As described in T91186, this commit moves mesh vertex normals into a contiguous array of float vectors in a custom data layer, how face normals are currently stored. The main interface is documented in `BKE_mesh.h`. Vertex and face normals are now calculated on-demand and cached, retrieved with an "ensure" function. Since the logical state of a mesh is now "has normals when necessary", they can be retrieved from a `const` mesh. The goal is to use on-demand calculation for all derived data, but leave room for eager calculation for performance purposes (modifier evaluation is threaded, but viewport data generation is not). **Benefits** This moves us closer to a SoA approach rather than the current AoS paradigm. Accessing a contiguous `float3` is much more efficient than retrieving data from a larger struct. The memory requirements for accessing only normals or vertex locations are smaller, and at the cost of more memory usage for just normals, they now don't have to be converted between float and short, which also simplifies code In the future, the remaining items can be removed from `MVert`, leaving only `float3`, which has similar benefits (see T93602). Removing the combination of derived and original data makes it conceptually simpler to only calculate normals when necessary. This is especially important now that we have more opportunities for temporary meshes in geometry nodes. **Performance** In addition to the theoretical future performance improvements by making `MVert == float3`, I've done some basic performance testing on this patch directly. The data is fairly rough, but it gives an idea about where things stand generally. - Mesh line primitive 4m Verts: 1.16x faster (36 -> 31 ms), showing that accessing just `MVert` is now more efficient. - Spring Splash Screen: 1.03-1.06 -> 1.06-1.11 FPS, a very slight change that at least shows there is no regression. - Sprite Fright Snail Smoosh: 3.30-3.40 -> 3.42-3.50 FPS, a small but observable speedup. - Set Position Node with Scaled Normal: 1.36x faster (53 -> 39 ms), shows that using normals in geometry nodes is faster. - Normal Calculation 1.6m Vert Cube: 1.19x faster (25 -> 21 ms), shows that calculating normals is slightly faster now. - File Size of 1.6m Vert Cube: 1.03x smaller (214.7 -> 208.4 MB), Normals are not saved in files, which can help with large meshes. As for memory usage, it may be slightly more in some cases, but I didn't observe any difference in the production files I tested. **Tests** Some modifiers and cycles test results need to be updated with this commit, for two reasons: - The subdivision surface modifier is not responsible for calculating normals anymore. In master, the modifier creates different normals than the result of the `Mesh` normal calculation, so this is a bug fix. - There are small differences in the results of some modifiers that use normals because they are not converted to and from `short` anymore. **Future improvements** - Remove `ModifierTypeInfo::dependsOnNormals`. Code in each modifier already retrieves normals if they are needed anyway. - Copy normals as part of a better CoW system for attributes. - Make more areas use lazy instead of eager normal calculation. - Remove `BKE_mesh_normals_tag_dirty` in more places since that is now the default state of a new mesh. - Possibly apply a similar change to derived face corner normals. Differential Revision: https://developer.blender.org/D12770
1277 lines
41 KiB
C
1277 lines
41 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2005 by the Blender Foundation.
|
|
* All rights reserved.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup modifiers
|
|
*/
|
|
|
|
/* Screw modifier: revolves the edges about an axis */
|
|
#include <limits.h>
|
|
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "BLI_alloca.h"
|
|
#include "BLI_math.h"
|
|
|
|
#include "BLT_translation.h"
|
|
|
|
#include "DNA_defaults.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_screen_types.h"
|
|
|
|
#include "BKE_context.h"
|
|
#include "BKE_lib_query.h"
|
|
#include "BKE_mesh.h"
|
|
#include "BKE_screen.h"
|
|
|
|
#include "UI_interface.h"
|
|
#include "UI_resources.h"
|
|
|
|
#include "RNA_access.h"
|
|
|
|
#include "DEG_depsgraph_build.h"
|
|
#include "DEG_depsgraph_query.h"
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "MOD_modifiertypes.h"
|
|
#include "MOD_ui_common.h"
|
|
|
|
static void initData(ModifierData *md)
|
|
{
|
|
ScrewModifierData *ltmd = (ScrewModifierData *)md;
|
|
|
|
BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(ltmd, modifier));
|
|
|
|
MEMCPY_STRUCT_AFTER(ltmd, DNA_struct_default_get(ScrewModifierData), modifier);
|
|
}
|
|
|
|
#include "BLI_strict_flags.h"
|
|
|
|
/* used for gathering edge connectivity */
|
|
typedef struct ScrewVertConnect {
|
|
float dist; /* distance from the center axis */
|
|
float co[3]; /* location relative to the transformed axis */
|
|
float no[3]; /* calc normal of the vertex */
|
|
uint v[2]; /* 2 verts on either side of this one */
|
|
MEdge *e[2]; /* edges on either side, a bit of a waste since each edge ref's 2 edges */
|
|
char flag;
|
|
} ScrewVertConnect;
|
|
|
|
typedef struct ScrewVertIter {
|
|
ScrewVertConnect *v_array;
|
|
ScrewVertConnect *v_poin;
|
|
uint v, v_other;
|
|
MEdge *e;
|
|
} ScrewVertIter;
|
|
|
|
#define SV_UNUSED (UINT_MAX)
|
|
#define SV_INVALID ((UINT_MAX)-1)
|
|
#define SV_IS_VALID(v) ((v) < SV_INVALID)
|
|
|
|
static void screwvert_iter_init(ScrewVertIter *iter,
|
|
ScrewVertConnect *array,
|
|
uint v_init,
|
|
uint dir)
|
|
{
|
|
iter->v_array = array;
|
|
iter->v = v_init;
|
|
|
|
if (SV_IS_VALID(v_init)) {
|
|
iter->v_poin = &array[v_init];
|
|
iter->v_other = iter->v_poin->v[dir];
|
|
iter->e = iter->v_poin->e[!dir];
|
|
}
|
|
else {
|
|
iter->v_poin = NULL;
|
|
iter->e = NULL;
|
|
}
|
|
}
|
|
|
|
static void screwvert_iter_step(ScrewVertIter *iter)
|
|
{
|
|
if (iter->v_poin->v[0] == iter->v_other) {
|
|
iter->v_other = iter->v;
|
|
iter->v = iter->v_poin->v[1];
|
|
}
|
|
else if (iter->v_poin->v[1] == iter->v_other) {
|
|
iter->v_other = iter->v;
|
|
iter->v = iter->v_poin->v[0];
|
|
}
|
|
if (SV_IS_VALID(iter->v)) {
|
|
iter->v_poin = &iter->v_array[iter->v];
|
|
iter->e = iter->v_poin->e[(iter->v_poin->e[0] == iter->e)];
|
|
}
|
|
else {
|
|
iter->e = NULL;
|
|
iter->v_poin = NULL;
|
|
}
|
|
}
|
|
|
|
static Mesh *mesh_remove_doubles_on_axis(Mesh *result,
|
|
MVert *mvert_new,
|
|
const uint totvert,
|
|
const uint step_tot,
|
|
const float axis_vec[3],
