This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/mesh.c
Campbell Barton db785d1656 fix for crash converting a curve into a mesh (Alt+C conversion), this would crash on entering editmode.
now curves convert to polygons directly, rather then faces, and polygons after.
2012-02-03 04:58:55 +00:00

2927 lines
74 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Blender Foundation
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/mesh.c
* \ingroup bke
*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "MEM_guardedalloc.h"
#include "DNA_scene_types.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_key_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_ipo_types.h"
#include "DNA_customdata_types.h"
#include "BLI_utildefines.h"
#include "BLI_blenlib.h"
#include "BLI_bpath.h"
#include "BLI_editVert.h"
#include "BLI_math.h"
#include "BLI_edgehash.h"
#include "BLI_scanfill.h"
#include "BKE_animsys.h"
#include "BKE_main.h"
#include "BKE_customdata.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_displist.h"
#include "BKE_library.h"
#include "BKE_material.h"
#include "BKE_modifier.h"
#include "BKE_multires.h"
#include "BKE_key.h"
/* these 2 are only used by conversion functions */
#include "BKE_curve.h"
/* -- */
#include "BKE_object.h"
#include "BKE_tessmesh.h"
#include "BLI_edgehash.h"
#include "BLI_blenlib.h"
#include "BLI_editVert.h"
#include "BLI_math.h"
#include "BLI_array.h"
#include "BLI_edgehash.h"
#include "bmesh.h"
enum {
MESHCMP_DVERT_WEIGHTMISMATCH = 1,
MESHCMP_DVERT_GROUPMISMATCH,
MESHCMP_DVERT_TOTGROUPMISMATCH,
MESHCMP_LOOPCOLMISMATCH,
MESHCMP_LOOPUVMISMATCH,
MESHCMP_LOOPMISMATCH,
MESHCMP_POLYVERTMISMATCH,
MESHCMP_POLYMISMATCH,
MESHCMP_EDGEUNKNOWN,
MESHCMP_VERTCOMISMATCH,
MESHCMP_CDLAYERS_MISMATCH,
};
static const char *cmpcode_to_str(int code)
{
switch (code) {
case MESHCMP_DVERT_WEIGHTMISMATCH:
return "Vertex Weight Mismatch";
case MESHCMP_DVERT_GROUPMISMATCH:
return "Vertex Group Mismatch";
case MESHCMP_DVERT_TOTGROUPMISMATCH:
return "Vertex Doesn't Belong To Same Number Of Groups";
case MESHCMP_LOOPCOLMISMATCH:
return "Vertex Color Mismatch";
case MESHCMP_LOOPUVMISMATCH:
return "UV Mismatch";
case MESHCMP_LOOPMISMATCH:
return "Loop Mismatch";
case MESHCMP_POLYVERTMISMATCH:
return "Loop Vert Mismatch In Poly Test";
case MESHCMP_POLYMISMATCH:
return "Loop Vert Mismatch";
case MESHCMP_EDGEUNKNOWN:
return "Edge Mismatch";
case MESHCMP_VERTCOMISMATCH:
return "Vertex Coordinate Mismatch";
case MESHCMP_CDLAYERS_MISMATCH:
return "CustomData Layer Count Mismatch";
default:
return "Mesh Comparison Code Unknown";
}
}
/*thresh is threshold for comparing vertices, uvs, vertex colors,
weights, etc.*/
static int customdata_compare(CustomData *c1, CustomData *c2, Mesh *m1, Mesh *m2, float thresh)
{
CustomDataLayer *l1, *l2;
int i, i1=0, i2=0, tot, j;
for (i=0; i<c1->totlayer; i++) {
if (ELEM7(c1->layers[i].type, CD_MVERT, CD_MEDGE, CD_MPOLY,
CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT))
i1++;
}
for (i=0; i<c2->totlayer; i++) {
if (ELEM7(c2->layers[i].type, CD_MVERT, CD_MEDGE, CD_MPOLY,
CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT))
i2++;
}
if (i1 != i2)
return MESHCMP_CDLAYERS_MISMATCH;
l1 = c1->layers; l2 = c2->layers;
tot = i1;
i1 = 0; i2 = 0;
for (i=0; i < tot; i++) {
while (i1 < c1->totlayer && !ELEM7(l1->type, CD_MVERT, CD_MEDGE, CD_MPOLY,
CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT))
i1++, l1++;
while (i2 < c2->totlayer && !ELEM7(l2->type, CD_MVERT, CD_MEDGE, CD_MPOLY,
CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT))
i2++, l2++;
if (l1->type == CD_MVERT) {
MVert *v1 = l1->data;
MVert *v2 = l2->data;
int vtot = m1->totvert;
for (j=0; j<vtot; j++, v1++, v2++) {
if (len_v3v3(v1->co, v2->co) > thresh)
return MESHCMP_VERTCOMISMATCH;
/*I don't care about normals, let's just do coodinates*/
}
}
/*we're order-agnostic for edges here*/
if (l1->type == CD_MEDGE) {
MEdge *e1 = l1->data;
MEdge *e2 = l2->data;
EdgeHash *eh = BLI_edgehash_new();
int etot = m1->totedge;
for (j=0; j<etot; j++, e1++) {
BLI_edgehash_insert(eh, e1->v1, e1->v2, e1);
}
for (j=0; j<etot; j++, e2++) {
if (!BLI_edgehash_lookup(eh, e2->v1, e2->v2))
return MESHCMP_EDGEUNKNOWN;
}
BLI_edgehash_free(eh, NULL);
}
if (l1->type == CD_MPOLY) {
MPoly *p1 = l1->data;
MPoly *p2 = l2->data;
int ptot = m1->totpoly;
for (j=0; j<ptot; j++, p1++, p2++) {
MLoop *lp1, *lp2;
int k;
if (p1->totloop != p2->totloop)
return MESHCMP_POLYMISMATCH;
lp1 = m1->mloop + p1->loopstart;
lp2 = m2->mloop + p2->loopstart;
for (k=0; k<p1->totloop; k++, lp1++, lp2++) {
if (lp1->v != lp2->v)
return MESHCMP_POLYVERTMISMATCH;
}
}
}
if (l1->type == CD_MLOOP) {
MLoop *lp1 = l1->data;
MLoop *lp2 = l2->data;
int ltot = m1->totloop;
for (j=0; j<ltot; j++, lp1++, lp2++) {
if (lp1->v != lp2->v)
return MESHCMP_LOOPMISMATCH;
}
}
if (l1->type == CD_MLOOPUV) {
MLoopUV *lp1 = l1->data;
MLoopUV *lp2 = l2->data;
int ltot = m1->totloop;
for (j=0; j<ltot; j++, lp1++, lp2++) {
if (len_v2v2(lp1->uv, lp2->uv) > thresh)
return MESHCMP_LOOPUVMISMATCH;
}
}
if (l1->type == CD_MLOOPCOL) {
MLoopCol *lp1 = l1->data;
MLoopCol *lp2 = l2->data;
int ltot = m1->totloop;
for (j=0; j<ltot; j++, lp1++, lp2++) {
if (ABS(lp1->r - lp2->r) > thresh ||
ABS(lp1->g - lp2->g) > thresh ||
ABS(lp1->b - lp2->b) > thresh ||
ABS(lp1->a - lp2->a) > thresh)
{
return MESHCMP_LOOPCOLMISMATCH;
}
}
}
if (l1->type == CD_MDEFORMVERT) {
MDeformVert *dv1 = l1->data;
MDeformVert *dv2 = l2->data;
int dvtot = m1->totvert;
for (j=0; j<dvtot; j++, dv1++, dv2++) {
int k;
MDeformWeight *dw1 = dv1->dw, *dw2=dv2->dw;
if (dv1->totweight != dv2->totweight)
return MESHCMP_DVERT_TOTGROUPMISMATCH;
for (k=0; k<dv1->totweight; k++, dw1++, dw2++) {
if (dw1->def_nr != dw2->def_nr)
return MESHCMP_DVERT_GROUPMISMATCH;
if (ABS(dw1->weight - dw2->weight) > thresh)
return MESHCMP_DVERT_WEIGHTMISMATCH;
}
}
}
}
return 0;
}
/*used for testing. returns an error string the two meshes don't match*/
const char *mesh_cmp(Mesh *me1, Mesh *me2, float thresh)
{
int c;
if (!me1 || !me2)
return "Requires two input meshes";
if (me1->totvert != me2->totvert)
return "Number of verts don't match";
if (me1->totedge != me2->totedge)
return "Number of edges don't match";
if (me1->totpoly != me2->totpoly)
