This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/modifiers/intern/MOD_explode.c
Hans Goudey cfa53e0fbe Refactor: Move normals out of MVert, lazy calculation
As described in T91186, this commit moves mesh vertex normals into a
contiguous array of float vectors in a custom data layer, how face
normals are currently stored.

The main interface is documented in `BKE_mesh.h`. Vertex and face
normals are now calculated on-demand and cached, retrieved with an
"ensure" function. Since the logical state of a mesh is now "has
normals when necessary", they can be retrieved from a `const` mesh.

The goal is to use on-demand calculation for all derived data, but
leave room for eager calculation for performance purposes (modifier
evaluation is threaded, but viewport data generation is not).

**Benefits**
This moves us closer to a SoA approach rather than the current AoS
paradigm. Accessing a contiguous `float3` is much more efficient than
retrieving data from a larger struct. The memory requirements for
accessing only normals or vertex locations are smaller, and at the
cost of more memory usage for just normals, they now don't have to
be converted between float and short, which also simplifies code

In the future, the remaining items can be removed from `MVert`,
leaving only `float3`, which has similar benefits (see T93602).

Removing the combination of derived and original data makes it
conceptually simpler to only calculate normals when necessary.
This is especially important now that we have more opportunities
for temporary meshes in geometry nodes.

**Performance**
In addition to the theoretical future performance improvements by
making `MVert == float3`, I've done some basic performance testing
on this patch directly. The data is fairly rough, but it gives an idea
about where things stand generally.
 - Mesh line primitive 4m Verts: 1.16x faster (36 -> 31 ms),
   showing that accessing just `MVert` is now more efficient.
 - Spring Splash Screen: 1.03-1.06 -> 1.06-1.11 FPS, a very slight
   change that at least shows there is no regression.
 - Sprite Fright Snail Smoosh: 3.30-3.40 -> 3.42-3.50 FPS, a small
   but observable speedup.
 - Set Position Node with Scaled Normal: 1.36x faster (53 -> 39 ms),
   shows that using normals in geometry nodes is faster.
 - Normal Calculation 1.6m Vert Cube: 1.19x faster (25 -> 21 ms),
   shows that calculating normals is slightly faster now.
 - File Size of 1.6m Vert Cube: 1.03x smaller (214.7 -> 208.4 MB),
   Normals are not saved in files, which can help with large meshes.

As for memory usage, it may be slightly more in some cases, but
I didn't observe any difference in the production files I tested.

**Tests**
Some modifiers and cycles test results need to be updated with this
commit, for two reasons:
 - The subdivision surface modifier is not responsible for calculating
   normals anymore. In master, the modifier creates different normals
   than the result of the `Mesh` normal calculation, so this is a bug
   fix.
 - There are small differences in the results of some modifiers that
   use normals because they are not converted to and from `short`
   anymore.

**Future improvements**
 - Remove `ModifierTypeInfo::dependsOnNormals`. Code in each modifier
   already retrieves normals if they are needed anyway.
 - Copy normals as part of a better CoW system for attributes.
 - Make more areas use lazy instead of eager normal calculation.
 - Remove `BKE_mesh_normals_tag_dirty` in more places since that is
   now the default state of a new mesh.
 - Possibly apply a similar change to derived face corner normals.

Differential Revision: https://developer.blender.org/D12770
2022-01-13 14:38:25 -06:00

1275 lines
35 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 by the Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup modifiers
*/
#include "BLI_utildefines.h"
#include "BLI_edgehash.h"
#include "BLI_kdtree.h"
#include "BLI_math.h"
#include "BLI_rand.h"
#include "BLT_translation.h"
#include "DNA_defaults.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"
