_path, 1);
break;
case COLLADAFW::AnimationList::POSITION_Z:
modify_fcurve(curves, rna_path, 2);
break;
case COLLADAFW::AnimationList::POSITION_XYZ:
modify_fcurve(curves, rna_path, -1);
break;
default:
unused_fcurve(curves);
fprintf(stderr,
"AnimationClass %d is not supported for %s.\n",
binding->animationClass,
loc ? "TRANSLATE" : "SCALE");
}
break;
}
case COLLADAFW::Transformation::ROTATE: {
if (is_joint) {
BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_euler", joint_path);
}
else {
BLI_strncpy(rna_path, "rotation_euler", sizeof(rna_path));
}
std::vector<FCurve *>::iterator iter;
for (iter = curves->begin(); iter != curves->end(); iter++) {
FCurve *fcu = *iter;
/* if transform is rotation the fcurves values must be turned in to radian. */
if (is_rotation) {
fcurve_deg_to_rad(fcu);
}
}
COLLADAFW::Rotate *rot = (COLLADAFW::Rotate *)transform;
COLLADABU::Math::Vector3 &axis = rot->getRotationAxis();
switch (binding->animationClass) {
case COLLADAFW::AnimationList::ANGLE: {
int axis_index = get_animation_axis_index(axis);
if (axis_index >= 0) {
modify_fcurve(curves, rna_path, axis_index);
}
else {
unused_fcurve(curves);
}
} break;
case COLLADAFW::AnimationList::AXISANGLE:
/* TODO: convert axis-angle to quat? or XYZ? */
default:
unused_fcurve(curves);
fprintf(stderr,
"AnimationClass %d is not supported for ROTATE transformation.\n",
binding->animationClass);
}
break;
}
case COLLADAFW::Transformation::MATRIX:
#if 0
{
COLLADAFW::Matrix *mat = (COLLADAFW::Matrix *)transform;
COLLADABU::Math::Matrix4 mat4 = mat->getMatrix();
switch (binding->animationClass) {
case COLLADAFW::AnimationList::TRANSFORM:
}
}
#endif
unused_fcurve(curves);
break;
case COLLADAFW::Transformation::SKEW:
case COLLADAFW::Transformation::LOOKAT:
unused_fcurve(curves);
fprintf(stderr, "Animation of SKEW and LOOKAT transformations is not supported yet.\n");
break;
}
}
void AnimationImporter::Assign_color_animations(const COLLADAFW::UniqueId &listid,
ListBase *AnimCurves,
const char *anim_type)
{
char rna_path[100];
BLI_strncpy(rna_path, anim_type, sizeof(rna_path));
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
if (animlist == nullptr) {
fprintf(stderr,
"Collada: No animlist found for ID: %s of type %s\n",
listid.toAscii().c_str(),
anim_type);
return;
}
const COLLADAFW::AnimationList::AnimationBindings &bindings = animlist->getAnimationBindings();
/* all the curves belonging to the current binding */
std::vector<FCurve *> animcurves;
for (uint j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
switch (bindings[j].animationClass) {
case COLLADAFW::AnimationList::COLOR_R:
modify_fcurve(&animcurves, rna_path, 0);
break;
case COLLADAFW::AnimationList::COLOR_G:
modify_fcurve(&animcurves, rna_path, 1);
break;
case COLLADAFW::AnimationList::COLOR_B:
modify_fcurve(&animcurves, rna_path, 2);
break;
case COLLADAFW::AnimationList::COLOR_RGB:
case COLLADAFW::AnimationList::COLOR_RGBA: /* to do-> set intensity */
modify_fcurve(&animcurves, rna_path, -1);
break;
default:
unused_fcurve(&animcurves);
fprintf(stderr,
"AnimationClass %d is not supported for %s.\n",
bindings[j].animationClass,
"COLOR");
}
std::vector<FCurve *>::iterator iter;
/* Add the curves of the current animation to the object */
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
BLI_addtail(AnimCurves, fcu);
fcurve_is_used(fcu);
}
}
}
void AnimationImporter::Assign_float_animations(const COLLADAFW::UniqueId &listid,
ListBase *AnimCurves,
const char *anim_type)
{
char rna_path[100];
if (animlist_map.find(listid) == animlist_map.end()) {
return;
}
/* anim_type has animations */
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings &bindings = animlist->getAnimationBindings();
/* all the curves belonging to the current binding */
std::vector<FCurve *> animcurves;
for (uint j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
BLI_strncpy(rna_path, anim_type, sizeof(rna_path));
modify_fcurve(&animcurves, rna_path, 0);
std::vector<FCurve *>::iterator iter;
/* Add the curves of the current animation to the object */
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
/* All anim_types whose values are to be converted from Degree to Radians can be ORed here
*/
if (STREQ("spot_size", anim_type)) {
/* NOTE: Do NOT convert if imported file was made by blender <= 2.69.10
* Reason: old blender versions stored spot_size in radians (was a bug)
*/
if (this->import_from_version.empty() ||
BLI_strcasecmp_natural(this->import_from_version.c_str(), "2.69.10") != -1) {
fcurve_deg_to_rad(fcu);
}
}
/** XXX What About animation-type "rotation" ? */
BLI_addtail(AnimCurves, fcu);
fcurve_is_used(fcu);
}
}
}
float AnimationImporter::convert_to_focal_length(float in_xfov,
int fov_type,
float aspect,
float sensorx)
{
/* NOTE: Needs more testing (As we currently have no official test data for this) */
float xfov = (fov_type == CAMERA_YFOV) ?