|
|
const float axis_offset[3],
|
|
const float merge_threshold)
|
|
{
|
|
const float merge_threshold_sq = square_f(merge_threshold);
|
|
const bool use_offset = axis_offset != NULL;
|
|
uint tot_doubles = 0;
|
|
for (uint i = 0; i < totvert; i += 1) {
|
|
float axis_co[3];
|
|
if (use_offset) {
|
|
float offset_co[3];
|
|
sub_v3_v3v3(offset_co, mvert_new[i].co, axis_offset);
|
|
project_v3_v3v3_normalized(axis_co, offset_co, axis_vec);
|
|
add_v3_v3(axis_co, axis_offset);
|
|
}
|
|
else {
|
|
project_v3_v3v3_normalized(axis_co, mvert_new[i].co, axis_vec);
|
|
}
|
|
const float dist_sq = len_squared_v3v3(axis_co, mvert_new[i].co);
|
|
if (dist_sq <= merge_threshold_sq) {
|
|
mvert_new[i].flag |= ME_VERT_TMP_TAG;
|
|
tot_doubles += 1;
|
|
copy_v3_v3(mvert_new[i].co, axis_co);
|
|
}
|
|
else {
|
|
mvert_new[i].flag &= ~ME_VERT_TMP_TAG & 0xFF;
|
|
}
|
|
}
|
|
|
|
if (tot_doubles != 0) {
|
|
uint tot = totvert * step_tot;
|
|
int *full_doubles_map = MEM_malloc_arrayN(tot, sizeof(int), __func__);
|
|
copy_vn_i(full_doubles_map, (int)tot, -1);
|
|
|
|
uint tot_doubles_left = tot_doubles;
|
|
for (uint i = 0; i < totvert; i += 1) {
|
|
if (mvert_new[i].flag & ME_VERT_TMP_TAG) {
|
|
int *doubles_map = &full_doubles_map[totvert + i];
|
|
for (uint step = 1; step < step_tot; step += 1) {
|
|
*doubles_map = (int)i;
|
|
doubles_map += totvert;
|
|
}
|
|
tot_doubles_left -= 1;
|
|
if (tot_doubles_left == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
result = BKE_mesh_merge_verts(result,
|
|
full_doubles_map,
|
|
(int)(tot_doubles * (step_tot - 1)),
|
|
MESH_MERGE_VERTS_DUMP_IF_MAPPED);
|
|
MEM_freeN(full_doubles_map);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static Mesh *modifyMesh(ModifierData *md, const ModifierEvalContext *ctx, Mesh *meshData)
|
|
{
|
|
Mesh *mesh = meshData;
|
|
Mesh *result;
|
|
ScrewModifierData *ltmd = (ScrewModifierData *)md;
|
|
const bool use_render_params = (ctx->flag & MOD_APPLY_RENDER) != 0;
|
|
|
|
int *origindex;
|
|
int mpoly_index = 0;
|
|
uint step;
|
|
uint i, j;
|
|
uint i1, i2;
|
|
uint step_tot = use_render_params ? ltmd->render_steps : ltmd->steps;
|
|
const bool do_flip = (ltmd->flag & MOD_SCREW_NORMAL_FLIP) != 0;
|
|
|
|
const int quad_ord[4] = {
|
|
do_flip ? 3 : 0,
|
|
do_flip ? 2 : 1,
|
|
do_flip ? 1 : 2,
|
|
do_flip ? 0 : 3,
|
|
};
|
|
const int quad_ord_ofs[4] = {
|
|
do_flip ? 2 : 0,
|
|
1,
|
|
do_flip ? 0 : 2,
|
|
3,
|
|
};
|
|
|
|
uint maxVerts = 0, maxEdges = 0, maxPolys = 0;
|
|
const uint totvert = (uint)mesh->totvert;
|
|
const uint totedge = (uint)mesh->totedge;
|
|
const uint totpoly = (uint)mesh->totpoly;
|
|
|
|
uint *edge_poly_map = NULL; /* orig edge to orig poly */
|
|
uint *vert_loop_map = NULL; /* orig vert to orig loop */
|
|
|
|
/* UV Coords */
|
|
const uint mloopuv_layers_tot = (uint)CustomData_number_of_layers(&mesh->ldata, CD_MLOOPUV);
|
|
MLoopUV **mloopuv_layers = BLI_array_alloca(mloopuv_layers, mloopuv_layers_tot);
|
|
float uv_u_scale;
|
|
float uv_v_minmax[2] = {FLT_MAX, -FLT_MAX};
|
|
float uv_v_range_inv;
|
|
float uv_axis_plane[4];
|
|
|
|
char axis_char = 'X';
|
|
bool close;
|
|
float angle = ltmd->angle;
|
|
float screw_ofs = ltmd->screw_ofs;
|
|
float axis_vec[3] = {0.0f, 0.0f, 0.0f};
|
|
float tmp_vec1[3], tmp_vec2[3];
|
|
float mat3[3][3];
|
|
/* transform the coords by an object relative to this objects transformation */
|
|
float mtx_tx[4][4];
|
|
float mtx_tx_inv[4][4]; /* inverted */
|
|
float mtx_tmp_a[4][4];
|
|
|
|
uint vc_tot_linked = 0;
|
|
short other_axis_1, other_axis_2;
|
|
const float *tmpf1, *tmpf2;
|
|
|
|
uint edge_offset;
|
|
|
|
MPoly *mpoly_orig, *mpoly_new, *mp_new;
|
|
MLoop *mloop_orig, *mloop_new, *ml_new;
|
|
MEdge *medge_orig, *med_orig, *med_new, *med_new_firstloop, *medge_new;
|
|
MVert *mvert_new, *mvert_orig, *mv_orig, *mv_new, *mv_new_base;
|
|
|
|
Object *ob_axis = ltmd->ob_axis;
|
|
|
|
ScrewVertConnect *vc, *vc_tmp, *vert_connect = NULL;
|
|
|
|
const char mpoly_flag = (ltmd->flag & MOD_SCREW_SMOOTH_SHADING) ? ME_SMOOTH : 0;
|
|
|
|
/* don't do anything? */
|
|
if (!totvert) {
|
|
return BKE_mesh_new_nomain_from_template(mesh, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
switch (ltmd->axis) {
|
|
case 0:
|
|
other_axis_1 = 1;
|
|
other_axis_2 = 2;
|
|
break;
|
|
case 1:
|
|
other_axis_1 = 0;
|
|
other_axis_2 = 2;
|
|
break;
|
|
default: /* 2, use default to quiet warnings */
|
|
other_axis_1 = 0;
|
|
other_axis_2 = 1;
|
|
break;
|
|
}
|
|
|
|
axis_vec[ltmd->axis] = 1.0f;
|
|
|
|
if (ob_axis != NULL) {
|
|
/* calc the matrix relative to the axis object */
|
|
invert_m4_m4(mtx_tmp_a, ctx->object->obmat);
|
|
copy_m4_m4(mtx_tx_inv, ob_axis->obmat);
|
|
mul_m4_m4m4(mtx_tx, mtx_tmp_a, mtx_tx_inv);
|
|
|
|
/* calc the axis vec */
|
|
mul_mat3_m4_v3(mtx_tx, axis_vec); /* only rotation component */
|
|
normalize_v3(axis_vec);
|
|
|
|
/* screw */
|
|
if (ltmd->flag & MOD_SCREW_OBJECT_OFFSET) {
|
|
/* find the offset along this axis relative to this objects matrix */
|
|
float totlen = len_v3(mtx_tx[3]);
|
|
|
|
if (totlen != 0.0f) {
|
|
const float zero[3] = {0.0f, 0.0f, 0.0f};
|
|
float cp[3];
|
|
screw_ofs = closest_to_line_v3(cp, mtx_tx[3], zero, axis_vec);
|
|
}
|
|
else {
|
|
screw_ofs = 0.0f;
|
|
}
|
|
}
|
|
|
|
/* angle */
|
|
|
|
#if 0 /* can't include this, not predictable enough, though quite fun. */
|
|
if (ltmd->flag & MOD_SCREW_OBJECT_ANGLE) {
|
|
float mtx3_tx[3][3];
|
|
copy_m3_m4(mtx3_tx, mtx_tx);
|
|
|
|
float vec[3] = {0, 1, 0};
|
|
float cross1[3];
|
|
float cross2[3];
|
|
cross_v3_v3v3(cross1, vec, axis_vec);
|
|
|
|
mul_v3_m3v3(cross2, mtx3_tx, cross1);
|
|
{
|
|
float c1[3];
|
|
float c2[3];
|
|
float axis_tmp[3];
|
|
|
|
cross_v3_v3v3(c1, cross2, axis_vec);
|
|
cross_v3_v3v3(c2, axis_vec, c1);
|
|
|
|
angle = angle_v3v3(cross1, c2);
|
|
|
|
cross_v3_v3v3(axis_tmp, cross1, c2);
|
|
normalize_v3(axis_tmp);
|
|
|
|
if (len_v3v3(axis_tmp, axis_vec) > 1.0f) {
|
|
angle = -angle;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
axis_char = (char)(axis_char + ltmd->axis); /* 'X' + axis */
|
|
|
|
/* useful to be able to use the axis vec in some cases still */
|
|
zero_v3(axis_vec);
|
|
axis_vec[ltmd->axis] = 1.0f;
|
|
}
|
|
|
|
/* apply the multiplier */
|
|
angle *= (float)ltmd->iter;
|
|
screw_ofs *= (float)ltmd->iter;
|
|
uv_u_scale = 1.0f / (float)(step_tot);
|
|
|
|
/* multiplying the steps is a bit tricky, this works best */
|
|
step_tot = ((step_tot + 1) * ltmd->iter) - (ltmd->iter - 1);
|
|
|
|
/* Will the screw be closed?