#include "BKE_context.h"
#include "BKE_deform.h"
#include "BKE_lattice.h"
#include "BKE_lib_id.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_particle.h"
#include "BKE_scene.h"
#include "BKE_screen.h"
#include "UI_interface.h"
#include "UI_resources.h"
#include "BLO_read_write.h"
#include "RNA_access.h"
#include "DEG_depsgraph_query.h"
#include "MEM_guardedalloc.h"
#include "MOD_modifiertypes.h"
#include "MOD_ui_common.h"
static void initData(ModifierData *md)
{
ExplodeModifierData *emd = (ExplodeModifierData *)md;
BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(emd, modifier));
MEMCPY_STRUCT_AFTER(emd, DNA_struct_default_get(ExplodeModifierData), modifier);
}
static void freeData(ModifierData *md)
{
ExplodeModifierData *emd = (ExplodeModifierData *)md;
MEM_SAFE_FREE(emd->facepa);
}
static void copyData(const ModifierData *md, ModifierData *target, const int flag)
{
#if 0
const ExplodeModifierData *emd = (const ExplodeModifierData *)md;
#endif
ExplodeModifierData *temd = (ExplodeModifierData *)target;
BKE_modifier_copydata_generic(md, target, flag);
temd->facepa = NULL;
}
static bool dependsOnTime(struct Scene *UNUSED(scene),
ModifierData *UNUSED(md),
const int UNUSED(dag_eval_mode))
{
return true;
}
static void requiredDataMask(Object *UNUSED(ob),
ModifierData *md,
CustomData_MeshMasks *r_cddata_masks)
{
ExplodeModifierData *emd = (ExplodeModifierData *)md;
if (emd->vgroup) {
r_cddata_masks->vmask |= CD_MASK_MDEFORMVERT;
}
}
static void createFacepa(ExplodeModifierData *emd, ParticleSystemModifierData *psmd, Mesh *mesh)
{
ParticleSystem *psys = psmd->psys;
MFace *fa = NULL, *mface = NULL;
MVert *mvert = NULL;
ParticleData *pa;
KDTree_3d *tree;
RNG *rng;
float center[3], co[3];
int *facepa = NULL, *vertpa = NULL, totvert = 0, totface = 0, totpart = 0;
int i, p, v1, v2, v3, v4 = 0;
const bool invert_vgroup = (emd->flag & eExplodeFlag_INVERT_VGROUP) != 0;
mvert = mesh->mvert;
mface = mesh->mface;
totvert = mesh->totvert;
totface = mesh->totface;
totpart = psmd->psys->totpart;
rng = BLI_rng_new_srandom(psys->seed);
if (emd->facepa) {
MEM_freeN(emd->facepa);
}
facepa = emd->facepa = MEM_calloc_arrayN(totface, sizeof(int), "explode_facepa");
vertpa = MEM_calloc_arrayN(totvert, sizeof(int), "explode_vertpa");
/* initialize all faces & verts to no particle */
for (i = 0; i < totface; i++) {
facepa[i] = totpart;
}
for (i = 0; i < totvert; i++) {
vertpa[i] = totpart;
}
/* set protected verts */
if (emd->vgroup) {
MDeformVert *dvert = CustomData_get_layer(&mesh->vdata, CD_MDEFORMVERT);
if (dvert) {
const int defgrp_index = emd->vgroup - 1;
for (i = 0; i < totvert; i++, dvert++) {
float val = BLI_rng_get_float(rng);
val = (1.0f - emd->protect) * val + emd->protect * 0.5f;
const float weight = invert_vgroup ? 1.0f - BKE_defvert_find_weight(dvert, defgrp_index) :
BKE_defvert_find_weight(dvert, defgrp_index);
if (val < weight) {
vertpa[i] = -1;
}
}
}
}
/* make tree of emitter locations */
tree = BLI_kdtree_3d_new(totpart);
for (p = 0, pa = psys->particles; p < totpart; p++, pa++) {
psys_particle_on_emitter(psmd,
psys->part->from,
pa->num,
pa->num_dmcache,
pa->fuv,
pa->foffset,
co,
NULL,
NULL,
NULL,
NULL);
BLI_kdtree_3d_insert(tree, p, co);
}
BLI_kdtree_3d_balance(tree);
/* set face-particle-indexes to nearest particle to face center */
for (i = 0, fa = mface; i < totface; i++, fa++) {
add_v3_v3v3(center, mvert[fa->v1].co, mvert[fa->v2].co);
add_v3_v3(center, mvert[fa->v3].co);
if (fa->v4) {
add_v3_v3(center, mvert[fa->v4].co);
mul_v3_fl(center, 0.25);
}
else {
mul_v3_fl(center, 1.0f / 3.0f);
}
p = BLI_kdtree_3d_find_nearest(tree, center, NULL);
v1 = vertpa[fa->v1];
v2 = vertpa[fa->v2];
v3 = vertpa[fa->v3];
if (fa->v4) {
v4 = vertpa[fa->v4];
}
if (v1 >= 0 && v2 >= 0 && v3 >= 0 && (fa->v4 == 0 || v4 >= 0)) {
facepa[i] = p;
}
if (v1 >= 0) {
vertpa[fa->v1] = p;
}
if (v2 >= 0) {
vertpa[fa->v2] = p;
}
if (v3 >= 0) {
vertpa[fa->v3] = p;
}
if (fa->v4 && v4 >= 0) {
vertpa[fa->v4] = p;
}
}
if (vertpa) {
MEM_freeN(vertpa);
}
BLI_kdtree_3d_free(tree);
BLI_rng_free(rng);
}
static int edgecut_get(EdgeHash *edgehash, uint v1, uint v2)