(2.0f * atanf(aspect * tanf(DEG2RADF(in_xfov) * 0.5f))) :
DEG2RADF(in_xfov);
return fov_to_focallength(xfov, sensorx);
}
void AnimationImporter::Assign_lens_animations(const COLLADAFW::UniqueId &listid,
ListBase *AnimCurves,
const double aspect,
Camera *cam,
const char *anim_type,
int fov_type)
{
char rna_path[100];
if (animlist_map.find(listid) == animlist_map.end()) {
return;
}
/* anim_type has animations */
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings &bindings = animlist->getAnimationBindings();
/* all the curves belonging to the current binding */
std::vector<FCurve *> animcurves;
for (uint j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
BLI_strncpy(rna_path, anim_type, sizeof(rna_path));
modify_fcurve(&animcurves, rna_path, 0);
std::vector<FCurve *>::iterator iter;
/* Add the curves of the current animation to the object */
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
for (uint i = 0; i < fcu->totvert; i++) {
fcu->bezt[i].vec[0][1] = convert_to_focal_length(
fcu->bezt[i].vec[0][1], fov_type, aspect, cam->sensor_x);
fcu->bezt[i].vec[1][1] = convert_to_focal_length(
fcu->bezt[i].vec[1][1], fov_type, aspect, cam->sensor_x);
fcu->bezt[i].vec[2][1] = convert_to_focal_length(
fcu->bezt[i].vec[2][1], fov_type, aspect, cam->sensor_x);
}
BLI_addtail(AnimCurves, fcu);
fcurve_is_used(fcu);
}
}
}
void AnimationImporter::apply_matrix_curves(Object *ob,
std::vector<FCurve *> &animcurves,
COLLADAFW::Node *root,
COLLADAFW::Node *node,
COLLADAFW::Transformation *tm)
{
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
const char *bone_name = is_joint ? bc_get_joint_name(node) : nullptr;
char joint_path[200];
if (is_joint) {
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
}
std::vector<float> frames;
find_frames(&frames, &animcurves);
float irest_dae[4][4];
float rest[4][4], irest[4][4];
if (is_joint) {
get_joint_rest_mat(irest_dae, root, node);
invert_m4(irest_dae);
Bone *bone = BKE_armature_find_bone_name((bArmature *)ob->data, bone_name);
if (!bone) {
fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
return;
}
unit_m4(rest);
copy_m4_m4(rest, bone->arm_mat);
invert_m4_m4(irest, rest);
}
/* new curves to assign matrix transform animation */
FCurve *newcu[10]; /* if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale */
uint totcu = 10;
const char *tm_str = nullptr;
char rna_path[200];
for (int i = 0; i < totcu; i++) {
int axis = i;
if (i < 4) {
tm_str = "rotation_quaternion";
axis = i;
}
else if (i < 7) {
tm_str = "location";
axis = i - 4;
}
else {
tm_str = "scale";
axis = i - 7;
}
if (is_joint) {
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
}
else {
BLI_strncpy(rna_path, tm_str, sizeof(rna_path));
}
newcu[i] = create_fcurve(axis, rna_path);
newcu[i]->totvert = frames.size();
}
if (frames.empty()) {
return;
}
std::sort(frames.begin(), frames.end());
std::vector<float>::iterator it;
#if 0
float qref[4];
unit_qt(qref);
#endif
/* sample values at each frame */
for (it = frames.begin(); it != frames.end(); it++) {
float fra = *it;
float mat[4][4];
float matfra[4][4];
unit_m4(matfra);
/* calc object-space mat */
evaluate_transform_at_frame(matfra, node, fra);
/* for joints, we need a special matrix */
if (is_joint) {
/* special matrix: iR * M * iR_dae * R
* where R, iR are bone rest and inverse rest mats in world space (Blender bones),
* iR_dae is joint inverse rest matrix (DAE)
* and M is an evaluated joint world-space matrix (DAE) */
float temp[4][4], par[4][4];
/* calc M */
calc_joint_parent_mat_rest(par, nullptr, root, node);
mul_m4_m4m4(temp, par, matfra);
#if 0
evaluate_joint_world_transform_at_frame(temp, NULL, node, fra);
#endif
/* calc special matrix */
mul_m4_series(mat, irest, temp, irest_dae, rest);
}
else {
copy_m4_m4(mat, matfra);
}
float rot[4], loc[3], scale[3];
mat4_decompose(loc, rot, scale, mat);
/* add keys */
for (int i = 0; i < totcu; i++) {
if (i < 4) {
add_bezt(newcu[i], fra, rot[i]);
}
else if (i < 7) {
add_bezt(newcu[i], fra, loc[i - 4]);
}
else {
add_bezt(newcu[i], fra, scale[i - 7]);
}
}
}
Main *bmain = CTX_data_main(mContext);
ED_id_action_ensure(bmain, (ID *)&ob->id);
ListBase *curves = &ob->adt->action->curves;
/* add curves */
for (int i = 0; i < totcu; i++) {
if (is_joint) {
add_bone_fcurve(ob, node, newcu[i]);
}
else {
BLI_addtail(curves, newcu[i]);
}
#if 0
fcurve_is_used(newcu[i]); /* never added to unused */
#endif
}
if (is_joint) {
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
chan->rotmode = ROT_MODE_QUAT;
}
else {
ob->rotmode = ROT_MODE_QUAT;
}
}
/*
* This function returns the aspect ration from the Collada camera.
*
* NOTE:COLLADA allows to specify either XFov, or YFov alone.
* In that case the aspect ratio can be determined from
* the viewport aspect ratio (which is 1:1 ?)
* XXX: check this: its probably wrong!
* If both values are specified, then the aspect ration is simply xfov/yfov
* and if aspect ratio is defined, then .. well then its that one.