return "Number of faces don't match";
if (me1->totloop !=me2->totloop)
return "Number of loops don't match";
if ((c = customdata_compare(&me1->vdata, &me2->vdata, me1, me2, thresh)))
return cmpcode_to_str(c);
if ((c = customdata_compare(&me1->edata, &me2->edata, me1, me2, thresh)))
return cmpcode_to_str(c);
if ((c = customdata_compare(&me1->ldata, &me2->ldata, me1, me2, thresh)))
return cmpcode_to_str(c);
if ((c = customdata_compare(&me1->pdata, &me2->pdata, me1, me2, thresh)))
return cmpcode_to_str(c);
return NULL;
}
static void mesh_ensure_tesselation_customdata(Mesh *me)
{
const int tottex_original = CustomData_number_of_layers(&me->pdata, CD_MTEXPOLY);
const int totcol_original = CustomData_number_of_layers(&me->ldata, CD_MLOOPCOL);
const int tottex_tessface = CustomData_number_of_layers(&me->fdata, CD_MTFACE);
const int totcol_tessface = CustomData_number_of_layers(&me->fdata, CD_MCOL);
if (tottex_tessface != tottex_original ||
totcol_tessface != totcol_original )
{
CustomData_free(&me->fdata, me->totface);
me->mface = NULL;
me->mtface = NULL;
me->mcol = NULL;
me->totface = 0;
memset(&me->fdata, 0, sizeof(&me->fdata));
CustomData_from_bmeshpoly(&me->fdata, &me->pdata, &me->ldata, me->totface);
/* note: this warning may be un-called for if we are inirializing the mesh for the
* first time from bmesh, rather then giving a warning about this we could be smarter
* and check if there was any data to begin with, for now just print the warning with
* some info to help troubleshoot whats going on - campbell */
printf("%s: warning! Tesselation uvs or vcol data got out of sync, "
"had to reset!\n CD_MTFACE: %d != CD_MTEXPOLY: %d || CD_MCOL: %d != CD_MLOOPCOL: %d\n",
__func__, tottex_tessface, tottex_original, totcol_tessface, totcol_original);
}
}
/* this ensures grouped customdata (e.g. mtexpoly and mloopuv and mtface, or
* mloopcol and mcol) have the same relative active/render/clone/mask indices.
*
* note that for undo mesh data we want to skip 'ensure_tess_cd' call since
* we dont want to store memory for tessface when its only used for older
* versions of the mesh. - campbell*/
static void mesh_update_linked_customdata(Mesh *me, const short do_ensure_tess_cd)
{
if (me->edit_btmesh)
BMEdit_UpdateLinkedCustomData(me->edit_btmesh);
if (do_ensure_tess_cd) {
mesh_ensure_tesselation_customdata(me);
}
CustomData_bmesh_update_active_layers(&me->fdata, &me->pdata, &me->ldata);
}
void mesh_update_customdata_pointers(Mesh *me, const short do_ensure_tess_cd)
{
mesh_update_linked_customdata(me, do_ensure_tess_cd);
me->mvert = CustomData_get_layer(&me->vdata, CD_MVERT);
me->dvert = CustomData_get_layer(&me->vdata, CD_MDEFORMVERT);
me->msticky = CustomData_get_layer(&me->vdata, CD_MSTICKY);
me->medge = CustomData_get_layer(&me->edata, CD_MEDGE);
me->mface = CustomData_get_layer(&me->fdata, CD_MFACE);
me->mcol = CustomData_get_layer(&me->fdata, CD_MCOL);
me->mtface = CustomData_get_layer(&me->fdata, CD_MTFACE);
me->mpoly = CustomData_get_layer(&me->pdata, CD_MPOLY);
me->mloop = CustomData_get_layer(&me->ldata, CD_MLOOP);