{
return POINTER_AS_INT(BLI_edgehash_lookup(edgehash, v1, v2));
}
static const short add_faces[24] = {
0, 0, 0, 2, 0, 1, 2, 2, 0, 2, 1, 2, 2, 2, 2, 3, 0, 0, 0, 1, 0, 1, 1, 2,
};
static MFace *get_dface(Mesh *mesh, Mesh *split, int cur, int i, MFace *mf)
{
MFace *df = &split->mface[cur];
CustomData_copy_data(&mesh->fdata, &split->fdata, i, cur, 1);
*df = *mf;
return df;
}
#define SET_VERTS(a, b, c, d) \
{ \
v[0] = mf->v##a; \
uv[0] = a - 1; \
v[1] = mf->v##b; \
uv[1] = b - 1; \
v[2] = mf->v##c; \
uv[2] = c - 1; \
v[3] = mf->v##d; \
uv[3] = d - 1; \
} \
(void)0
#define GET_ES(v1, v2) edgecut_get(eh, v1, v2)
#define INT_UV(uvf, c0, c1) mid_v2_v2v2(uvf, mf->uv[c0], mf->uv[c1])
static void remap_faces_3_6_9_12(Mesh *mesh,
Mesh *split,
MFace *mf,
int *facepa,
const int *vertpa,
int i,
EdgeHash *eh,
int cur,
int v1,
int v2,
int v3,
int v4)
{
MFace *df1 = get_dface(mesh, split, cur, i, mf);
MFace *df2 = get_dface(mesh, split, cur + 1, i, mf);
MFace *df3 = get_dface(mesh, split, cur + 2, i, mf);
facepa[cur] = vertpa[v1];
df1->v1 = v1;
df1->v2 = GET_ES(v1, v2);
df1->v3 = GET_ES(v2, v3);
df1->v4 = v3;
df1->flag |= ME_FACE_SEL;
facepa[cur + 1] = vertpa[v2];
df2->v1 = GET_ES(v1, v2);
df2->v2 = v2;
df2->v3 = GET_ES(v2, v3);
df2->v4 = 0;
df2->flag &= ~ME_FACE_SEL;
facepa[cur + 2] = vertpa[v1];
df3->v1 = v1;
df3->v2 = v3;
df3->v3 = v4;
df3->v4 = 0;
df3->flag &= ~ME_FACE_SEL;
}
static void remap_uvs_3_6_9_12(
Mesh *mesh, Mesh *split, int numlayer, int i, int cur, int c0, int c1, int c2, int c3)
{
MTFace *mf, *df1, *df2, *df3;
int l;
for (l = 0; l < numlayer; l++) {
mf = CustomData_get_layer_n(&split->fdata, CD_MTFACE, l);
df1 = mf + cur;
df2 = df1 + 1;
df3 = df1 + 2;
mf = CustomData_get_layer_n(&mesh->fdata, CD_MTFACE, l);
mf += i;
copy_v2_v2(df1->uv[0], mf->uv[c0]);
INT_UV(df1->uv[1], c0, c1);
INT_UV(df1->uv[2], c1, c2);
copy_v2_v2(df1->uv[3], mf->uv[c2]);
INT_UV(df2->uv[0], c0, c1);
copy_v2_v2(df2->uv[1], mf->uv[c1]);
INT_UV(df2->uv[2], c1, c2);
copy_v2_v2(df3->uv[0], mf->uv[c0]);
copy_v2_v2(df3->uv[1], mf->uv[c2]);
copy_v2_v2(df3->uv[2], mf->uv[c3]);
}
}
static void remap_faces_5_10(Mesh *mesh,
Mesh *split,
MFace *mf,
int *facepa,
const int *vertpa,
int i,
EdgeHash *eh,
int cur,
int v1,
int v2,
int v3,
int v4)
{
MFace *df1 = get_dface(mesh, split, cur, i, mf);
MFace *df2 = get_dface(mesh, split, cur + 1, i, mf);
facepa[cur] = vertpa[v1];
df1->v1 = v1;
df1->v2 = v2;
df1->v3 = GET_ES(v2, v3);
df1->v4 = GET_ES(v1, v4);
df1->flag |= ME_FACE_SEL;
facepa[cur + 1] = vertpa[v3];
df2->v1 = GET_ES(v1, v4);
df2->v2 = GET_ES(v2, v3);
df2->v3 = v3;
df2->v4 = v4;
df2->flag |= ME_FACE_SEL;
}
static void remap_uvs_5_10(
Mesh *mesh, Mesh *split, int numlayer, int i, int cur, int c0, int c1, int c2, int c3)
{
MTFace *mf, *df1, *df2;
int l;
for (l = 0; l < numlayer; l++) {
mf = CustomData_get_layer_n(&split->fdata, CD_MTFACE, l);
df1 = mf + cur;
df2 = df1 + 1;
mf = CustomData_get_layer_n(&mesh->fdata, CD_MTFACE, l);
mf += i;
copy_v2_v2(df1->uv[0], mf->uv[c0]);
copy_v2_v2(df1->uv[1], mf->uv[c1]);
INT_UV(df1->uv[2], c1, c2);
INT_UV(df1->uv[3], c0, c3);
INT_UV(df2->uv[0], c0, c3);
INT_UV(df2->uv[1], c1, c2);
copy_v2_v2(df2->uv[2], mf->uv[c2]);
copy_v2_v2(df2->uv[3], mf->uv[c3]);
}
}
static void remap_faces_15(Mesh *mesh,
Mesh *split,
MFace *mf,
int *facepa,
const int *vertpa,
int i,
EdgeHash *eh,
int cur,
int v1,
int v2,
int v3,
int v4)
{
MFace *df1 = get_dface(mesh, split, cur, i, mf);
MFace *df2 = get_dface(mesh, split, cur + 1, i, mf);
MFace *df3 = get_dface(mesh, split, cur + 2, i, mf);
MFace *df4 = get_dface(mesh, split, cur + 3, i, mf);
facepa[cur] = vertpa[v1];
df1->v1 = v1;
df1->v2 = GET_ES(v1, v2);
df1->v3 = GET_ES(v1, v3);
df1->v4 = GET_ES(v1, v4);
df1->flag |= ME_FACE_SEL;
facepa[cur + 1] = vertpa[v2];
df2->v1 = GET_ES(v1, v2);
df2->v2 = v2;
df2->v3 = GET_ES(v2, v3);
df2->v4 = GET_ES(v1, v3);
df2->flag |= ME_FACE_SEL;
facepa[cur + 2] = vertpa[v3];
df3->v1 = GET_ES(v1, v3);
df3->v2 = GET_ES(v2, v3);
df3->v3 = v3;
df3->v4 = GET_ES(v3, v4);
df3->flag |= ME_FACE_SEL;
facepa[cur + 3] = vertpa[v4];
df4->v1 = GET_ES(v1, v4);