|
|
* NOTE: smaller than `FLT_EPSILON * 100`
|
|
* gives problems with float precision so its never closed. */
|
|
if (fabsf(screw_ofs) <= (FLT_EPSILON * 100.0f) &&
|
|
fabsf(fabsf(angle) - ((float)M_PI * 2.0f)) <= (FLT_EPSILON * 100.0f) && step_tot > 3) {
|
|
close = 1;
|
|
step_tot--;
|
|
|
|
maxVerts = totvert * step_tot; /* -1 because we're joining back up */
|
|
maxEdges = (totvert * step_tot) + /* these are the edges between new verts */
|
|
(totedge * step_tot); /* -1 because vert edges join */
|
|
maxPolys = totedge * step_tot;
|
|
|
|
screw_ofs = 0.0f;
|
|
}
|
|
else {
|
|
close = 0;
|
|
if (step_tot < 2) {
|
|
step_tot = 2;
|
|
}
|
|
|
|
maxVerts = totvert * step_tot; /* -1 because we're joining back up */
|
|
maxEdges = (totvert * (step_tot - 1)) + /* these are the edges between new verts */
|
|
(totedge * step_tot); /* -1 because vert edges join */
|
|
maxPolys = totedge * (step_tot - 1);
|
|
}
|
|
|
|
if ((ltmd->flag & MOD_SCREW_UV_STRETCH_U) == 0) {
|
|
uv_u_scale = (uv_u_scale / (float)ltmd->iter) * (angle / ((float)M_PI * 2.0f));
|
|
}
|
|
|
|
result = BKE_mesh_new_nomain_from_template(
|
|
mesh, (int)maxVerts, (int)maxEdges, 0, (int)maxPolys * 4, (int)maxPolys);
|
|
|
|
/* copy verts from mesh */
|
|
mvert_orig = mesh->mvert;
|
|
medge_orig = mesh->medge;
|
|
|
|
mvert_new = result->mvert;
|
|
float(*vert_normals_new)[3] = BKE_mesh_vertex_normals_for_write(result);
|
|
BKE_mesh_vertex_normals_clear_dirty(result);
|
|
mpoly_new = result->mpoly;
|
|
mloop_new = result->mloop;
|
|
medge_new = result->medge;
|
|
|
|
if (!CustomData_has_layer(&result->pdata, CD_ORIGINDEX)) {
|
|
CustomData_add_layer(&result->pdata, CD_ORIGINDEX, CD_CALLOC, NULL, (int)maxPolys);
|
|
}
|
|
|
|
origindex = CustomData_get_layer(&result->pdata, CD_ORIGINDEX);
|
|
|
|
CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, (int)totvert);
|
|
|
|
if (mloopuv_layers_tot) {
|
|
const float zero_co[3] = {0};
|
|
plane_from_point_normal_v3(uv_axis_plane, zero_co, axis_vec);
|
|
}
|
|
|
|
if (mloopuv_layers_tot) {
|
|
uint uv_lay;
|
|
for (uv_lay = 0; uv_lay < mloopuv_layers_tot; uv_lay++) {
|
|
mloopuv_layers[uv_lay] = CustomData_get_layer_n(&result->ldata, CD_MLOOPUV, (int)uv_lay);
|
|
}
|
|
|
|
if (ltmd->flag & MOD_SCREW_UV_STRETCH_V) {
|
|
for (i = 0, mv_orig = mvert_orig; i < totvert; i++, mv_orig++) {
|
|
const float v = dist_signed_squared_to_plane_v3(mv_orig->co, uv_axis_plane);
|
|
uv_v_minmax[0] = min_ff(v, uv_v_minmax[0]);
|
|
uv_v_minmax[1] = max_ff(v, uv_v_minmax[1]);
|
|
}
|
|
uv_v_minmax[0] = sqrtf_signed(uv_v_minmax[0]);
|
|
uv_v_minmax[1] = sqrtf_signed(uv_v_minmax[1]);
|
|
}
|
|
|
|
uv_v_range_inv = uv_v_minmax[1] - uv_v_minmax[0];
|
|
uv_v_range_inv = uv_v_range_inv ? 1.0f / uv_v_range_inv : 0.0f;
|
|
}
|
|
|
|
/* Set the locations of the first set of verts */
|
|
|
|
mv_new = mvert_new;
|
|
mv_orig = mvert_orig;
|
|
|
|
/* Copy the first set of edges */
|
|
med_orig = medge_orig;
|
|
med_new = medge_new;
|
|
for (i = 0; i < totedge; i++, med_orig++, med_new++) {
|
|
med_new->v1 = med_orig->v1;
|
|
med_new->v2 = med_orig->v2;
|
|
med_new->crease = med_orig->crease;
|
|
med_new->flag = med_orig->flag & ~ME_LOOSEEDGE;
|
|
/* Tag mvert as not loose.