*/
static double get_aspect_ratio(const COLLADAFW::Camera *camera)
{
double aspect = camera->getAspectRatio().getValue();
if (aspect == 0) {
const double yfov = camera->getYFov().getValue();
if (yfov == 0) {
aspect = 1; /* assume yfov and xfov are equal */
}
else {
const double xfov = camera->getXFov().getValue();
if (xfov == 0) {
aspect = 1;
}
else {
aspect = xfov / yfov;
}
}
}
return aspect;
}
static ListBase &get_animation_curves(Main *bmain, Material *ma)
{
bAction *act;
if (!ma->adt || !ma->adt->action) {
act = ED_id_action_ensure(bmain, (ID *)&ma->id);
}
else {
act = ma->adt->action;
}
return act->curves;
}
void AnimationImporter::translate_Animations(
COLLADAFW::Node *node,
std::map<COLLADAFW::UniqueId, COLLADAFW::Node *> &root_map,
std::multimap<COLLADAFW::UniqueId, Object *> &object_map,
std::map<COLLADAFW::UniqueId, const COLLADAFW::Object *> FW_object_map,
std::map<COLLADAFW::UniqueId, Material *> uid_material_map)
{
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
COLLADAFW::UniqueId uid = node->getUniqueId();
COLLADAFW::Node *root = root_map.find(uid) == root_map.end() ? node : root_map[uid];
Object *ob;
if (is_joint) {
ob = armature_importer->get_armature_for_joint(root);
}
else {
ob = object_map.find(uid) == object_map.end() ? NULL : object_map.find(uid)->second;
}
if (!ob) {
fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
return;
}
AnimationImporter::AnimMix *animType = get_animation_type(node, FW_object_map);
bAction *act;
Main *bmain = CTX_data_main(mContext);
if ((animType->transform) != 0) {
/* const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL; */ /* UNUSED */
char joint_path[200];
if (is_joint) {
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
}
if (!ob->adt || !ob->adt->action) {
act = ED_id_action_ensure(bmain, (ID *)&ob->id);
}
else {
act = ob->adt->action;
}
/* Get the list of animation curves of the object */
ListBase *AnimCurves = &(act->curves);
const COLLADAFW::TransformationPointerArray &nodeTransforms = node->getTransformations();
/* for each transformation in node */
for (uint i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
const COLLADAFW::UniqueId &listid = transform->getAnimationList();
/* check if transformation has animations */
if (animlist_map.find(listid) == animlist_map.end()) {
continue;
}
/* transformation has animations */
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings &bindings =
animlist->getAnimationBindings();
/* all the curves belonging to the current binding */
std::vector<FCurve *> animcurves;
for (uint j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
if (is_matrix) {
apply_matrix_curves(ob, animcurves, root, node, transform);
}
else {
/* Calculate RNA-paths and array index of F-Curves according to transformation and
* animation class */
Assign_transform_animations(transform, &bindings[j], &animcurves, is_joint, joint_path);
std::vector<FCurve *>::iterator iter;
/* Add the curves of the current animation to the object */
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
BLI_addtail(AnimCurves, fcu);
fcurve_is_used(fcu);
}
}
}
if (is_rotation && !(is_joint || is_matrix)) {
ob->rotmode = ROT_MODE_EUL;
}
}
}
if ((animType->light) != 0) {
Light *lamp = (Light *)ob->data;
if (!lamp->adt || !lamp->adt->action) {
act = ED_id_action_ensure(bmain, (ID *)&lamp->id);
}
else {
act = lamp->adt->action;
}
ListBase *AnimCurves = &(act->curves);
const COLLADAFW::InstanceLightPointerArray &nodeLights = node->getInstanceLights();
for (uint i = 0; i < nodeLights.getCount(); i++) {
const COLLADAFW::Light *light = (COLLADAFW::Light *)
FW_object_map[nodeLights[i]->getInstanciatedObjectId()];
if ((animType->light & LIGHT_COLOR) != 0) {
const COLLADAFW::Color *col = &(light->getColor());
const COLLADAFW::UniqueId &listid = col->getAnimationList();
Assign_color_animations(listid, AnimCurves, "color");
}
if ((animType->light & LIGHT_FOA) != 0) {
const COLLADAFW::AnimatableFloat *foa = &(light->getFallOffAngle());
const COLLADAFW::UniqueId &listid = foa->getAnimationList();
Assign_float_animations(listid, AnimCurves, "spot_size");
}
if ((animType->light & LIGHT_FOE) != 0) {
const COLLADAFW::AnimatableFloat *foe = &(light->getFallOffExponent());
const COLLADAFW::UniqueId &listid = foe->getAnimationList();
Assign_float_animations(listid, AnimCurves, "spot_blend");
}
}
}
if (animType->camera != 0) {
Camera *cam = (Camera *)ob->data;
if (!cam->adt || !cam->adt->action) {
act = ED_id_action_ensure(bmain, (ID *)&cam->id);
}
else {
act = cam->adt->action;
}
ListBase *AnimCurves = &(act->curves);
const COLLADAFW::InstanceCameraPointerArray &nodeCameras = node->getInstanceCameras();
for (uint i = 0; i < nodeCameras.getCount(); i++) {
const COLLADAFW::Camera *camera = (COLLADAFW::Camera *)
FW_object_map[nodeCameras[i]->getInstanciatedObjectId()];
if ((animType->camera & CAMERA_XFOV) != 0) {
const COLLADAFW::AnimatableFloat *xfov = &(camera->getXFov());
const COLLADAFW::UniqueId &listid = xfov->getAnimationList();
double aspect = get_aspect_ratio(camera);
Assign_lens_animations(listid, AnimCurves, aspect, cam, "lens", CAMERA_XFOV);
}
else if ((animType->camera & CAMERA_YFOV) != 0) {
const COLLADAFW::AnimatableFloat *yfov = &(camera->getYFov());
const COLLADAFW::UniqueId &listid = yfov->getAnimationList();
double aspect = get_aspect_ratio(camera);
Assign_lens_animations(listid, AnimCurves, aspect, cam, "lens", CAMERA_YFOV);
}
else if ((animType->camera & CAMERA_XMAG) != 0) {
const COLLADAFW::AnimatableFloat *xmag = &(camera->getXMag());
const COLLADAFW::UniqueId &listid = xmag->getAnimationList();
Assign_float_animations(listid, AnimCurves, "ortho_scale");
}
else if ((animType->camera & CAMERA_YMAG) != 0) {
const COLLADAFW::AnimatableFloat *ymag = &(camera->getYMag());
const COLLADAFW::UniqueId &listid = ymag->getAnimationList();
Assign_float_animations(listid, AnimCurves, "ortho_scale");