me->mtpoly = CustomData_get_layer(&me->pdata, CD_MTEXPOLY);
me->mloopcol = CustomData_get_layer(&me->ldata, CD_MLOOPCOL);
me->mloopuv = CustomData_get_layer(&me->ldata, CD_MLOOPUV);
}
/* Note: unlinking is called when me->id.us is 0, question remains how
* much unlinking of Library data in Mesh should be done... probably
* we need a more generic method, like the expand() functions in
* readfile.c */
void unlink_mesh(Mesh *me)
{
int a;
if(me==NULL) return;
for(a=0; a<me->totcol; a++) {
if(me->mat[a]) me->mat[a]->id.us--;
me->mat[a]= NULL;
}
if(me->key) {
me->key->id.us--;
}
me->key= NULL;
if(me->texcomesh) me->texcomesh= NULL;
}
/* do not free mesh itself */
void free_mesh(Mesh *me, int unlink)
{
if (unlink)
unlink_mesh(me);
CustomData_free(&me->vdata, me->totvert);
CustomData_free(&me->edata, me->totedge);
CustomData_free(&me->fdata, me->totface);
CustomData_free(&me->ldata, me->totloop);
CustomData_free(&me->pdata, me->totpoly);
if(me->adt) {
BKE_free_animdata(&me->id);
me->adt= NULL;
}
if(me->mat) MEM_freeN(me->mat);
if(me->bb) MEM_freeN(me->bb);
if(me->mselect) MEM_freeN(me->mselect);
if(me->edit_btmesh) MEM_freeN(me->edit_btmesh);
}
void copy_dverts(MDeformVert *dst, MDeformVert *src, int copycount)
{
/* Assumes dst is already set up */
int i;
if (!src || !dst)
return;
memcpy (dst, src, copycount * sizeof(MDeformVert));
for (i=0; i<copycount; i++){
if (src[i].dw){
dst[i].dw = MEM_callocN (sizeof(MDeformWeight)*src[i].totweight, "copy_deformWeight");
memcpy (dst[i].dw, src[i].dw, sizeof (MDeformWeight)*src[i].totweight);
}
}
}
void free_dverts(MDeformVert *dvert, int totvert)
{
/* Instead of freeing the verts directly,
call this function to delete any special
vert data */
int i;
if (!dvert)
return;
/* Free any special data from the verts */
for (i=0; i<totvert; i++){
if (dvert[i].dw) MEM_freeN (dvert[i].dw);
}
MEM_freeN (dvert);
}
Mesh *add_mesh(const char *name)
{
Mesh *me;
me= alloc_libblock(&G.main->mesh, ID_ME, name);
me->size[0]= me->size[1]= me->size[2]= 1.0;
me->smoothresh= 30;
me->texflag= AUTOSPACE;
me->flag= ME_TWOSIDED;
me->bb= unit_boundbox();
me->drawflag= ME_DRAWEDGES|ME_DRAWFACES|ME_DRAWCREASES;
return me;
}
Mesh *copy_mesh(Mesh *me)
{
Mesh *men;
MTFace *tface;
MTexPoly *txface;
int a, i;
men= copy_libblock(&me->id);
men->mat= MEM_dupallocN(me->mat);
for(a=0; a<men->totcol; a++) {
id_us_plus((ID *)men->mat[a]);
}
id_us_plus((ID *)men->texcomesh);
CustomData_copy(&me->vdata, &men->vdata, CD_MASK_MESH, CD_DUPLICATE, men->totvert);
CustomData_copy(&me->edata, &men->edata, CD_MASK_MESH, CD_DUPLICATE, men->totedge);
CustomData_copy(&me->fdata, &men->fdata, CD_MASK_MESH, CD_DUPLICATE, men->totface);
CustomData_copy(&me->ldata, &men->ldata, CD_MASK_MESH, CD_DUPLICATE, men->totloop);
CustomData_copy(&me->pdata, &men->pdata, CD_MASK_MESH, CD_DUPLICATE, men->totpoly);
mesh_update_customdata_pointers(men, TRUE);
/* ensure indirect linked data becomes lib-extern */
for(i=0; i<me->fdata.totlayer; i++) {
if(me->fdata.layers[i].type == CD_MTFACE) {
tface= (MTFace*)me->fdata.layers[i].data;
for(a=0; a<me->totface; a++, tface++)
if(tface->tpage)
id_lib_extern((ID*)tface->tpage);