|
|
* NOTE: ME_VERT_TMP_TAG is given to be cleared by BKE_mesh_new_nomain_from_template. */
|
|
mvert_new[med_orig->v1].flag |= ME_VERT_TMP_TAG;
|
|
mvert_new[med_orig->v2].flag |= ME_VERT_TMP_TAG;
|
|
}
|
|
|
|
/* build polygon -> edge map */
|
|
if (totpoly) {
|
|
MPoly *mp_orig;
|
|
|
|
mpoly_orig = mesh->mpoly;
|
|
mloop_orig = mesh->mloop;
|
|
edge_poly_map = MEM_malloc_arrayN(totedge, sizeof(*edge_poly_map), __func__);
|
|
memset(edge_poly_map, 0xff, sizeof(*edge_poly_map) * totedge);
|
|
|
|
vert_loop_map = MEM_malloc_arrayN(totvert, sizeof(*vert_loop_map), __func__);
|
|
memset(vert_loop_map, 0xff, sizeof(*vert_loop_map) * totvert);
|
|
|
|
for (i = 0, mp_orig = mpoly_orig; i < totpoly; i++, mp_orig++) {
|
|
uint loopstart = (uint)mp_orig->loopstart;
|
|
uint loopend = loopstart + (uint)mp_orig->totloop;
|
|
|
|
MLoop *ml_orig = &mloop_orig[loopstart];
|
|
uint k;
|
|
for (k = loopstart; k < loopend; k++, ml_orig++) {
|
|
edge_poly_map[ml_orig->e] = i;
|
|
vert_loop_map[ml_orig->v] = k;
|
|
|
|
/* also order edges based on faces */
|
|
if (medge_new[ml_orig->e].v1 != ml_orig->v) {
|
|
SWAP(uint, medge_new[ml_orig->e].v1, medge_new[ml_orig->e].v2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ltmd->flag & MOD_SCREW_NORMAL_CALC) {
|
|
/*
|
|
* Normal Calculation (for face flipping)
|
|
* Sort edge verts for correct face flipping
|
|
* NOT REALLY NEEDED but face flipping is nice. */
|
|
|
|
/* Notice!
|
|
*
|
|
* Since we are only ordering the edges here it can avoid mallocing the
|
|
* extra space by abusing the vert array before its filled with new verts.
|
|
* The new array for vert_connect must be at least sizeof(ScrewVertConnect) * totvert
|
|
* and the size of our resulting meshes array is sizeof(MVert) * totvert * 3
|
|
* so its safe to use the second 2 thirds of MVert the array for vert_connect,
|
|
* just make sure ScrewVertConnect struct is no more than twice as big as MVert,
|
|
* at the moment there is no chance of that being a problem,
|
|
* unless MVert becomes half its current size.
|
|
*
|
|
* once the edges are ordered, vert_connect is not needed and it can be used for verts
|
|
*
|
|
* This makes the modifier faster with one less alloc.
|
|
*/
|
|
|
|
vert_connect = MEM_malloc_arrayN(totvert, sizeof(ScrewVertConnect), "ScrewVertConnect");
|
|
/* skip the first slice of verts. */
|
|
// vert_connect = (ScrewVertConnect *) &medge_new[totvert];
|
|
vc = vert_connect;
|
|
|
|
/* Copy Vert Locations */
|
|
/* - We can do this in a later loop - only do here if no normal calc */
|
|
if (!totedge) {
|
|
for (i = 0; i < totvert; i++, mv_orig++, mv_new++) {
|
|
copy_v3_v3(mv_new->co, mv_orig->co);
|
|
normalize_v3_v3(vc->no, mv_new->co); /* no edges- this is really a dummy normal */
|
|
}
|
|
}
|
|
else {
|
|
// printf("\n\n\n\n\nStarting Modifier\n");
|
|
/* set edge users */
|
|
med_new = medge_new;
|
|
mv_new = mvert_new;
|
|
|
|
if (ob_axis != NULL) {
|
|
/*mtx_tx is initialized early on */
|
|
for (i = 0; i < totvert; i++, mv_new++, mv_orig++, vc++) {
|
|
vc->co[0] = mv_new->co[0] = mv_orig->co[0];
|
|
vc->co[1] = mv_new->co[1] = mv_orig->co[1];
|
|
vc->co[2] = mv_new->co[2] = mv_orig->co[2];
|
|
|
|
vc->flag = 0;
|
|
vc->e[0] = vc->e[1] = NULL;
|
|
vc->v[0] = vc->v[1] = SV_UNUSED;
|
|
|
|
mul_m4_v3(mtx_tx, vc->co);
|
|
/* length in 2d, don't sqrt because this is only for comparison */
|
|
vc->dist = vc->co[other_axis_1] * vc->co[other_axis_1] +
|
|
vc->co[other_axis_2] * vc->co[other_axis_2];
|
|
|
|
// printf("location %f %f %f -- %f\n", vc->co[0], vc->co[1], vc->co[2], vc->dist);
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < totvert; i++, mv_new++, mv_orig++, vc++) {
|
|
vc->co[0] = mv_new->co[0] = mv_orig->co[0];
|
|
vc->co[1] = mv_new->co[1] = mv_orig->co[1];
|
|
vc->co[2] = mv_new->co[2] = mv_orig->co[2];
|
|
|
|
vc->flag = 0;
|
|
vc->e[0] = vc->e[1] = NULL;
|
|
vc->v[0] = vc->v[1] = SV_UNUSED;
|
|
|
|
/* length in 2d, don't sqrt because this is only for comparison */
|
|
vc->dist = vc->co[other_axis_1] * vc->co[other_axis_1] +
|
|
vc->co[other_axis_2] * vc->co[other_axis_2];
|
|
|
|
// printf("location %f %f %f -- %f\n", vc->co[0], vc->co[1], vc->co[2], vc->dist);
|
|
}
|
|
}
|
|
|
|
/* this loop builds connectivity info for verts */
|
|
for (i = 0; i < totedge; i++, med_new++) {
|
|
vc = &vert_connect[med_new->v1];
|
|
|
|
if (vc->v[0] == SV_UNUSED) { /* unused */
|
|
vc->v[0] = med_new->v2;
|
|
vc->e[0] = med_new;
|
|
}
|
|
else if (vc->v[1] == SV_UNUSED) {
|
|
vc->v[1] = med_new->v2;
|
|
vc->e[1] = med_new;
|
|
}
|
|
else {
|
|
vc->v[0] = vc->v[1] = SV_INVALID; /* error value - don't use, 3 edges on vert */
|
|
}
|
|
|
|
vc = &vert_connect[med_new->v2];
|
|
|
|
/* same as above but swap v1/2 */
|
|
if (vc->v[0] == SV_UNUSED) { /* unused */
|
|
vc->v[0] = med_new->v1;
|
|
vc->e[0] = med_new;
|
|
}
|
|
else if (vc->v[1] == SV_UNUSED) {
|
|
vc->v[1] = med_new->v1;
|
|
vc->e[1] = med_new;
|
|
}
|
|
else {
|
|
vc->v[0] = vc->v[1] = SV_INVALID; /* error value - don't use, 3 edges on vert */
|
|
}
|
|
}
|
|
|
|
/* find the first vert */
|
|
vc = vert_connect;