df4->v2 = GET_ES(v1, v3);
df4->v3 = GET_ES(v3, v4);
df4->v4 = v4;
df4->flag |= ME_FACE_SEL;
}
static void remap_uvs_15(
Mesh *mesh, Mesh *split, int numlayer, int i, int cur, int c0, int c1, int c2, int c3)
{
MTFace *mf, *df1, *df2, *df3, *df4;
int l;
for (l = 0; l < numlayer; l++) {
mf = CustomData_get_layer_n(&split->fdata, CD_MTFACE, l);
df1 = mf + cur;
df2 = df1 + 1;
df3 = df1 + 2;
df4 = df1 + 3;
mf = CustomData_get_layer_n(&mesh->fdata, CD_MTFACE, l);
mf += i;
copy_v2_v2(df1->uv[0], mf->uv[c0]);
INT_UV(df1->uv[1], c0, c1);
INT_UV(df1->uv[2], c0, c2);
INT_UV(df1->uv[3], c0, c3);
INT_UV(df2->uv[0], c0, c1);
copy_v2_v2(df2->uv[1], mf->uv[c1]);
INT_UV(df2->uv[2], c1, c2);
INT_UV(df2->uv[3], c0, c2);
INT_UV(df3->uv[0], c0, c2);
INT_UV(df3->uv[1], c1, c2);
copy_v2_v2(df3->uv[2], mf->uv[c2]);
INT_UV(df3->uv[3], c2, c3);
INT_UV(df4->uv[0], c0, c3);
INT_UV(df4->uv[1], c0, c2);
INT_UV(df4->uv[2], c2, c3);
copy_v2_v2(df4->uv[3], mf->uv[c3]);
}
}
static void remap_faces_7_11_13_14(Mesh *mesh,
Mesh *split,
MFace *mf,
int *facepa,
const int *vertpa,
int i,
EdgeHash *eh,
int cur,
int v1,
int v2,
int v3,
int v4)
{
MFace *df1 = get_dface(mesh, split, cur, i, mf);
MFace *df2 = get_dface(mesh, split, cur + 1, i, mf);
MFace *df3 = get_dface(mesh, split, cur + 2, i, mf);
facepa[cur] = vertpa[v1];
df1->v1 = v1;
df1->v2 = GET_ES(v1, v2);
df1->v3 = GET_ES(v2, v3);
df1->v4 = GET_ES(v1, v4);
df1->flag |= ME_FACE_SEL;
facepa[cur + 1] = vertpa[v2];
df2->v1 = GET_ES(v1, v2);
df2->v2 = v2;
df2->v3 = GET_ES(v2, v3);
df2->v4 = 0;
df2->flag &= ~ME_FACE_SEL;
facepa[cur + 2] = vertpa[v4];
df3->v1 = GET_ES(v1, v4);
df3->v2 = GET_ES(v2, v3);
df3->v3 = v3;
df3->v4 = v4;
df3->flag |= ME_FACE_SEL;
}
static void remap_uvs_7_11_13_14(
Mesh *mesh, Mesh *split, int numlayer, int i, int cur, int c0, int c1, int c2, int c3)
{
MTFace *mf, *df1, *df2, *df3;
int l;
for (l = 0; l < numlayer; l++) {
mf = CustomData_get_layer_n(&split->fdata, CD_MTFACE, l);
df1 = mf + cur;
df2 = df1 + 1;
df3 = df1 + 2;
mf = CustomData_get_layer_n(&mesh->fdata, CD_MTFACE, l);
mf += i;
copy_v2_v2(df1->uv[0], mf->uv[c0]);
INT_UV(df1->uv[1], c0, c1);
INT_UV(df1->uv[2], c1, c2);
INT_UV(df1->uv[3], c0, c3);
INT_UV(df2->uv[0], c0, c1);
copy_v2_v2(df2->uv[1], mf->uv[c1]);
INT_UV(df2->uv[2], c1, c2);
INT_UV(df3->uv[0], c0, c3);
INT_UV(df3->uv[1], c1, c2);
copy_v2_v2(df3->uv[2], mf->uv[c2]);
copy_v2_v2(df3->uv[3], mf->uv[c3]);
}
}
static void remap_faces_19_21_22(Mesh *mesh,
Mesh *split,
MFace *mf,
int *facepa,
const int *vertpa,
int i,
EdgeHash *eh,
int cur,
int v1,
int v2,
int v3)
{
MFace *df1 = get_dface(mesh, split, cur, i, mf);
MFace *df2 = get_dface(mesh, split, cur + 1, i, mf);
facepa[cur] = vertpa[v1];
df1->v1 = v1;
df1->v2 = GET_ES(v1, v2);
df1->v3 = GET_ES(v1, v3);
df1->v4 = 0;
df1->flag &= ~ME_FACE_SEL;
facepa[cur + 1] = vertpa[v2];
df2->v1 = GET_ES(v1, v2);
df2->v2 = v2;
df2->v3 = v3;
df2->v4 = GET_ES(v1, v3);
df2->flag |= ME_FACE_SEL;
}
static void remap_uvs_19_21_22(
Mesh *mesh, Mesh *split, int numlayer, int i, int cur, int c0, int c1, int c2)
{
MTFace *mf, *df1, *df2;
int l;
for (l = 0; l < numlayer; l++) {
mf = CustomData_get_layer_n(&split->fdata, CD_MTFACE, l);
df1 = mf + cur;
df2 = df1 + 1;
mf = CustomData_get_layer_n(&mesh->fdata, CD_MTFACE, l);
mf += i;
copy_v2_v2(df1->uv[0], mf->uv[c0]);
INT_UV(df1->uv[1], c0, c1);
INT_UV(df1->uv[2], c0, c2);
INT_UV(df2->uv[0], c0, c1);
copy_v2_v2(df2->uv[1], mf->uv[c1]);
copy_v2_v2(df2->uv[2], mf->uv[c2]);
INT_UV(df2->uv[3], c0, c2);
}
}
static void remap_faces_23(Mesh *mesh,
Mesh *split,
MFace *mf,
int *facepa,
const int *vertpa,
int i,
EdgeHash *eh,
int cur,
int v1,
int v2,
int v3)
{
MFace *df1 = get_dface(mesh, split, cur, i, mf);
MFace *df2 = get_dface(mesh, split, cur + 1, i, mf);
MFace *df3 = get_dface(mesh, split, cur + 2, i, mf);
facepa[cur] = vertpa[v1];
df1->v1 = v1;
df1->v2 = GET_ES(v1, v2);
df1->v3 = GET_ES(v2, v3);
df1->v4 = GET_ES(v1, v3);
df1->flag |= ME_FACE_SEL;
facepa[cur + 1] = vertpa[v2];
df2->v1 = GET_ES(v1, v2);
df2->v2 = v2;
df2->v3 = GET_ES(v2, v3);
df2->v4 = 0;
df2->flag &= ~ME_FACE_SEL;