}
if ((animType->camera & CAMERA_ZFAR) != 0) {
const COLLADAFW::AnimatableFloat *zfar = &(camera->getFarClippingPlane());
const COLLADAFW::UniqueId &listid = zfar->getAnimationList();
Assign_float_animations(listid, AnimCurves, "clip_end");
}
if ((animType->camera & CAMERA_ZNEAR) != 0) {
const COLLADAFW::AnimatableFloat *znear = &(camera->getNearClippingPlane());
const COLLADAFW::UniqueId &listid = znear->getAnimationList();
Assign_float_animations(listid, AnimCurves, "clip_start");
}
}
}
if (animType->material != 0) {
Material *ma = BKE_object_material_get(ob, 1);
if (!ma->adt || !ma->adt->action) {
act = ED_id_action_ensure(bmain, (ID *)&ma->id);
}
else {
act = ma->adt->action;
}
const COLLADAFW::InstanceGeometryPointerArray &nodeGeoms = node->getInstanceGeometries();
for (uint i = 0; i < nodeGeoms.getCount(); i++) {
const COLLADAFW::MaterialBindingArray &matBinds = nodeGeoms[i]->getMaterialBindings();
for (uint j = 0; j < matBinds.getCount(); j++) {
const COLLADAFW::UniqueId &matuid = matBinds[j].getReferencedMaterial();
const COLLADAFW::Effect *ef = (COLLADAFW::Effect *)(FW_object_map[matuid]);
if (ef != nullptr) { /* can be NULL T28909. */
Material *ma = uid_material_map[matuid];
if (!ma) {
fprintf(stderr,
"Collada: Node %s refers to undefined material\n",
node->getName().c_str());
continue;
}
ListBase &AnimCurves = get_animation_curves(bmain, ma);
const COLLADAFW::CommonEffectPointerArray &commonEffects = ef->getCommonEffects();
COLLADAFW::EffectCommon *efc = commonEffects[0];
if ((animType->material & MATERIAL_SHININESS) != 0) {
const COLLADAFW::FloatOrParam *shin = &(efc->getShininess());
const COLLADAFW::UniqueId &listid = shin->getAnimationList();
Assign_float_animations(listid, &AnimCurves, "specular_hardness");
}
if ((animType->material & MATERIAL_IOR) != 0) {
const COLLADAFW::FloatOrParam *ior = &(efc->getIndexOfRefraction());
const COLLADAFW::UniqueId &listid = ior->getAnimationList();
Assign_float_animations(listid, &AnimCurves, "raytrace_transparency.ior");
}
if ((animType->material & MATERIAL_SPEC_COLOR) != 0) {
const COLLADAFW::ColorOrTexture *cot = &(efc->getSpecular());
const COLLADAFW::UniqueId &listid = cot->getColor().getAnimationList();
Assign_color_animations(listid, &AnimCurves, "specular_color");
}
if ((animType->material & MATERIAL_DIFF_COLOR) != 0) {
const COLLADAFW::ColorOrTexture *cot = &(efc->getDiffuse());
const COLLADAFW::UniqueId &listid = cot->getColor().getAnimationList();
Assign_color_animations(listid, &AnimCurves, "diffuse_color");
}
}
}
}
}
delete animType;
}
void AnimationImporter::add_bone_animation_sampled(Object *ob,
std::vector<FCurve *> &animcurves,
COLLADAFW::Node *root,
COLLADAFW::Node *node,
COLLADAFW::Transformation *tm)
{
const char *bone_name = bc_get_joint_name(node);
char joint_path[200];
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
std::vector<float> frames;
find_frames(&frames, &animcurves);
/* convert degrees to radians */
if (tm->getTransformationType() == COLLADAFW::Transformation::ROTATE) {
std::vector<FCurve *>::iterator iter;
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
fcurve_deg_to_rad(fcu);
}
}
float irest_dae[4][4];
float rest[4][4], irest[4][4];
get_joint_rest_mat(irest_dae, root, node);
invert_m4(irest_dae);
Bone *bone = BKE_armature_find_bone_name((bArmature *)ob->data, bone_name);
if (!bone) {
fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
return;
}
unit_m4(rest);
copy_m4_m4(rest, bone->arm_mat);
invert_m4_m4(irest, rest);
/* new curves to assign matrix transform animation */
FCurve *newcu[10]; /* if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale. */
uint totcu = 10;
const char *tm_str = nullptr;
char rna_path[200];
for (int i = 0; i < totcu; i++) {
int axis = i;
if (i < 4) {
tm_str = "rotation_quaternion";
axis = i;
}
else if (i < 7) {
tm_str = "location";
axis = i - 4;
}
else {
tm_str = "scale";
axis = i - 7;
}
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
newcu[i] = create_fcurve(axis, rna_path);
newcu[i]->totvert = frames.size();
}
if (frames.empty()) {
return;
}
std::sort(frames.begin(), frames.end());
BCQuat qref;
std::vector<float>::iterator it;
/* sample values at each frame */
for (it = frames.begin(); it != frames.end(); it++) {
float fra = *it;
Matrix mat;
Matrix matfra;
unit_m4(matfra);
/* calc object-space mat */
evaluate_transform_at_frame(matfra, node, fra);
/* for joints, we need a special matrix
* special matrix: iR * M * iR_dae * R
* where R, iR are bone rest and inverse rest mats in world space (Blender bones),
* iR_dae is joint inverse rest matrix (DAE)
* and M is an evaluated joint world-space matrix (DAE). */
Matrix temp, par;
/* calc M */
calc_joint_parent_mat_rest(par, nullptr, root, node);
mul_m4_m4m4(temp, par, matfra);
// evaluate_joint_world_transform_at_frame(temp, NULL, node, fra);
/* calc special matrix */
mul_m4_series(mat, irest, temp, irest_dae, rest);
Vector loc, scale;
qref.rotate_to(mat);
copy_v3_v3(loc, mat[3]);
mat4_to_size(scale, mat);
/* add keys */
for (int i = 0; i < totcu; i++) {
if (i < 4) {
add_bezt(newcu[i], fra, qref.quat()[i]);
}
else if (i < 7) {
add_bezt(newcu[i], fra, loc[i - 4]);
}
else {
add_bezt(newcu[i], fra, scale[i - 7]);
}
}
}
Main *bmain = CTX_data_main(mContext);
ED_id_action_ensure(bmain, (ID *)&ob->id);
/* add curves */
for (int i = 0; i < totcu; i++) {
add_bone_fcurve(ob, node, newcu[i]);
#if 0
fcurve_is_used(newcu[i]); /* never added to unused */
#endif
}
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
chan->rotmode = ROT_MODE_QUAT;
}
AnimationImporter::AnimMix *AnimationImporter::get_animation_type(
const COLLADAFW::Node *node,
std::map<COLLADAFW::UniqueId, const COLLADAFW::Object *> FW_object_map)
{
AnimMix *types = new AnimMix();
const COLLADAFW::TransformationPointerArray &nodeTransforms = node->getTransformations();
/* for each transformation in node */