|
|
for (i = 0; i < totvert; i++, vc++) {
|
|
/* Now do search for connected verts, order all edges and flip them
|
|
* so resulting faces are flipped the right way */
|
|
vc_tot_linked = 0; /* count the number of linked verts for this loop */
|
|
if (vc->flag == 0) {
|
|
uint v_best = SV_UNUSED, ed_loop_closed = 0; /* vert and vert new */
|
|
ScrewVertIter lt_iter;
|
|
float fl = -1.0f;
|
|
|
|
/* compiler complains if not initialized, but it should be initialized below */
|
|
bool ed_loop_flip = false;
|
|
|
|
// printf("Loop on connected vert: %i\n", i);
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
// printf("\tSide: %i\n", j);
|
|
screwvert_iter_init(<_iter, vert_connect, i, j);
|
|
if (j == 1) {
|
|
screwvert_iter_step(<_iter);
|
|
}
|
|
while (lt_iter.v_poin) {
|
|
// printf("\t\tVERT: %i\n", lt_iter.v);
|
|
if (lt_iter.v_poin->flag) {
|
|
// printf("\t\t\tBreaking Found end\n");
|
|
// endpoints[0] = endpoints[1] = SV_UNUSED;
|
|
ed_loop_closed = 1; /* circle */
|
|
break;
|
|
}
|
|
lt_iter.v_poin->flag = 1;
|
|
vc_tot_linked++;
|
|
// printf("Testing 2 floats %f : %f\n", fl, lt_iter.v_poin->dist);
|
|
if (fl <= lt_iter.v_poin->dist) {
|
|
fl = lt_iter.v_poin->dist;
|
|
v_best = lt_iter.v;
|
|
// printf("\t\t\tVERT BEST: %i\n", v_best);
|
|
}
|
|
screwvert_iter_step(<_iter);
|
|
if (!lt_iter.v_poin) {
|
|
// printf("\t\t\tFound End Also Num %i\n", j);
|
|
// endpoints[j] = lt_iter.v_other; /* other is still valid */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now we have a collection of used edges. flip their edges the right way. */
|
|
/* if (v_best != SV_UNUSED) - */
|
|
|
|
// printf("Done Looking - vc_tot_linked: %i\n", vc_tot_linked);
|
|
|
|
if (vc_tot_linked > 1) {
|
|
float vf_1, vf_2, vf_best;
|
|
|
|
vc_tmp = &vert_connect[v_best];
|
|
|
|
tmpf1 = vert_connect[vc_tmp->v[0]].co;
|
|
tmpf2 = vert_connect[vc_tmp->v[1]].co;
|
|
|
|
/* edge connects on each side! */
|
|
if (SV_IS_VALID(vc_tmp->v[0]) && SV_IS_VALID(vc_tmp->v[1])) {
|
|
// printf("Verts on each side (%i %i)\n", vc_tmp->v[0], vc_tmp->v[1]);
|
|
/* Find out which is higher. */
|
|
|
|
vf_1 = tmpf1[ltmd->axis];
|
|
vf_2 = tmpf2[ltmd->axis];
|
|
vf_best = vc_tmp->co[ltmd->axis];
|
|
|
|
if (vf_1 < vf_best && vf_best < vf_2) {
|
|
ed_loop_flip = 0;
|
|
}
|
|
else if (vf_1 > vf_best && vf_best > vf_2) {
|
|
ed_loop_flip = 1;
|
|
}
|
|
else {
|
|
/* not so simple to work out which edge is higher */
|
|
sub_v3_v3v3(tmp_vec1, tmpf1, vc_tmp->co);
|
|
sub_v3_v3v3(tmp_vec2, tmpf2, vc_tmp->co);
|
|
normalize_v3(tmp_vec1);
|
|
normalize_v3(tmp_vec2);
|
|
|
|
if (tmp_vec1[ltmd->axis] < tmp_vec2[ltmd->axis]) {
|
|
ed_loop_flip = 1;
|
|
}
|
|
else {
|
|
ed_loop_flip = 0;
|
|
}
|
|
}
|
|
}
|
|
else if (SV_IS_VALID(vc_tmp->v[0])) { /* Vertex only connected on 1 side. */
|
|
// printf("Verts on ONE side (%i %i)\n", vc_tmp->v[0], vc_tmp->v[1]);
|
|
if (tmpf1[ltmd->axis] < vc_tmp->co[ltmd->axis]) { /* best is above */
|
|
ed_loop_flip = 1;
|
|
}
|
|
else { /* best is below or even... in even case we can't know what to do. */
|
|
ed_loop_flip = 0;
|
|
}
|
|
}
|
|
#if 0
|
|
else {
|
|
printf("No Connected ___\n");
|
|
}
|
|
#endif
|
|
|
|
// printf("flip direction %i\n", ed_loop_flip);
|
|
|
|
/* Switch the flip option if set
|
|
* NOTE: flip is now done at face level so copying group slices is easier. */
|
|
#if 0
|
|
if (do_flip) {
|
|
ed_loop_flip = !ed_loop_flip;
|
|
}
|
|
#endif
|
|
|
|
if (angle < 0.0f) {
|
|
ed_loop_flip = !ed_loop_flip;
|
|
}
|
|
|
|
/* if its closed, we only need 1 loop */
|
|
for (j = ed_loop_closed; j < 2; j++) {
|
|
// printf("Ordering Side J %i\n", j);
|
|
|
|
screwvert_iter_init(<_iter, vert_connect, v_best, j);
|
|
// printf("\n\nStarting - Loop\n");
|
|
lt_iter.v_poin->flag = 1; /* so a non loop will traverse the other side */
|
|
|
|
/* If this is the vert off the best vert and
|
|
* the best vert has 2 edges connected too it
|
|
* then swap the flip direction */
|
|
if (j == 1 && SV_IS_VALID(vc_tmp->v[0]) && SV_IS_VALID(vc_tmp->v[1])) {
|
|
ed_loop_flip = !ed_loop_flip;
|
|
}
|
|
|
|
while (lt_iter.v_poin && lt_iter.v_poin->flag != 2) {
|
|
// printf("\tOrdering Vert V %i\n", lt_iter.v);
|
|
|
|
lt_iter.v_poin->flag = 2;
|
|
if (lt_iter.e) {
|
|
if (lt_iter.v == lt_iter.e->v1) {
|
|
if (ed_loop_flip == 0) {
|
|
// printf("\t\t\tFlipping 0\n");
|
|
SWAP(uint, lt_iter.e->v1, lt_iter.e->v2);
|
|
}
|
|
#if 0
|
|
else {
|
|
printf("\t\t\tFlipping Not 0\n");
|
|
}
|
|
#endif
|
|
}
|
|
else if (lt_iter.v == lt_iter.e->v2) {
|
|
if (ed_loop_flip == 1) {
|
|
// printf("\t\t\tFlipping 1\n");
|
|
SWAP(uint, lt_iter.e->v1, lt_iter.e->v2);
|
|
}
|
|
#if 0
|
|
else {
|
|
printf("\t\t\tFlipping Not 1\n");
|
|
}
|
|
#endif
|
|
}
|
|
#if 0
|
|
else {
|
|
printf("\t\tIncorrect edge topology");
|
|
}
|
|
#endif
|
|
}
|
|
#if 0
|
|
else {
|
|
printf("\t\tNo Edge at this point\n");
|
|
}
|
|
#endif
|
|
screwvert_iter_step(<_iter);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* *VERTEX NORMALS*
|
|
* we know the surrounding edges are ordered correctly now
|
|
* so its safe to create vertex normals.