facepa[cur + 2] = vertpa[v3];
df3->v1 = GET_ES(v1, v3);
df3->v2 = GET_ES(v2, v3);
df3->v3 = v3;
df3->v4 = 0;
df3->flag &= ~ME_FACE_SEL;
}
static void remap_uvs_23(
Mesh *mesh, Mesh *split, int numlayer, int i, int cur, int c0, int c1, int c2)
{
MTFace *mf, *df1, *df2;
int l;
for (l = 0; l < numlayer; l++) {
mf = CustomData_get_layer_n(&split->fdata, CD_MTFACE, l);
df1 = mf + cur;
df2 = df1 + 1;
mf = CustomData_get_layer_n(&mesh->fdata, CD_MTFACE, l);
mf += i;
copy_v2_v2(df1->uv[0], mf->uv[c0]);
INT_UV(df1->uv[1], c0, c1);
INT_UV(df1->uv[2], c1, c2);
INT_UV(df1->uv[3], c0, c2);
INT_UV(df2->uv[0], c0, c1);
copy_v2_v2(df2->uv[1], mf->uv[c1]);
INT_UV(df2->uv[2], c1, c2);
INT_UV(df2->uv[0], c0, c2);
INT_UV(df2->uv[1], c1, c2);
copy_v2_v2(df2->uv[2], mf->uv[c2]);
}
}
static Mesh *cutEdges(ExplodeModifierData *emd, Mesh *mesh)
{
Mesh *split_m;
MFace *mf = NULL, *df1 = NULL;
MFace *mface = mesh->mface;
MVert *dupve, *mv;
EdgeHash *edgehash;
EdgeHashIterator *ehi;
int totvert = mesh->totvert;
int totface = mesh->totface;
int *facesplit = MEM_calloc_arrayN(totface, sizeof(int), "explode_facesplit");
int *vertpa = MEM_calloc_arrayN(totvert, sizeof(int), "explode_vertpa2");
int *facepa = emd->facepa;
int *fs, totesplit = 0, totfsplit = 0, curdupface = 0;
int i, v1, v2, v3, v4, esplit, v[4] = {0, 0, 0, 0}, /* To quite gcc barking... */
uv[4] = {0, 0, 0, 0}; /* To quite gcc barking... */
int numlayer;
uint ed_v1, ed_v2;
edgehash = BLI_edgehash_new(__func__);
/* recreate vertpa from facepa calculation */
for (i = 0, mf = mface; i < totface; i++, mf++) {
vertpa[mf->v1] = facepa[i];
vertpa[mf->v2] = facepa[i];
vertpa[mf->v3] = facepa[i];
if (mf->v4) {
vertpa[mf->v4] = facepa[i];
}
}
/* mark edges for splitting and how to split faces */
for (i = 0, mf = mface, fs = facesplit; i < totface; i++, mf++, fs++) {
v1 = vertpa[mf->v1];
v2 = vertpa[mf->v2];
v3 = vertpa[mf->v3];
if (v1 != v2) {
BLI_edgehash_reinsert(edgehash, mf->v1, mf->v2, NULL);
(*fs) |= 1;
}
if (v2 != v3) {
BLI_edgehash_reinsert(edgehash, mf->v2, mf->v3, NULL);
(*fs) |= 2;
}
if (mf->v4) {
v4 = vertpa[mf->v4];
if (v3 != v4) {
BLI_edgehash_reinsert(edgehash, mf->v3, mf->v4, NULL);
(*fs) |= 4;
}
if (v1 != v4) {
BLI_edgehash_reinsert(edgehash, mf->v1, mf->v4, NULL);
(*fs) |= 8;
}
/* mark center vertex as a fake edge split */
if (*fs == 15) {
BLI_edgehash_reinsert(edgehash, mf->v1, mf->v3, NULL);
}
}
else {
(*fs) |= 16; /* mark face as tri */
if (v1 != v3) {
BLI_edgehash_reinsert(edgehash, mf->v1, mf->v3, NULL);
(*fs) |= 4;
}
}
}
/* count splits & create indexes for new verts */
ehi = BLI_edgehashIterator_new(edgehash);
totesplit = totvert;
for (; !BLI_edgehashIterator_isDone(ehi); BLI_edgehashIterator_step(ehi)) {
BLI_edgehashIterator_setValue(ehi, POINTER_FROM_INT(totesplit));
totesplit++;
}
BLI_edgehashIterator_free(ehi);
/* count new faces due to splitting */
for (i = 0, fs = facesplit; i < totface; i++, fs++) {
totfsplit += add_faces[*fs];
}
split_m = BKE_mesh_new_nomain_from_template(mesh, totesplit, 0, totface + totfsplit, 0, 0);
numlayer = CustomData_number_of_layers(&split_m->fdata, CD_MTFACE);
/* copy new faces & verts (is it really this painful with custom data??) */
for (i = 0; i < totvert; i++) {
MVert source;
MVert *dest;
source = mesh->mvert[i];
dest = &split_m->mvert[i];
CustomData_copy_data(&mesh->vdata, &split_m->vdata, i, i, 1);
*dest = source;
}
/* override original facepa (original pointer is saved in caller function) */
/* TODO(campbell): `(totfsplit * 2)` over allocation is used since the quads are
* later interpreted as tri's, for this to work right I think we probably
* have to stop using tessface. */
facepa = MEM_calloc_arrayN((totface + (totfsplit * 2)), sizeof(int), "explode_facepa");
// memcpy(facepa, emd->facepa, totface*sizeof(int));
emd->facepa = facepa;
/* create new verts */
ehi = BLI_edgehashIterator_new(edgehash);
for (; !BLI_edgehashIterator_isDone(ehi); BLI_edgehashIterator_step(ehi)) {
BLI_edgehashIterator_getKey(ehi, &ed_v1, &ed_v2);
esplit = POINTER_AS_INT(BLI_edgehashIterator_getValue(ehi));
mv = &split_m->mvert[ed_v2];