for (uint i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
const COLLADAFW::UniqueId &listid = transform->getAnimationList();
/* check if transformation has animations */
if (animlist_map.find(listid) == animlist_map.end()) {
continue;
}
types->transform = types->transform | BC_NODE_TRANSFORM;
break;
}
const COLLADAFW::InstanceLightPointerArray &nodeLights = node->getInstanceLights();
for (uint i = 0; i < nodeLights.getCount(); i++) {
const COLLADAFW::Light *light = (COLLADAFW::Light *)
FW_object_map[nodeLights[i]->getInstanciatedObjectId()];
types->light = setAnimType(&(light->getColor()), (types->light), LIGHT_COLOR);
types->light = setAnimType(&(light->getFallOffAngle()), (types->light), LIGHT_FOA);
types->light = setAnimType(&(light->getFallOffExponent()), (types->light), LIGHT_FOE);
if (types->light != 0) {
break;
}
}
const COLLADAFW::InstanceCameraPointerArray &nodeCameras = node->getInstanceCameras();
for (uint i = 0; i < nodeCameras.getCount(); i++) {
const COLLADAFW::Camera *camera = (COLLADAFW::Camera *)
FW_object_map[nodeCameras[i]->getInstanciatedObjectId()];
if (camera == nullptr) {
/* Can happen if the node refers to an unknown camera. */
continue;
}
const bool is_perspective_type = camera->getCameraType() == COLLADAFW::Camera::PERSPECTIVE;
int addition;
const COLLADAFW::Animatable *mag;
const COLLADAFW::UniqueId listid = camera->getYMag().getAnimationList();
if (animlist_map.find(listid) != animlist_map.end()) {
mag = &(camera->getYMag());
addition = (is_perspective_type) ? CAMERA_YFOV : CAMERA_YMAG;
}
else {
mag = &(camera->getXMag());
addition = (is_perspective_type) ? CAMERA_XFOV : CAMERA_XMAG;
}
types->camera = setAnimType(mag, (types->camera), addition);
types->camera = setAnimType(&(camera->getFarClippingPlane()), (types->camera), CAMERA_ZFAR);
types->camera = setAnimType(&(camera->getNearClippingPlane()), (types->camera), CAMERA_ZNEAR);
if (types->camera != 0) {
break;
}
}
const COLLADAFW::InstanceGeometryPointerArray &nodeGeoms = node->getInstanceGeometries();
for (uint i = 0; i < nodeGeoms.getCount(); i++) {
const COLLADAFW::MaterialBindingArray &matBinds = nodeGeoms[i]->getMaterialBindings();
for (uint j = 0; j < matBinds.getCount(); j++) {
const COLLADAFW::UniqueId &matuid = matBinds[j].getReferencedMaterial();
const COLLADAFW::Effect *ef = (COLLADAFW::Effect *)(FW_object_map[matuid]);
if (ef != nullptr) { /* can be NULL T28909. */
const COLLADAFW::CommonEffectPointerArray &commonEffects = ef->getCommonEffects();
if (!commonEffects.empty()) {
COLLADAFW::EffectCommon *efc = commonEffects[0];
types->material = setAnimType(
&(efc->getShininess()), (types->material), MATERIAL_SHININESS);
types->material = setAnimType(
&(efc->getSpecular().getColor()), (types->material), MATERIAL_SPEC_COLOR);
types->material = setAnimType(
&(efc->getDiffuse().getColor()), (types->material), MATERIAL_DIFF_COLOR);
#if 0
types->material = setAnimType(&(efc->get()), (types->material), MATERIAL_TRANSPARENCY);
#endif
types->material = setAnimType(
&(efc->getIndexOfRefraction()), (types->material), MATERIAL_IOR);
}
}
}
}
return types;
}
int AnimationImporter::setAnimType(const COLLADAFW::Animatable *prop, int types, int addition)
{
int anim_type;
const COLLADAFW::UniqueId &listid = prop->getAnimationList();
if (animlist_map.find(listid) != animlist_map.end()) {
anim_type = types | addition;
}
else {
anim_type = types;
}
return anim_type;
}
void AnimationImporter::find_frames_old(std::vector<float> *frames,
COLLADAFW::Node *node,
COLLADAFW::Transformation::TransformationType tm_type)
{
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
/* for each <rotate>, <translate>, etc. there is a separate Transformation */
const COLLADAFW::TransformationPointerArray &nodeTransforms = node->getTransformations();
uint i;
/* find frames at which to sample plus convert all rotation keys to radians */
for (i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
COLLADAFW::Transformation::TransformationType nodeTmType = transform->getTransformationType();
if (nodeTmType == tm_type) {
/* get animation bindings for the current transformation */
const COLLADAFW::UniqueId &listid = transform->getAnimationList();
/* if transform is animated its animlist must exist. */
if (animlist_map.find(listid) != animlist_map.end()) {
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings &bindings =
animlist->getAnimationBindings();
if (bindings.getCount()) {
/* for each AnimationBinding get the fcurves which animate the transform */
for (uint j = 0; j < bindings.getCount(); j++) {
std::vector<FCurve *> &curves = curve_map[bindings[j].animation];
bool xyz = (ELEM(nodeTmType,
COLLADAFW::Transformation::TRANSLATE,
COLLADAFW::Transformation::SCALE) &&
bindings[j].animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
if ((!xyz && curves.size() == 1) || (xyz && curves.size() == 3) || is_matrix) {
std::vector<FCurve *>::iterator iter;
for (iter = curves.begin(); iter != curves.end(); iter++) {
FCurve *fcu = *iter;
/* if transform is rotation the fcurves values must be turned in to radian. */
if (is_rotation) {
fcurve_deg_to_rad(fcu);
}
for (uint k = 0; k < fcu->totvert; k++) {
/* get frame value from bezTriple */
float fra = fcu->bezt[k].vec[1][0];
/* if frame already not added add frame to frames */
if (std::find(frames->begin(), frames->end(), fra) == frames->end()) {
frames->push_back(fra);
}
}
}
}
else {
fprintf(stderr, "expected %d curves, got %d\n", xyz ? 3 : 1, int(curves.size()));
}
}
}
}
}
}
}
Object *AnimationImporter::translate_animation_OLD(
COLLADAFW::Node *node,
std::map<COLLADAFW::UniqueId, Object *> &object_map,
std::map<COLLADAFW::UniqueId, COLLADAFW::Node *> &root_map,
COLLADAFW::Transformation::TransformationType tm_type,
Object *par_job)
{
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
COLLADAFW::Node *root = root_map.find(node->getUniqueId()) == root_map.end() ?