|
|
*
|
|
* calculate vertex normals that can be propagated on lathing
|
|
* use edge connectivity work this out */
|
|
if (SV_IS_VALID(vc->v[0])) {
|
|
if (SV_IS_VALID(vc->v[1])) {
|
|
/* 2 edges connected. */
|
|
/* make 2 connecting vert locations relative to the middle vert */
|
|
sub_v3_v3v3(tmp_vec1, mvert_new[vc->v[0]].co, mvert_new[i].co);
|
|
sub_v3_v3v3(tmp_vec2, mvert_new[vc->v[1]].co, mvert_new[i].co);
|
|
/* normalize so both edges have the same influence, no matter their length */
|
|
normalize_v3(tmp_vec1);
|
|
normalize_v3(tmp_vec2);
|
|
|
|
/* vc_no_tmp1 - this line is the average direction of both connecting edges
|
|
*
|
|
* Use the edge order to make the subtraction, flip the normal the right way
|
|
* edge should be there but check just in case... */
|
|
if (vc->e[0]->v1 == i) {
|
|
sub_v3_v3(tmp_vec1, tmp_vec2);
|
|
}
|
|
else {
|
|
sub_v3_v3v3(tmp_vec1, tmp_vec2, tmp_vec1);
|
|
}
|
|
}
|
|
else {
|
|
/* only 1 edge connected - same as above except
|
|
* don't need to average edge direction */
|
|
if (vc->e[0]->v2 == i) {
|
|
sub_v3_v3v3(tmp_vec1, mvert_new[i].co, mvert_new[vc->v[0]].co);
|
|
}
|
|
else {
|
|
sub_v3_v3v3(tmp_vec1, mvert_new[vc->v[0]].co, mvert_new[i].co);
|
|
}
|
|
}
|
|
|
|
/* tmp_vec2 - is a line 90d from the pivot to the vec
|
|
* This is used so the resulting normal points directly away from the middle */
|
|
cross_v3_v3v3(tmp_vec2, axis_vec, vc->co);
|
|
|
|
if (UNLIKELY(is_zero_v3(tmp_vec2))) {
|
|
/* we're _on_ the axis, so copy it based on our winding */
|
|
if (vc->e[0]->v2 == i) {
|
|
negate_v3_v3(vc->no, axis_vec);
|
|
}
|
|
else {
|
|
copy_v3_v3(vc->no, axis_vec);
|
|
}
|
|
}
|
|
else {
|
|
/* edge average vector and right angle to the pivot make the normal */
|
|
cross_v3_v3v3(vc->no, tmp_vec1, tmp_vec2);
|
|
}
|
|
}
|
|
else {
|
|
copy_v3_v3(vc->no, vc->co);
|
|
}
|
|
|
|
/* we won't be looping on this data again so copy normals here */
|
|
if ((angle < 0.0f) != do_flip) {
|
|
negate_v3(vc->no);
|
|
}
|
|
|
|
normalize_v3(vc->no);
|
|
copy_v3_v3(vert_normals_new[i], vc->no);
|
|
|
|
/* Done with normals */
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
mv_orig = mvert_orig;
|
|
mv_new = mvert_new;
|
|
|
|
for (i = 0; i < totvert; i++, mv_new++, mv_orig++) {
|
|
copy_v3_v3(mv_new->co, mv_orig->co);
|
|
}
|
|
}
|
|
/* done with edge connectivity based normal flipping */
|
|
|
|
/* Add Faces */
|
|
for (step = 1; step < step_tot; step++) {
|
|
const uint varray_stride = totvert * step;
|
|
float step_angle;
|
|
float nor_tx[3];
|
|
float mat[4][4];
|
|
/* Rotation Matrix */
|
|
step_angle = (angle / (float)(step_tot - (!close))) * (float)step;
|
|
|
|
if (ob_axis != NULL) {
|
|
axis_angle_normalized_to_mat3(mat3, axis_vec, step_angle);
|
|
}
|
|
else {
|
|
axis_angle_to_mat3_single(mat3, axis_char, step_angle);
|
|
}
|
|
copy_m4_m3(mat, mat3);
|
|
|
|
if (screw_ofs) {
|
|
madd_v3_v3fl(mat[3], axis_vec, screw_ofs * ((float)step / (float)(step_tot - 1)));
|
|
}
|
|
|
|
/* copy a slice */
|
|
CustomData_copy_data(&mesh->vdata, &result->vdata, 0, (int)varray_stride, (int)totvert);
|
|
|
|
mv_new_base = mvert_new;
|
|
mv_new = &mvert_new[varray_stride]; /* advance to the next slice */
|
|
|
|
for (j = 0; j < totvert; j++, mv_new_base++, mv_new++) {
|
|
/* set normal */
|
|
if (vert_connect) {
|
|
mul_v3_m3v3(nor_tx, mat3, vert_connect[j].no);
|
|
|
|
/* set the normal now its transformed */
|
|
copy_v3_v3(vert_normals_new[mv_new - mvert_new], nor_tx);
|
|
}
|
|
|
|
/* set location */
|
|
copy_v3_v3(mv_new->co, mv_new_base->co);
|
|
|
|
/* only need to set these if using non cleared memory */
|
|
/*mv_new->mat_nr = mv_new->flag = 0;*/
|
|
|
|
if (ob_axis != NULL) {
|
|
sub_v3_v3(mv_new->co, mtx_tx[3]);
|
|
|
|
mul_m4_v3(mat, mv_new->co);
|
|
|
|
add_v3_v3(mv_new->co, mtx_tx[3]);
|
|
}
|
|
else {
|
|
mul_m4_v3(mat, mv_new->co);
|
|
}
|
|
|
|
/* add the new edge */
|
|
med_new->v1 = varray_stride + j;
|
|
med_new->v2 = med_new->v1 - totvert;
|
|
med_new->flag = ME_EDGEDRAW | ME_EDGERENDER;
|
|
if ((mv_new_base->flag & ME_VERT_TMP_TAG) == 0) {
|
|
med_new->flag |= ME_LOOSEEDGE;
|
|
}
|
|
med_new++;
|
|
}
|
|
}
|
|
|
|
/* we can avoid if using vert alloc trick */
|
|
if (vert_connect) {
|
|
MEM_freeN(vert_connect);
|
|
vert_connect = NULL;
|
|
}
|
|
|
|
if (close) {
|
|
/* last loop of edges, previous loop doesn't account for the last set of edges */
|
|
const uint varray_stride = (step_tot - 1) * totvert;
|
|
|
|
for (i = 0; i < totvert; i++) {
|
|
med_new->v1 = i;
|
|
med_new->v2 = varray_stride + i;
|
|
med_new->flag = ME_EDGEDRAW | ME_EDGERENDER;
|
|
if ((mvert_new[i].flag & ME_VERT_TMP_TAG) == 0) {
|
|
med_new->flag |= ME_LOOSEEDGE;
|
|
}
|
|
med_new++;
|
|
}
|
|
}
|
|
|
|
mp_new = mpoly_new;
|
|
ml_new = mloop_new;
|
|
med_new_firstloop = medge_new;
|
|
|
|
/* more of an offset in this case */
|
|
edge_offset = totedge + (totvert * (step_tot - (close ? 0 : 1)));
|
|
|
|
for (i = 0; i < totedge; i++, med_new_firstloop++) {
|
|
const uint step_last = step_tot - (close ? 1 : 2);
|
|
const uint mpoly_index_orig = totpoly ? edge_poly_map[i] : UINT_MAX;
|
|
const bool has_mpoly_orig = (mpoly_index_orig != UINT_MAX);
|
|
float uv_v_offset_a, uv_v_offset_b;
|
|
|
|