dupve = &split_m->mvert[esplit];
CustomData_copy_data(&split_m->vdata, &split_m->vdata, ed_v2, esplit, 1);
*dupve = *mv;
mv = &split_m->mvert[ed_v1];
mid_v3_v3v3(dupve->co, dupve->co, mv->co);
}
BLI_edgehashIterator_free(ehi);
/* create new faces */
curdupface = 0; //=totface;
// curdupin=totesplit;
for (i = 0, fs = facesplit; i < totface; i++, fs++) {
mf = &mesh->mface[i];
switch (*fs) {
case 3:
case 10:
case 11:
case 15:
SET_VERTS(1, 2, 3, 4);
break;
case 5:
case 6:
case 7:
SET_VERTS(2, 3, 4, 1);
break;
case 9:
case 13:
SET_VERTS(4, 1, 2, 3);
break;
case 12:
case 14:
SET_VERTS(3, 4, 1, 2);
break;
case 21:
case 23:
SET_VERTS(1, 2, 3, 4);
break;
case 19:
SET_VERTS(2, 3, 1, 4);
break;
case 22:
SET_VERTS(3, 1, 2, 4);
break;
}
switch (*fs) {
case 3:
case 6:
case 9:
case 12:
remap_faces_3_6_9_12(
mesh, split_m, mf, facepa, vertpa, i, edgehash, curdupface, v[0], v[1], v[2], v[3]);
if (numlayer) {
remap_uvs_3_6_9_12(mesh, split_m, numlayer, i, curdupface, uv[0], uv[1], uv[2], uv[3]);
}
break;
case 5:
case 10:
remap_faces_5_10(
mesh, split_m, mf, facepa, vertpa, i, edgehash, curdupface, v[0], v[1], v[2], v[3]);
if (numlayer) {
remap_uvs_5_10(mesh, split_m, numlayer, i, curdupface, uv[0], uv[1], uv[2], uv[3]);
}
break;
case 15:
remap_faces_15(
mesh, split_m, mf, facepa, vertpa, i, edgehash, curdupface, v[0], v[1], v[2], v[3]);
if (numlayer) {
remap_uvs_15(mesh, split_m, numlayer, i, curdupface, uv[0], uv[1], uv[2], uv[3]);
}
break;
case 7:
case 11:
case 13:
case 14:
remap_faces_7_11_13_14(
mesh, split_m, mf, facepa, vertpa, i, edgehash, curdupface, v[0], v[1], v[2], v[3]);
if (numlayer) {
remap_uvs_7_11_13_14(mesh, split_m, numlayer, i, curdupface, uv[0], uv[1], uv[2], uv[3]);
}
break;
case 19:
case 21:
case 22:
remap_faces_19_21_22(
mesh, split_m, mf, facepa, vertpa, i, edgehash, curdupface, v[0], v[1], v[2]);
if (numlayer) {
remap_uvs_19_21_22(mesh, split_m, numlayer, i, curdupface, uv[0], uv[1], uv[2]);
}
break;
case 23:
remap_faces_23(
mesh, split_m, mf, facepa, vertpa, i, edgehash, curdupface, v[0], v[1], v[2]);
if (numlayer) {
remap_uvs_23(mesh, split_m, numlayer, i, curdupface, uv[0], uv[1], uv[2]);
}
break;
case 0:
case 16:
df1 = get_dface(mesh, split_m, curdupface, i, mf);
facepa[curdupface] = vertpa[mf->v1];
if (df1->v4) {
df1->flag |= ME_FACE_SEL;
}
else {
df1->flag &= ~ME_FACE_SEL;
}
break;
}
curdupface += add_faces[*fs] + 1;
}
for (i = 0; i < curdupface; i++) {
mf = &split_m->mface[i];
BKE_mesh_mface_index_validate(mf, &split_m->fdata, i, ((mf->flag & ME_FACE_SEL) ? 4 : 3));
}
BLI_edgehash_free(edgehash, NULL);
MEM_freeN(facesplit);
MEM_freeN(vertpa);
BKE_mesh_calc_edges_tessface(split_m);
BKE_mesh_convert_mfaces_to_mpolys(split_m);
return split_m;
}
static Mesh *explodeMesh(ExplodeModifierData *emd,
ParticleSystemModifierData *psmd,
const ModifierEvalContext *ctx,
Scene *scene,
Mesh *to_explode)
{
Mesh *explode, *mesh = to_explode;
MFace *mf = NULL, *mface;
/* ParticleSettings *part=psmd->psys->part; */ /* UNUSED */
ParticleSimulationData sim = {NULL};
ParticleData *pa = NULL, *pars = psmd->psys->particles;
ParticleKey state, birth;
EdgeHash *vertpahash;
EdgeHashIterator *ehi;
float *vertco = NULL, imat[4][4];
float rot[4];
float ctime;
/* float timestep; */
const int *facepa = emd->facepa;
int totdup = 0, totvert = 0, totface = 0, totpart = 0, delface = 0;
int i, v, u;
uint ed_v1, ed_v2, mindex = 0;
MTFace *mtface = NULL, *mtf;
totface = mesh->totface;
totvert = mesh->totvert;
mface = mesh->mface;
totpart = psmd->psys->totpart;
sim.depsgraph = ctx->depsgraph;
sim.scene = scene;
sim.ob = ctx->object;
sim.psys = psmd->psys;
sim.psmd = psmd;
/* timestep = psys_get_timestep(&sim); */
ctime = BKE_scene_ctime_get(scene);
/* hash table for vertice <-> particle relations */
vertpahash = BLI_edgehash_new(__func__);
for (i = 0; i < totface; i++) {
if (facepa[i] != totpart) {
pa = pars + facepa[i];
if ((pa->alive == PARS_UNBORN && (emd->flag & eExplodeFlag_Unborn) == 0) ||
(pa->alive == PARS_ALIVE && (emd->flag & eExplodeFlag_Alive) == 0) ||
(pa->alive == PARS_DEAD && (emd->flag & eExplodeFlag_Dead) == 0)) {