}
}
for(i=0; i<me->pdata.totlayer; i++) {
if(me->pdata.layers[i].type == CD_MTEXPOLY) {
txface= (MTexPoly*)me->pdata.layers[i].data;
for(a=0; a<me->totpoly; a++, txface++)
if(txface->tpage)
id_lib_extern((ID*)txface->tpage);
}
}
men->mselect= NULL;
men->edit_btmesh= NULL;
men->bb= MEM_dupallocN(men->bb);
men->key= copy_key(me->key);
if(men->key) men->key->from= (ID *)men;
return men;
}
BMesh *BKE_mesh_to_bmesh(Mesh *me, Object *ob)
{
BMesh *bm;
int allocsize[4] = {512,512,2048,512};
bm = BM_Make_Mesh(ob, allocsize);
BMO_CallOpf(bm, "mesh_to_bmesh mesh=%p object=%p set_shapekey=%i", me, ob, 1);
return bm;
}
static void expand_local_mesh(Mesh *me)
{
id_lib_extern((ID *)me->texcomesh);
if(me->mtface) {
int a, i;
for(i=0; i<me->pdata.totlayer; i++) {
if(me->pdata.layers[i].type == CD_MTEXPOLY) {
MTexPoly *txface= (MTexPoly*)me->fdata.layers[i].data;
for(a=0; a<me->totpoly; a++, txface++) {
/* special case: ima always local immediately */
if(txface->tpage) {
if(txface->tpage) {
id_lib_extern((ID *)txface->tpage);
}
}
}
}
}
for(i=0; i<me->fdata.totlayer; i++) {
if(me->fdata.layers[i].type == CD_MTFACE) {
MTFace *tface= (MTFace*)me->fdata.layers[i].data;
for(a=0; a<me->totface; a++, tface++) {
/* special case: ima always local immediately */
if(tface->tpage) {
if(tface->tpage) {
id_lib_extern((ID *)tface->tpage);
}
}
}
}
}
}
if(me->mat) {
extern_local_matarar(me->mat, me->totcol);
}
}
void make_local_mesh(Mesh *me)
{
Main *bmain= G.main;
Object *ob;
int is_local= FALSE, is_lib= FALSE;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(me->id.lib==NULL) return;
if(me->id.us==1) {
id_clear_lib_data(bmain, &me->id);
expand_local_mesh(me);
return;
}
for(ob= bmain->object.first; ob && ELEM(0, is_lib, is_local); ob= ob->id.next) {
if(me == ob->data) {
if(ob->id.lib) is_lib= TRUE;
else is_local= TRUE;
}
}
if(is_local && is_lib == FALSE) {
id_clear_lib_data(bmain, &me->id);
expand_local_mesh(me);
}
else if(is_local && is_lib) {
Mesh *me_new= copy_mesh(me);
me_new->id.us= 0;
/* Remap paths of new ID using old library as base. */
BKE_id_lib_local_paths(bmain, me->id.lib, &me_new->id);
for(ob= bmain->object.first; ob; ob= ob->id.next) {
if(me == ob->data) {
if(ob->id.lib==NULL) {
set_mesh(ob, me_new);
}
}
}
}
}
void boundbox_mesh(Mesh *me, float *loc, float *size)
{
BoundBox *bb;
float min[3], max[3];
float mloc[3], msize[3];
if(me->bb==NULL) me->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
bb= me->bb;
if (!loc) loc= mloc;
if (!size) size= msize;
INIT_MINMAX(min, max);
if(!minmax_mesh(me, min, max)) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
mid_v3_v3v3(loc, min, max);
size[0]= (max[0]-min[0])/2.0f;
size[1]= (max[1]-min[1])/2.0f;
size[2]= (max[2]-min[2])/2.0f;
boundbox_set_from_min_max(bb, min, max);
}
void tex_space_mesh(Mesh *me)
{
float loc[3], size[3];
int a;
boundbox_mesh(me, loc, size);
if(me->texflag & AUTOSPACE) {
for (a=0; a<3; a++) {
if(size[a]==0.0f) size[a]= 1.0f;
else if(size[a]>0.0f && size[a]<0.00001f) size[a]= 0.00001f;
else if(size[a]<0.0f && size[a]> -0.00001f) size[a]= -0.00001f;
}
copy_v3_v3(me->loc, loc);