node :
root_map[node->getUniqueId()];
Object *ob = is_joint ? armature_importer->get_armature_for_joint(node) :
object_map[node->getUniqueId()];
const char *bone_name = is_joint ? bc_get_joint_name(node) : nullptr;
if (!ob) {
fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
return nullptr;
}
/* frames at which to sample */
std::vector<float> frames;
find_frames_old(&frames, node, tm_type);
uint i;
float irest_dae[4][4];
float rest[4][4], irest[4][4];
if (is_joint) {
get_joint_rest_mat(irest_dae, root, node);
invert_m4(irest_dae);
Bone *bone = BKE_armature_find_bone_name((bArmature *)ob->data, bone_name);
if (!bone) {
fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
return nullptr;
}
unit_m4(rest);
copy_m4_m4(rest, bone->arm_mat);
invert_m4_m4(irest, rest);
}
Object *job = nullptr;
#ifdef ARMATURE_TEST
FCurve *job_curves[10];
job = get_joint_object(root, node, par_job);
#endif
if (frames.empty()) {
return job;
}
std::sort(frames.begin(), frames.end());
const char *tm_str = nullptr;
switch (tm_type) {
case COLLADAFW::Transformation::ROTATE:
tm_str = "rotation_quaternion";
break;
case COLLADAFW::Transformation::SCALE:
tm_str = "scale";
break;
case COLLADAFW::Transformation::TRANSLATE:
tm_str = "location";
break;
case COLLADAFW::Transformation::MATRIX:
break;
default:
return job;
}
char rna_path[200];
char joint_path[200];
if (is_joint) {
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
}
/* new curves */
FCurve *newcu[10]; /* if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale */
uint totcu = is_matrix ? 10 : (is_rotation ? 4 : 3);
for (i = 0; i < totcu; i++) {
int axis = i;
if (is_matrix) {
if (i < 4) {
tm_str = "rotation_quaternion";
axis = i;
}
else if (i < 7) {
tm_str = "location";
axis = i - 4;
}
else {
tm_str = "scale";
axis = i - 7;
}
}
if (is_joint) {
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
}
else {
BLI_strncpy(rna_path, tm_str, sizeof(rna_path));
}
newcu[i] = create_fcurve(axis, rna_path);
#ifdef ARMATURE_TEST
if (is_joint) {
job_curves[i] = create_fcurve(axis, tm_str);
}
#endif
}
std::vector<float>::iterator it;
/* sample values at each frame */
for (it = frames.begin(); it != frames.end(); it++) {
float fra = *it;
float mat[4][4];
float matfra[4][4];
unit_m4(matfra);
/* calc object-space mat */
evaluate_transform_at_frame(matfra, node, fra);
/* for joints, we need a special matrix */
if (is_joint) {
/* special matrix: iR * M * iR_dae * R
* where R, iR are bone rest and inverse rest mats in world space (Blender bones),
* iR_dae is joint inverse rest matrix (DAE)
* and M is an evaluated joint world-space matrix (DAE). */
float temp[4][4], par[4][4];
/* calc M */
calc_joint_parent_mat_rest(par, nullptr, root, node);
mul_m4_m4m4(temp, par, matfra);
/* evaluate_joint_world_transform_at_frame(temp, NULL, node, fra); */
/* calc special matrix */
mul_m4_series(mat, irest, temp, irest_dae, rest);
}
else {
copy_m4_m4(mat, matfra);
}
float val[4] = {};
float rot[4], loc[3], scale[3];
switch (tm_type) {
case COLLADAFW::Transformation::ROTATE:
mat4_to_quat(val, mat);
break;
case COLLADAFW::Transformation::SCALE:
mat4_to_size(val, mat);
break;
case COLLADAFW::Transformation::TRANSLATE:
copy_v3_v3(val, mat[3]);
break;
case COLLADAFW::Transformation::MATRIX:
mat4_to_quat(rot, mat);
copy_v3_v3(loc, mat[3]);
mat4_to_size(scale, mat);
break;
default:
break;
}
/* add keys */
for (i = 0; i < totcu; i++) {
if (is_matrix) {
if (i < 4) {
add_bezt(newcu[i], fra, rot[i]);
}
else if (i < 7) {
add_bezt(newcu[i], fra, loc[i - 4]);
}
else {
add_bezt(newcu[i], fra, scale[i - 7]);
}
}
else {
add_bezt(newcu[i], fra, val[i]);
}
}
#ifdef ARMATURE_TEST
if (is_joint) {
switch (tm_type) {
case COLLADAFW::Transformation::ROTATE:
mat4_to_quat(val, matfra);
break;
case COLLADAFW::Transformation::SCALE:
mat4_to_size(val, matfra);
break;
case COLLADAFW::Transformation::TRANSLATE:
copy_v3_v3(val, matfra[3]);
break;
case MATRIX:
mat4_to_quat(rot, matfra);
copy_v3_v3(loc, matfra[3]);
mat4_to_size(scale, matfra);
break;
default:
break;
}
for (i = 0; i < totcu; i++) {
if (is_matrix) {
if (i < 4) {
add_bezt(job_curves[i], fra, rot[i]);
}
else if (i < 7) {
add_bezt(job_curves[i], fra, loc[i - 4]);
}
else {
add_bezt(job_curves[i], fra, scale[i - 7]);
}
}
else {
add_bezt(job_curves[i], fra, val[i]);
}
}
}
#endif
}
Main *bmain = CTX_data_main(mContext);
ED_id_action_ensure(bmain, (ID *)&ob->id);
ListBase *curves = &ob->adt->action->curves;
/* add curves */
for (i = 0; i < totcu; i++) {
if (is_joint) {
add_bone_fcurve(ob, node, newcu[i]);
}
else {
BLI_addtail(curves, newcu[i]);
}
#ifdef ARMATURE_TEST
if (is_joint) {
BLI_addtail(&job->adt->action->curves, job_curves[i]);
}
#endif
}
if (is_rotation || is_matrix) {