delface++;
continue;
}
}
else {
pa = NULL;
}
/* do mindex + totvert to ensure the vertex index to be the first
* with BLI_edgehashIterator_getKey */
if (pa == NULL || ctime < pa->time) {
mindex = totvert + totpart;
}
else {
mindex = totvert + facepa[i];
}
mf = &mface[i];
/* set face vertices to exist in particle group */
BLI_edgehash_reinsert(vertpahash, mf->v1, mindex, NULL);
BLI_edgehash_reinsert(vertpahash, mf->v2, mindex, NULL);
BLI_edgehash_reinsert(vertpahash, mf->v3, mindex, NULL);
if (mf->v4) {
BLI_edgehash_reinsert(vertpahash, mf->v4, mindex, NULL);
}
}
/* make new vertice indexes & count total vertices after duplication */
ehi = BLI_edgehashIterator_new(vertpahash);
for (; !BLI_edgehashIterator_isDone(ehi); BLI_edgehashIterator_step(ehi)) {
BLI_edgehashIterator_setValue(ehi, POINTER_FROM_INT(totdup));
totdup++;
}
BLI_edgehashIterator_free(ehi);
/* the final duplicated vertices */
explode = BKE_mesh_new_nomain_from_template(mesh, totdup, 0, totface - delface, 0, 0);
mtface = CustomData_get_layer_named(&explode->fdata, CD_MTFACE, emd->uvname);
/* getting back to object space */
invert_m4_m4(imat, ctx->object->obmat);
psmd->psys->lattice_deform_data = psys_create_lattice_deform_data(&sim);
/* duplicate & displace vertices */
ehi = BLI_edgehashIterator_new(vertpahash);
for (; !BLI_edgehashIterator_isDone(ehi); BLI_edgehashIterator_step(ehi)) {
MVert source;
MVert *dest;
/* get particle + vertex from hash */
BLI_edgehashIterator_getKey(ehi, &ed_v1, &ed_v2);
ed_v2 -= totvert;
v = POINTER_AS_INT(BLI_edgehashIterator_getValue(ehi));
source = mesh->mvert[ed_v1];
dest = &explode->mvert[v];
CustomData_copy_data(&mesh->vdata, &explode->vdata, ed_v1, v, 1);
*dest = source;
if (ed_v2 != totpart) {
/* get particle */
pa = pars + ed_v2;
psys_get_birth_coords(&sim, pa, &birth, 0, 0);
state.time = ctime;
psys_get_particle_state(&sim, ed_v2, &state, 1);
vertco = explode->mvert[v].co;
mul_m4_v3(ctx->object->obmat, vertco);
sub_v3_v3(vertco, birth.co);
/* apply rotation, size & location */
sub_qt_qtqt(rot, state.rot, birth.rot);
mul_qt_v3(rot, vertco);
if (emd->flag & eExplodeFlag_PaSize) {
mul_v3_fl(vertco, pa->size);
}
add_v3_v3(vertco, state.co);
mul_m4_v3(imat, vertco);
}
else {
pa = NULL;
}
}
BLI_edgehashIterator_free(ehi);
/* Map new vertices to faces. */
for (i = 0, u = 0; i < totface; i++) {
MFace source;
int orig_v4;
if (facepa[i] != totpart) {
pa = pars + facepa[i];
if (pa->alive == PARS_UNBORN && (emd->flag & eExplodeFlag_Unborn) == 0) {
continue;
}
if (pa->alive == PARS_ALIVE && (emd->flag & eExplodeFlag_Alive) == 0) {
continue;
}
if (pa->alive == PARS_DEAD && (emd->flag & eExplodeFlag_Dead) == 0) {
continue;
}
}
else {
pa = NULL;
}
source = mesh->mface[i];
mf = &explode->mface[u];
orig_v4 = source.v4;
/* Same as above in the first loop over mesh's faces. */
if (pa == NULL || ctime < pa->time) {
mindex = totvert + totpart;
}
else {
mindex = totvert + facepa[i];
}
source.v1 = edgecut_get(vertpahash, source.v1, mindex);
source.v2 = edgecut_get(vertpahash, source.v2, mindex);
source.v3 = edgecut_get(vertpahash, source.v3, mindex);
if (source.v4) {
source.v4 = edgecut_get(vertpahash, source.v4, mindex);
}
CustomData_copy_data(&mesh->fdata, &explode->fdata, i, u, 1);
*mf = source;
/* override uv channel for particle age */
if (mtface) {
float age = (pa != NULL) ? (ctime - pa->time) / pa->lifetime : 0.0f;
/* Clamp to this range to avoid flipping to the other side of the coordinates. */
CLAMP(age, 0.001f, 0.999f);
mtf = mtface + u;
mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = age;
mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = 0.5f;
}
BKE_mesh_mface_index_validate(mf, &explode->fdata, u, (orig_v4 ? 4 : 3));
u++;
}
/* cleanup */
BLI_edgehash_free(vertpahash, NULL);
/* finalization */
BKE_mesh_calc_edges_tessface(explode);
BKE_mesh_convert_mfaces_to_mpolys(explode);
BKE_mesh_normals_tag_dirty(explode);
if (psmd->psys->lattice_deform_data) {
BKE_lattice_deform_data_destroy(psmd->psys->lattice_deform_data);
psmd->psys->lattice_deform_data = NULL;
}
return explode;
}