copy_v3_v3(me->size, size);
zero_v3(me->rot);
}
}
BoundBox *mesh_get_bb(Object *ob)
{
Mesh *me= ob->data;
if(ob->bb)
return ob->bb;
if (!me->bb)
tex_space_mesh(me);
return me->bb;
}
void mesh_get_texspace(Mesh *me, float *loc_r, float *rot_r, float *size_r)
{
if (!me->bb) {
tex_space_mesh(me);
}
if (loc_r) copy_v3_v3(loc_r, me->loc);
if (rot_r) copy_v3_v3(rot_r, me->rot);
if (size_r) copy_v3_v3(size_r, me->size);
}
float *get_mesh_orco_verts(Object *ob)
{
Mesh *me = ob->data;
MVert *mvert = NULL;
Mesh *tme = me->texcomesh?me->texcomesh:me;
int a, totvert;
float (*vcos)[3] = NULL;
/* Get appropriate vertex coordinates */
vcos = MEM_callocN(sizeof(*vcos)*me->totvert, "orco mesh");
mvert = tme->mvert;
totvert = MIN2(tme->totvert, me->totvert);
for(a=0; a<totvert; a++, mvert++) {
copy_v3_v3(vcos[a], mvert->co);
}
return (float*)vcos;
}
void transform_mesh_orco_verts(Mesh *me, float (*orco)[3], int totvert, int invert)
{
float loc[3], size[3];
int a;
mesh_get_texspace(me->texcomesh?me->texcomesh:me, loc, NULL, size);
if(invert) {
for(a=0; a<totvert; a++) {
float *co = orco[a];
madd_v3_v3v3v3(co, loc, co, size);
}
}
else {
for(a=0; a<totvert; a++) {
float *co = orco[a];
co[0] = (co[0]-loc[0])/size[0];
co[1] = (co[1]-loc[1])/size[1];
co[2] = (co[2]-loc[2])/size[2];
}
}
}
/* rotates the vertices of a face in case v[2] or v[3] (vertex index) is = 0.
this is necessary to make the if(mface->v4) check for quads work */
int test_index_face(MFace *mface, CustomData *fdata, int mfindex, int nr)
{
/* first test if the face is legal */
if((mface->v3 || nr==4) && mface->v3==mface->v4) {
mface->v4= 0;
nr--;
}
if((mface->v2 || mface->v4) && mface->v2==mface->v3) {
mface->v3= mface->v4;
mface->v4= 0;
nr--;
}
if(mface->v1==mface->v2) {
mface->v2= mface->v3;
mface->v3= mface->v4;
mface->v4= 0;
nr--;
}
/* check corrupt cases, bowtie geometry, cant handle these because edge data wont exist so just return 0 */
if(nr==3) {
if(
/* real edges */
mface->v1==mface->v2 ||
mface->v2==mface->v3 ||
mface->v3==mface->v1
) {
return 0;
}
}
else if(nr==4) {
if(
/* real edges */
mface->v1==mface->v2 ||
mface->v2==mface->v3 ||
mface->v3==mface->v4 ||
mface->v4==mface->v1 ||
/* across the face */
mface->v1==mface->v3 ||
mface->v2==mface->v4
) {
return 0;
}
}
/* prevent a zero at wrong index location */
if(nr==3) {
if(mface->v3==0) {
static int corner_indices[4] = {1, 2, 0, 3};
SWAP(unsigned int, mface->v1, mface->v2);
SWAP(unsigned int, mface->v2, mface->v3);
if(fdata)
CustomData_swap(fdata, mfindex, corner_indices);
}
}
else if(nr==4) {
if(mface->v3==0 || mface->v4==0) {
static int corner_indices[4] = {2, 3, 0, 1};
SWAP(unsigned int, mface->v1, mface->v3);
SWAP(unsigned int, mface->v2, mface->v4);
if(fdata)
CustomData_swap(fdata, mfindex, corner_indices);
}
}
return nr;
}
Mesh *get_mesh(Object *ob)
{
if(ob==NULL) return NULL;
if(ob->type==OB_MESH) return ob->data;
else return NULL;
}
void set_mesh(Object *ob, Mesh *me)
{
Mesh *old=NULL;
multires_force_update(ob);
if(ob==NULL) return;
if(ob->type==OB_MESH) {
old= ob->data;
if (old)
old->id.us--;
ob->data= me;
id_us_plus((ID *)me);
}