if (is_joint) {
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
chan->rotmode = (is_matrix) ? ROT_MODE_QUAT : ROT_MODE_EUL;
}
else {
ob->rotmode = (is_matrix) ? ROT_MODE_QUAT : ROT_MODE_EUL;
}
}
return job;
}
void AnimationImporter::evaluate_transform_at_frame(float mat[4][4],
COLLADAFW::Node *node,
float fra)
{
const COLLADAFW::TransformationPointerArray &tms = node->getTransformations();
unit_m4(mat);
for (uint i = 0; i < tms.getCount(); i++) {
COLLADAFW::Transformation *tm = tms[i];
COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
float m[4][4];
unit_m4(m);
std::string nodename = node->getName().empty() ? node->getOriginalId() : node->getName();
if (!evaluate_animation(tm, m, fra, nodename.c_str())) {
switch (type) {
case COLLADAFW::Transformation::ROTATE:
dae_rotate_to_mat4(tm, m);
break;
case COLLADAFW::Transformation::TRANSLATE:
dae_translate_to_mat4(tm, m);
break;
case COLLADAFW::Transformation::SCALE:
dae_scale_to_mat4(tm, m);
break;
case COLLADAFW::Transformation::MATRIX:
dae_matrix_to_mat4(tm, m);
break;
default:
fprintf(stderr, "unsupported transformation type %d\n", type);
}
}
float temp[4][4];
copy_m4_m4(temp, mat);
mul_m4_m4m4(mat, temp, m);
}
}
static void report_class_type_unsupported(const char *path,
const COLLADAFW::AnimationList::AnimationClass animclass,
const COLLADAFW::Transformation::TransformationType type)
{
if (animclass == COLLADAFW::AnimationList::UNKNOWN_CLASS) {
fprintf(stderr, "%s: UNKNOWN animation class\n", path);
}
else {
fprintf(stderr,
"%s: animation class %d is not supported yet for transformation type %d\n",
path,
animclass,
type);
}
}
bool AnimationImporter::evaluate_animation(COLLADAFW::Transformation *tm,
float mat[4][4],
float fra,
const char *node_id)
{
const COLLADAFW::UniqueId &listid = tm->getAnimationList();
COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
if (!ELEM(type,
COLLADAFW::Transformation::ROTATE,
COLLADAFW::Transformation::SCALE,
COLLADAFW::Transformation::TRANSLATE,
COLLADAFW::Transformation::MATRIX)) {
fprintf(stderr, "animation of transformation %d is not supported yet\n", type);
return false;
}
if (animlist_map.find(listid) == animlist_map.end()) {
return false;
}
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings &bindings = animlist->getAnimationBindings();
if (bindings.getCount()) {
float vec[3];
bool is_scale = (type == COLLADAFW::Transformation::SCALE);
bool is_translate = (type == COLLADAFW::Transformation::TRANSLATE);
if (is_scale) {
dae_scale_to_v3(tm, vec);
}
else if (is_translate) {
dae_translate_to_v3(tm, vec);
}
for (uint index = 0; index < bindings.getCount(); index++) {
const COLLADAFW::AnimationList::AnimationBinding &binding = bindings[index];
std::vector<FCurve *> &curves = curve_map[binding.animation];
COLLADAFW::AnimationList::AnimationClass animclass = binding.animationClass;
char path[100];
switch (type) {
case COLLADAFW::Transformation::ROTATE:
BLI_snprintf(path, sizeof(path), "%s.rotate (binding %u)", node_id, index);
break;
case COLLADAFW::Transformation::SCALE:
BLI_snprintf(path, sizeof(path), "%s.scale (binding %u)", node_id, index);
break;
case COLLADAFW::Transformation::TRANSLATE:
BLI_snprintf(path, sizeof(path), "%s.translate (binding %u)", node_id, index);
break;
case COLLADAFW::Transformation::MATRIX:
BLI_snprintf(path, sizeof(path), "%s.matrix (binding %u)", node_id, index);
break;
default:
break;
}
if (type == COLLADAFW::Transformation::ROTATE) {
if (curves.size() != 1) {
fprintf(stderr, "expected 1 curve, got %d\n", int(curves.size()));
return false;
}
/* TODO: support other animation-classes. */
if (animclass != COLLADAFW::AnimationList::ANGLE) {
report_class_type_unsupported(path, animclass, type);
return false;
}
COLLADABU::Math::Vector3 &axis = ((COLLADAFW::Rotate *)tm)->getRotationAxis();
float ax[3] = {float(axis[0]), float(axis[1]), float(axis[2])};
float angle = evaluate_fcurve(curves[0], fra);
axis_angle_to_mat4(mat, ax, angle);
return true;
}
if (is_scale || is_translate) {
bool is_xyz = animclass == COLLADAFW::AnimationList::POSITION_XYZ;
if ((!is_xyz && curves.size() != 1) || (is_xyz && curves.size() != 3)) {
if (is_xyz) {
fprintf(stderr, "%s: expected 3 curves, got %d\n", path, int(curves.size()));
}
else {
fprintf(stderr, "%s: expected 1 curve, got %d\n", path, int(curves.size()));
}
return false;
}
switch (animclass) {
case COLLADAFW::AnimationList::POSITION_X:
vec[0] = evaluate_fcurve(curves[0], fra);
break;
case COLLADAFW::AnimationList::POSITION_Y:
vec[1] = evaluate_fcurve(curves[0], fra);
break;
case COLLADAFW::AnimationList::POSITION_Z:
vec[2] = evaluate_fcurve(curves[0], fra);
break;
case COLLADAFW::AnimationList::POSITION_XYZ:
vec[0] = evaluate_fcurve(curves[0], fra);