const uint mloop_index_orig[2] = {
|
|
vert_loop_map ? vert_loop_map[medge_new[i].v1] : UINT_MAX,
|
|
vert_loop_map ? vert_loop_map[medge_new[i].v2] : UINT_MAX,
|
|
};
|
|
const bool has_mloop_orig = mloop_index_orig[0] != UINT_MAX;
|
|
|
|
short mat_nr;
|
|
|
|
/* for each edge, make a cylinder of quads */
|
|
i1 = med_new_firstloop->v1;
|
|
i2 = med_new_firstloop->v2;
|
|
|
|
if (has_mpoly_orig) {
|
|
mat_nr = mpoly_orig[mpoly_index_orig].mat_nr;
|
|
}
|
|
else {
|
|
mat_nr = 0;
|
|
}
|
|
|
|
if (has_mloop_orig == false && mloopuv_layers_tot) {
|
|
uv_v_offset_a = dist_signed_to_plane_v3(mvert_new[medge_new[i].v1].co, uv_axis_plane);
|
|
uv_v_offset_b = dist_signed_to_plane_v3(mvert_new[medge_new[i].v2].co, uv_axis_plane);
|
|
|
|
if (ltmd->flag & MOD_SCREW_UV_STRETCH_V) {
|
|
uv_v_offset_a = (uv_v_offset_a - uv_v_minmax[0]) * uv_v_range_inv;
|
|
uv_v_offset_b = (uv_v_offset_b - uv_v_minmax[0]) * uv_v_range_inv;
|
|
}
|
|
}
|
|
|
|
for (step = 0; step <= step_last; step++) {
|
|
|
|
/* Polygon */
|
|
if (has_mpoly_orig) {
|
|
CustomData_copy_data(
|
|
&mesh->pdata, &result->pdata, (int)mpoly_index_orig, (int)mpoly_index, 1);
|
|
origindex[mpoly_index] = (int)mpoly_index_orig;
|
|
}
|
|
else {
|
|
origindex[mpoly_index] = ORIGINDEX_NONE;
|
|
mp_new->flag = mpoly_flag;
|
|
mp_new->mat_nr = mat_nr;
|
|
}
|
|
mp_new->loopstart = mpoly_index * 4;
|
|
mp_new->totloop = 4;
|
|
|
|
/* Loop-Custom-Data */
|
|
if (has_mloop_orig) {
|
|
int l_index = (int)(ml_new - mloop_new);
|
|
|
|
CustomData_copy_data(
|
|
&mesh->ldata, &result->ldata, (int)mloop_index_orig[0], l_index + 0, 1);
|
|
CustomData_copy_data(
|
|
&mesh->ldata, &result->ldata, (int)mloop_index_orig[1], l_index + 1, 1);
|
|
CustomData_copy_data(
|
|
&mesh->ldata, &result->ldata, (int)mloop_index_orig[1], l_index + 2, 1);
|
|
CustomData_copy_data(
|
|
&mesh->ldata, &result->ldata, (int)mloop_index_orig[0], l_index + 3, 1);
|
|
|
|
if (mloopuv_layers_tot) {
|
|
uint uv_lay;
|
|
const float uv_u_offset_a = (float)(step)*uv_u_scale;
|
|
const float uv_u_offset_b = (float)(step + 1) * uv_u_scale;
|
|
for (uv_lay = 0; uv_lay < mloopuv_layers_tot; uv_lay++) {
|
|
MLoopUV *mluv = &mloopuv_layers[uv_lay][l_index];
|
|
|
|
mluv[quad_ord[0]].uv[0] += uv_u_offset_a;
|
|
mluv[quad_ord[1]].uv[0] += uv_u_offset_a;
|
|
mluv[quad_ord[2]].uv[0] += uv_u_offset_b;
|
|
mluv[quad_ord[3]].uv[0] += uv_u_offset_b;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (mloopuv_layers_tot) {
|
|
int l_index = (int)(ml_new - mloop_new);
|
|
|
|
uint uv_lay;
|
|
const float uv_u_offset_a = (float)(step)*uv_u_scale;
|
|
const float uv_u_offset_b = (float)(step + 1) * uv_u_scale;
|
|
for (uv_lay = 0; uv_lay < mloopuv_layers_tot; uv_lay++) {
|
|
MLoopUV *mluv = &mloopuv_layers[uv_lay][l_index];
|
|
|
|
copy_v2_fl2(mluv[quad_ord[0]].uv, uv_u_offset_a, uv_v_offset_a);
|
|
copy_v2_fl2(mluv[quad_ord[1]].uv, uv_u_offset_a, uv_v_offset_b);
|
|
copy_v2_fl2(mluv[quad_ord[2]].uv, uv_u_offset_b, uv_v_offset_b);
|
|
copy_v2_fl2(mluv[quad_ord[3]].uv, uv_u_offset_b, uv_v_offset_a);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Loop-Data */
|
|
if (!(close && step == step_last)) {
|
|
/* regular segments */
|
|
ml_new[quad_ord[0]].v = i1;
|
|
ml_new[quad_ord[1]].v = i2;
|
|
ml_new[quad_ord[2]].v = i2 + totvert;
|
|
ml_new[quad_ord[3]].v = i1 + totvert;
|
|
|
|
ml_new[quad_ord_ofs[0]].e = step == 0 ? i :
|
|
(edge_offset + step + (i * (step_tot - 1))) - 1;
|
|
ml_new[quad_ord_ofs[1]].e = totedge + i2;
|
|
ml_new[quad_ord_ofs[2]].e = edge_offset + step + (i * (step_tot - 1));
|
|
ml_new[quad_ord_ofs[3]].e = totedge + i1;
|
|
|
|
/* new vertical edge */
|
|
if (step) { /* The first set is already done */
|
|
med_new->v1 = i1;
|
|
med_new->v2 = i2;
|
|
med_new->flag = med_new_firstloop->flag;
|
|
med_new->crease = med_new_firstloop->crease;
|
|
med_new++;
|
|
}
|
|
i1 += totvert;
|
|
i2 += totvert;
|
|
}
|
|
else {
|
|
/* last segment */
|
|
ml_new[quad_ord[0]].v = i1;
|
|
ml_new[quad_ord[1]].v = i2;
|
|
ml_new[quad_ord[2]].v = med_new_firstloop->v2;
|
|
ml_new[quad_ord[3]].v = med_new_firstloop->v1;
|
|
|
|
ml_new[quad_ord_ofs[0]].e = (edge_offset + step + (i * (step_tot - 1))) - 1;
|
|
ml_new[quad_ord_ofs[1]].e = totedge + i2;
|
|
ml_new[quad_ord_ofs[2]].e = i;
|
|
ml_new[quad_ord_ofs[3]].e = totedge + i1;
|
|
}
|
|
|
|
mp_new++;
|
|
ml_new += 4;
|
|
mpoly_index++;
|
|
}
|
|
|
|
/* new vertical edge */
|
|
med_new->v1 = i1;
|
|
med_new->v2 = i2;
|
|
med_new->flag = med_new_firstloop->flag & ~ME_LOOSEEDGE;
|
|
med_new->crease = med_new_firstloop->crease;
|
|
med_new++;
|
|
}
|
|
|
|
/* validate loop edges */
|
|
#if 0
|
|
{
|
|
uint i = 0;
|
|
printf("\n");
|
|
for (; i < maxPolys * 4; i += 4) {
|
|
uint ii;
|
|
ml_new = mloop_new + i;
|
|
ii = findEd(medge_new, maxEdges, ml_new[0].v, ml_new[1].v);
|
|
printf("%d %d -- ", ii, ml_new[0].e);
|
|
ml_new[0].e = ii;
|
|
|
|
ii = findEd(medge_new, maxEdges, ml_new[1].v, ml_new[2].v);
|
|
printf("%d %d -- ", ii, ml_new[1].e);
|
|
ml_new[1].e = ii;
|
|
|
|
ii = findEd(medge_new, maxEdges, ml_new[2].v, ml_new[3].v);
|
|
printf("%d %d -- ", ii, ml_new[2].e);
|
|
ml_new[2].e = ii;
|
|
|
|
ii = findEd(medge_new, maxEdges, ml_new[3].v, ml_new[0].v);
|
|