test_object_materials((ID *)me);
test_object_modifiers(ob);
}
/* ************** make edges in a Mesh, for outside of editmode */
struct edgesort {
unsigned int v1, v2;
short is_loose, is_draw;
};
/* edges have to be added with lowest index first for sorting */
static void to_edgesort(struct edgesort *ed,
unsigned int v1, unsigned int v2,
short is_loose, short is_draw)
{
if(v1<v2) {
ed->v1= v1; ed->v2= v2;
}
else {
ed->v1= v2; ed->v2= v1;
}
ed->is_loose= is_loose;
ed->is_draw= is_draw;
}
static int vergedgesort(const void *v1, const void *v2)
{
const struct edgesort *x1=v1, *x2=v2;
if( x1->v1 > x2->v1) return 1;
else if( x1->v1 < x2->v1) return -1;
else if( x1->v2 > x2->v2) return 1;
else if( x1->v2 < x2->v2) return -1;
return 0;
}
/* TODO: remove after bmesh merge */
#if 0
static void mfaces_strip_loose(MFace *mface, int *totface)
{
int a,b;
for (a=b=0; a<*totface; a++) {
if (mface[a].v3) {
if (a!=b) {
memcpy(&mface[b],&mface[a],sizeof(mface[b]));
}
b++;
}
}
*totface= b;
}
#endif
/* Create edges based on known verts and faces */
static void make_edges_mdata(MVert *UNUSED(allvert), MFace *allface, MLoop *allloop,
MPoly *allpoly, int UNUSED(totvert), int totface, int UNUSED(totloop), int totpoly,
int old, MEdge **alledge, int *_totedge)
{
MPoly *mpoly;
MLoop *mloop;
MFace *mface;
MEdge *medge;
EdgeHash *hash = BLI_edgehash_new();
struct edgesort *edsort, *ed;
int a, b, totedge=0, final=0;
/* we put all edges in array, sort them, and detect doubles that way */
for(a= totface, mface= allface; a>0; a--, mface++) {
if(mface->v4) totedge+=4;
else if(mface->v3) totedge+=3;
else totedge+=1;
}
if(totedge==0) {
/* flag that mesh has edges */
(*alledge)= MEM_callocN(0, "make mesh edges");
(*_totedge) = 0;
return;
}
ed= edsort= MEM_mallocN(totedge*sizeof(struct edgesort), "edgesort");
for(a= totface, mface= allface; a>0; a--, mface++) {
to_edgesort(ed++, mface->v1, mface->v2, !mface->v3, mface->edcode & ME_V1V2);
if(mface->v4) {
to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3);
to_edgesort(ed++, mface->v3, mface->v4, 0, mface->edcode & ME_V3V4);
to_edgesort(ed++, mface->v4, mface->v1, 0, mface->edcode & ME_V4V1);
}
else if(mface->v3) {
to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3);
to_edgesort(ed++, mface->v3, mface->v1, 0, mface->edcode & ME_V3V1);
}
}
qsort(edsort, totedge, sizeof(struct edgesort), vergedgesort);
/* count final amount */
for(a=totedge, ed=edsort; a>1; a--, ed++) {
/* edge is unique when it differs from next edge, or is last */
if(ed->v1 != (ed+1)->v1 || ed->v2 != (ed+1)->v2) final++;
}
final++;
(*alledge)= medge= MEM_callocN(sizeof (MEdge) * final, "make_edges mdge");
(*_totedge)= final;
for(a=totedge, ed=edsort; a>1; a--, ed++) {
/* edge is unique when it differs from next edge, or is last */
if(ed->v1 != (ed+1)->v1 || ed->v2 != (ed+1)->v2) {
medge->v1= ed->v1;
medge->v2= ed->v2;
if(old==0 || ed->is_draw) medge->flag= ME_EDGEDRAW|ME_EDGERENDER;
if(ed->is_loose) medge->flag|= ME_LOOSEEDGE;
/* order is swapped so extruding this edge as a surface wont flip face normals
* with cyclic curves */
if(ed->v1+1 != ed->v2) {