vec[1] = evaluate_fcurve(curves[1], fra);
vec[2] = evaluate_fcurve(curves[2], fra);
break;
default:
report_class_type_unsupported(path, animclass, type);
break;
}
}
else if (type == COLLADAFW::Transformation::MATRIX) {
/* for now, of matrix animation,
* support only the case when all values are packed into one animation */
if (curves.size() != 16) {
fprintf(stderr, "%s: expected 16 curves, got %d\n", path, int(curves.size()));
return false;
}
COLLADABU::Math::Matrix4 matrix;
int mi = 0, mj = 0;
for (FCurve *curve : curves) {
matrix.setElement(mi, mj, evaluate_fcurve(curve, fra));
mj++;
if (mj == 4) {
mi++;
mj = 0;
}
}
UnitConverter::dae_matrix_to_mat4_(mat, matrix);
return true;
}
}
if (is_scale) {
size_to_mat4(mat, vec);
}
else {
copy_v3_v3(mat[3], vec);
}
return is_scale || is_translate;
}
return false;
}
void AnimationImporter::get_joint_rest_mat(float mat[4][4],
COLLADAFW::Node *root,
COLLADAFW::Node *node)
{
/* if bind mat is not available,
* use "current" node transform, i.e. all those tms listed inside <node> */
if (!armature_importer->get_joint_bind_mat(mat, node)) {
float par[4][4], m[4][4];
calc_joint_parent_mat_rest(par, nullptr, root, node);
get_node_mat(m, node, nullptr, nullptr);
mul_m4_m4m4(mat, par, m);
}
}
bool AnimationImporter::calc_joint_parent_mat_rest(float mat[4][4],
float par[4][4],
COLLADAFW::Node *node,
COLLADAFW::Node *end)
{
float m[4][4];
if (node == end) {
par ? copy_m4_m4(mat, par) : unit_m4(mat);
return true;
}
/* use bind matrix if available or calc "current" world mat */
if (!armature_importer->get_joint_bind_mat(m, node)) {
if (par) {
float temp[4][4];
get_node_mat(temp, node, nullptr, nullptr);
mul_m4_m4m4(m, par, temp);
}
else {
get_node_mat(m, node, nullptr, nullptr);
}
}
COLLADAFW::NodePointerArray &children = node->getChildNodes();
for (uint i = 0; i < children.getCount(); i++) {
if (calc_joint_parent_mat_rest(mat, m, children[i], end)) {
return true;
}
}
return false;
}
#ifdef ARMATURE_TEST
Object *AnimationImporter::get_joint_object(COLLADAFW::Node *root,
COLLADAFW::Node *node,
Object *par_job)
{
if (joint_objects.find(node->getUniqueId()) == joint_objects.end()) {
Object *job = bc_add_object(scene, OB_EMPTY, (char *)get_joint_name(node));
job->lay = BKE_scene_base_find(scene, job)->lay = 2;
mul_v3_fl(job->scale, 0.5f);
DEG_id_tag_update(&job->id, ID_RECALC_TRANSFORM);
ED_id_action_ensure((ID *)&job->id);
job->rotmode = ROT_MODE_QUAT;
float mat[4][4];
get_joint_rest_mat(mat, root, node);
if (par_job) {
float temp[4][4], ipar[4][4];
invert_m4_m4(ipar, par_job->object_to_world);
copy_m4_m4(temp, mat);
mul_m4_m4m4(mat, ipar, temp);
}
bc_decompose(mat, job->loc, NULL, job->quat, job->scale);
if (par_job) {
job->parent = par_job;
DEG_id_tag_update(&par_job->id, ID_RECALC_TRANSFORM);
job->parsubstr[0] = 0;
}
BKE_object_where_is_calc(scene, job);
/* after parenting and layer change */
DEG_relations_tag_update(CTX_data_main(C));
joint_objects[node->getUniqueId()] = job;
}
return joint_objects[node->getUniqueId()];
}
#endif
#if 0
/* recursively evaluates joint tree until end is found,
* mat then is world-space matrix of end mat must be identity on enter, node must be root. */
bool AnimationImporter::evaluate_joint_world_transform_at_frame(
float mat[4][4], float par[4][4], COLLADAFW::Node *node, COLLADAFW::Node *end, float fra)
{
float m[4][4];
if (par) {
float temp[4][4];
evaluate_transform_at_frame(temp, node, node == end ? fra : 0.0f);
mul_m4_m4m4(m, par, temp);
}
else {
evaluate_transform_at_frame(m, node, node == end ? fra : 0.0f);
}
if (node == end) {
copy_m4_m4(mat, m);
return true;
}
else {
COLLADAFW::NodePointerArray &children = node->getChildNodes();
for (int i = 0; i < children.getCount(); i++) {
if (evaluate_joint_world_transform_at_frame(mat, m, children[i], end, fra)) {
return true;
}
}
}
return false;
}
#endif
void AnimationImporter::add_bone_fcurve(Object *ob, COLLADAFW::Node *node, FCurve *fcu)
{
const char *bone_name = bc_get_joint_name(node);
bAction *act = ob->adt->action;
/* try to find group */
bActionGroup *grp = BKE_action_group_find_name(act, bone_name);
/* no matching groups, so add one */
if (grp == nullptr) {
/* Add a new group, and make it active */
grp = MEM_cnew<bActionGroup>("bActionGroup");
grp->flag = AGRP_SELECTED;
BLI_strncpy(grp->name, bone_name, sizeof(grp->name));
BLI_addtail(&act->groups, grp);
BLI_uniquename(&act->groups,
grp,
CTX_DATA_(BLT_I18NCONTEXT_ID_ACTION, "Group"),
'.',
offsetof(bActionGroup, name),
64);
}
/* add F-Curve to group */
action_groups_add_channel(act, grp, fcu);
}
void AnimationImporter::set_import_from_version(std::string import_from_version)
{
this->import_from_version = import_from_version;
}