printf("%d %d\n", ii, ml_new[3].e);
|
|
ml_new[3].e = ii;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (edge_poly_map) {
|
|
MEM_freeN(edge_poly_map);
|
|
}
|
|
|
|
if (vert_loop_map) {
|
|
MEM_freeN(vert_loop_map);
|
|
}
|
|
|
|
if ((ltmd->flag & MOD_SCREW_MERGE) && (screw_ofs == 0.0f)) {
|
|
Mesh *result_prev = result;
|
|
result = mesh_remove_doubles_on_axis(result,
|
|
mvert_new,
|
|
totvert,
|
|
step_tot,
|
|
axis_vec,
|
|
ob_axis != NULL ? mtx_tx[3] : NULL,
|
|
ltmd->merge_dist);
|
|
if (result != result_prev) {
|
|
BKE_mesh_normals_tag_dirty(result);
|
|
}
|
|
}
|
|
|
|
if ((ltmd->flag & MOD_SCREW_NORMAL_CALC) == 0) {
|
|
BKE_mesh_normals_tag_dirty(result);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void updateDepsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx)
|
|
{
|
|
ScrewModifierData *ltmd = (ScrewModifierData *)md;
|
|
if (ltmd->ob_axis != NULL) {
|
|
DEG_add_object_relation(ctx->node, ltmd->ob_axis, DEG_OB_COMP_TRANSFORM, "Screw Modifier");
|
|
DEG_add_modifier_to_transform_relation(ctx->node, "Screw Modifier");
|
|
}
|
|
}
|
|
|
|
static void foreachIDLink(ModifierData *md, Object *ob, IDWalkFunc walk, void *userData)
|
|
{
|
|
ScrewModifierData *ltmd = (ScrewModifierData *)md;
|
|
|
|
walk(userData, ob, (ID **)<md->ob_axis, IDWALK_CB_NOP);
|
|
}
|
|
|
|
static void panel_draw(const bContext *UNUSED(C), Panel *panel)
|
|
{
|
|
uiLayout *sub, *row, *col;
|
|
uiLayout *layout = panel->layout;
|
|
int toggles_flag = UI_ITEM_R_TOGGLE | UI_ITEM_R_FORCE_BLANK_DECORATE;
|
|
|
|
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
|
|
|
|
PointerRNA screw_obj_ptr = RNA_pointer_get(ptr, "object");
|
|
|
|
uiLayoutSetPropSep(layout, true);
|
|
|
|
col = uiLayoutColumn(layout, false);
|
|
uiItemR(col, ptr, "angle", 0, NULL, ICON_NONE);
|
|
row = uiLayoutRow(col, false);
|
|
uiLayoutSetActive(row,
|
|
RNA_pointer_is_null(&screw_obj_ptr) ||
|
|
!RNA_boolean_get(ptr, "use_object_screw_offset"));
|
|
uiItemR(row, ptr, "screw_offset", 0, NULL, ICON_NONE);
|
|
uiItemR(col, ptr, "iterations", 0, NULL, ICON_NONE);
|
|
|
|
uiItemS(layout);
|
|
col = uiLayoutColumn(layout, false);
|
|
row = uiLayoutRow(col, false);
|
|
uiItemR(row, ptr, "axis", UI_ITEM_R_EXPAND, NULL, ICON_NONE);
|
|
uiItemR(col, ptr, "object", 0, IFACE_("Axis Object"), ICON_NONE);
|
|
sub = uiLayoutColumn(col, false);
|
|
uiLayoutSetActive(sub, !RNA_pointer_is_null(&screw_obj_ptr));
|
|
uiItemR(sub, ptr, "use_object_screw_offset", 0, NULL, ICON_NONE);
|
|
|
|
uiItemS(layout);
|
|
|
|
col = uiLayoutColumn(layout, true);
|
|
uiItemR(col, ptr, "steps", 0, IFACE_("Steps Viewport"), ICON_NONE);
|
|
uiItemR(col, ptr, "render_steps", 0, IFACE_("Render"), ICON_NONE);
|
|
|
|
uiItemS(layout);
|
|
|
|
row = uiLayoutRowWithHeading(layout, true, IFACE_("Merge"));
|
|
uiItemR(row, ptr, "use_merge_vertices", 0, "", ICON_NONE);
|
|
sub = uiLayoutRow(row, true);
|
|
uiLayoutSetActive(sub, RNA_boolean_get(ptr, "use_merge_vertices"));
|
|
uiItemR(sub, ptr, "merge_threshold", 0, "", ICON_NONE);
|
|
|
|
uiItemS(layout);
|
|
|
|
row = uiLayoutRowWithHeading(layout, true, IFACE_("Stretch UVs"));
|
|
uiItemR(row, ptr, "use_stretch_u", toggles_flag, IFACE_("U"), ICON_NONE);
|
|
uiItemR(row, ptr, "use_stretch_v", toggles_flag, IFACE_("V"), ICON_NONE);
|
|
|
|
modifier_panel_end(layout, ptr);
|
|
}
|
|
|
|
static void normals_panel_draw(const bContext *UNUSED(C), Panel *panel)
|
|
{
|
|
uiLayout *col;
|
|
uiLayout *layout = panel->layout;
|
|
|
|
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
|
|
|
|
uiLayoutSetPropSep(layout, true);
|
|
|
|
col = uiLayoutColumn(layout, false);
|
|
uiItemR(col, ptr, "use_smooth_shade", 0, NULL, ICON_NONE);
|
|
uiItemR(col, ptr, "use_normal_calculate", 0, NULL, ICON_NONE);
|
|
uiItemR(col, ptr, "use_normal_flip", 0, NULL, ICON_NONE);
|
|
}
|
|
|
|
static void panelRegister(ARegionType *region_type)
|
|
{
|
|
PanelType *panel_type = modifier_panel_register(region_type, eModifierType_Screw, panel_draw);
|
|
modifier_subpanel_register(
|
|
region_type, "normals", "Normals", NULL, normals_panel_draw, panel_type);
|
|
}
|
|
|
|
ModifierTypeInfo modifierType_Screw = {
|
|
/* name */ "Screw",
|
|
/* structName */ "ScrewModifierData",
|
|
/* structSize */ sizeof(ScrewModifierData),
|
|
/* srna */ &RNA_ScrewModifier,
|
|
/* type */ eModifierTypeType_Constructive,
|
|
|
|
/* flags */ eModifierTypeFlag_AcceptsMesh | eModifierTypeFlag_AcceptsCVs |
|
|
eModifierTypeFlag_SupportsEditmode | eModifierTypeFlag_EnableInEditmode,
|
|
/* icon */ ICON_MOD_SCREW,
|
|
|
|
/* copyData */ BKE_modifier_copydata_generic,
|
|
|
|
/* deformVerts */ NULL,
|
|
/* deformMatrices */ NULL,
|
|
/* deformVertsEM */ NULL,
|
|
/* deformMatricesEM */ NULL,
|
|
/* modifyMesh */ modifyMesh,
|
|
/* modifyHair */ NULL,
|
|
/* modifyGeometrySet */ NULL,
|
|
|
|
/* initData */ initData,
|
|
/* requiredDataMask */ NULL,
|
|
/* freeData */ NULL,
|
|
/* isDisabled */ NULL,
|
|
/* updateDepsgraph */ updateDepsgraph,
|
|
/* dependsOnTime */ NULL,
|
|
/* dependsOnNormals */ NULL,
|
|
/* foreachIDLink */ foreachIDLink,
|
|
/* foreachTexLink */ NULL,
|
|
/* freeRuntimeData */ NULL,
|
|
/* panelRegister */ panelRegister,
|
|
/* blendWrite */ NULL,
|
|
/* blendRead */ NULL,
|
|
};
|