static ParticleSystemModifierData *findPrecedingParticlesystem(Object *ob, ModifierData *emd)
{
ModifierData *md;
ParticleSystemModifierData *psmd = NULL;
for (md = ob->modifiers.first; emd != md; md = md->next) {
if (md->type == eModifierType_ParticleSystem) {
psmd = (ParticleSystemModifierData *)md;
}
}
return psmd;
}
static Mesh *modifyMesh(ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh)
{
ExplodeModifierData *emd = (ExplodeModifierData *)md;
ParticleSystemModifierData *psmd = findPrecedingParticlesystem(ctx->object, md);
if (psmd) {
ParticleSystem *psys = psmd->psys;
if (psys == NULL || psys->totpart == 0) {
return mesh;
}
if (psys->part == NULL || psys->particles == NULL) {
return mesh;
}
if (psmd->mesh_final == NULL) {
return mesh;
}
BKE_mesh_tessface_ensure(mesh); /* BMESH - UNTIL MODIFIER IS UPDATED FOR MPoly */
/* 1. find faces to be exploded if needed */
if (emd->facepa == NULL || psmd->flag & eParticleSystemFlag_Pars ||
emd->flag & eExplodeFlag_CalcFaces ||
MEM_allocN_len(emd->facepa) / sizeof(int) != mesh->totface) {
if (psmd->flag & eParticleSystemFlag_Pars) {
psmd->flag &= ~eParticleSystemFlag_Pars;
}
if (emd->flag & eExplodeFlag_CalcFaces) {
emd->flag &= ~eExplodeFlag_CalcFaces;
}
createFacepa(emd, psmd, mesh);
}
/* 2. create new mesh */
Scene *scene = DEG_get_evaluated_scene(ctx->depsgraph);
if (emd->flag & eExplodeFlag_EdgeCut) {
int *facepa = emd->facepa;
Mesh *split_m = cutEdges(emd, mesh);
Mesh *explode = explodeMesh(emd, psmd, ctx, scene, split_m);
MEM_freeN(emd->facepa);
emd->facepa = facepa;
BKE_id_free(NULL, split_m);
return explode;
}
return explodeMesh(emd, psmd, ctx, scene, mesh);
}
return mesh;
}
static void panel_draw(const bContext *UNUSED(C), Panel *panel)
{
uiLayout *row, *col;
uiLayout *layout = panel->layout;
int toggles_flag = UI_ITEM_R_TOGGLE | UI_ITEM_R_FORCE_BLANK_DECORATE;
PointerRNA ob_ptr;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, &ob_ptr);
PointerRNA obj_data_ptr = RNA_pointer_get(&ob_ptr, "data");
bool has_vertex_group = RNA_string_length(ptr, "vertex_group") != 0;
uiLayoutSetPropSep(layout, true);
uiItemPointerR(layout, ptr, "particle_uv", &obj_data_ptr, "uv_layers", NULL, ICON_NONE);
row = uiLayoutRowWithHeading(layout, true, IFACE_("Show"));
uiItemR(row, ptr, "show_alive", toggles_flag, NULL, ICON_NONE);
uiItemR(row, ptr, "show_dead", toggles_flag, NULL, ICON_NONE);
uiItemR(row, ptr, "show_unborn", toggles_flag, NULL, ICON_NONE);
uiLayoutSetPropSep(layout, true);
col = uiLayoutColumn(layout, false);
uiItemR(col, ptr, "use_edge_cut", 0, NULL, ICON_NONE);
uiItemR(col, ptr, "use_size", 0, NULL, ICON_NONE);
modifier_vgroup_ui(layout, ptr, &ob_ptr, "vertex_group", "invert_vertex_group", NULL);
row = uiLayoutRow(layout, false);
uiLayoutSetActive(row, has_vertex_group);
uiItemR(row, ptr, "protect", 0, NULL, ICON_NONE);
uiItemO(layout, IFACE_("Refresh"), ICON_NONE, "OBJECT_OT_explode_refresh");
modifier_panel_end(layout, ptr);
}
static void panelRegister(ARegionType *region_type)
{
modifier_panel_register(region_type, eModifierType_Explode, panel_draw);
}
static void blendRead(BlendDataReader *UNUSED(reader), ModifierData *md)
{
ExplodeModifierData *psmd = (ExplodeModifierData *)md;
psmd->facepa = NULL;
}
ModifierTypeInfo modifierType_Explode = {
/* name */ "Explode",
/* structName */ "ExplodeModifierData",
/* structSize */ sizeof(ExplodeModifierData),
/* srna */ &RNA_ExplodeModifier,
/* type */ eModifierTypeType_Constructive,
/* flags */ eModifierTypeFlag_AcceptsMesh,
/* icon */ ICON_MOD_EXPLODE,
/* copyData */ copyData,
/* deformVerts */ NULL,
/* deformMatrices */ NULL,
/* deformVertsEM */ NULL,
/* deformMatricesEM */ NULL,
/* modifyMesh */ modifyMesh,
/* modifyHair */ NULL,
/* modifyGeometrySet */ NULL,
/* initData */ initData,
/* requiredDataMask */ requiredDataMask,
/* freeData */ freeData,
/* isDisabled */ NULL,
/* updateDepsgraph */ NULL,
/* dependsOnTime */ dependsOnTime,
/* dependsOnNormals */ NULL,
/* foreachIDLink */ NULL,
/* foreachTexLink */ NULL,
/* freeRuntimeData */ NULL,
/* panelRegister */ panelRegister,
/* blendWrite */ NULL,
/* blendRead */ blendRead,
};