SWAP(unsigned int, medge->v1, medge->v2);
}
medge++;
}
else {
/* equal edge, we merge the drawflag */
(ed+1)->is_draw |= ed->is_draw;
}
}
/* last edge */
medge->v1= ed->v1;
medge->v2= ed->v2;
medge->flag= ME_EDGEDRAW;
if(ed->is_loose) medge->flag|= ME_LOOSEEDGE;
medge->flag |= ME_EDGERENDER;
MEM_freeN(edsort);
/*set edge members of mloops*/
medge= *alledge;
for (a=0; a<*_totedge; a++, medge++) {
BLI_edgehash_insert(hash, medge->v1, medge->v2, SET_INT_IN_POINTER(a));
}
mpoly = allpoly;
for (a=0; a<totpoly; a++, mpoly++) {
mloop = allloop + mpoly->loopstart;
for (b=0; b<mpoly->totloop; b++) {
int v1, v2;
v1 = mloop[b].v;
v2 = ME_POLY_LOOP_NEXT(mloop, mpoly, b)->v;
mloop[b].e = GET_INT_FROM_POINTER(BLI_edgehash_lookup(hash, v1, v2));
}
}
BLI_edgehash_free(hash, NULL);
}
void make_edges(Mesh *me, int old)
{
MEdge *medge;
int totedge=0;
make_edges_mdata(me->mvert, me->mface, me->mloop, me->mpoly, me->totvert, me->totface, me->totloop, me->totpoly, old, &medge, &totedge);
if(totedge==0) {
/* flag that mesh has edges */
me->medge = medge;
me->totedge = 0;
return;
}
medge= CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, medge, totedge);
me->medge= medge;
me->totedge= totedge;
mesh_strip_loose_faces(me);
}
void mesh_strip_loose_faces(Mesh *me)
{
int a,b;
for (a=b=0; a<me->totface; a++) {
if (me->mface[a].v3) {
if (a!=b) {
memcpy(&me->mface[b],&me->mface[a],sizeof(me->mface[b]));
CustomData_copy_data(&me->fdata, &me->fdata, a, b, 1);
CustomData_free_elem(&me->fdata, a, 1);
}
b++;
}
}
me->totface = b;
}
void mesh_strip_loose_edges(Mesh *me)
{
int a,b;
for (a=b=0; a<me->totedge; a++) {
if (me->medge[a].v1!=me->medge[a].v2) {
if (a!=b) {
memcpy(&me->medge[b],&me->medge[a],sizeof(me->medge[b]));
CustomData_copy_data(&me->edata, &me->edata, a, b, 1);
CustomData_free_elem(&me->edata, a, 1);
}
b++;
}
}
me->totedge = b;
}
void mball_to_mesh(ListBase *lb, Mesh *me)
{
DispList *dl;
MVert *mvert;
MFace *mface;
float *nors, *verts;
int a, *index;
dl= lb->first;
if(dl==NULL) return;
if(dl->type==DL_INDEX4) {
me->totvert= dl->nr;
me->totface= dl->parts;
mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, dl->nr);
mface= CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, dl->parts);
me->mvert= mvert;
me->mface= mface;
a= dl->nr;
nors= dl->nors;
verts= dl->verts;
while(a--) {
copy_v3_v3(mvert->co, verts);
normal_float_to_short_v3(mvert->no, nors);
mvert++;
nors+= 3;
verts+= 3;
}
a= dl->parts;
index= dl->index;
while(a--) {
mface->v1= index[0];
mface->v2= index[1];
mface->v3= index[2];
mface->v4= index[3];
mface->flag= ME_SMOOTH;
test_index_face(mface, NULL, 0, (mface->v3==mface->v4)? 3: 4);
mface++;
index+= 4;
}
make_edges(me, 0); // all edges
/* BMESH_TODO - low priority, should make polygons instead */
convert_mfaces_to_mpolys(me);
mesh_update_customdata_pointers(me, TRUE);
}
}
/* Initialize mverts, medges and, faces for converting nurbs to mesh and derived mesh */
/* return non-zero on error */
int nurbs_to_mdata(Object *ob, MVert **allvert, int *totvert,
MEdge **alledge, int *totedge, MLoop **allloop, MPoly **allpoly,
int *totloop, int *totpoly)
{
return nurbs_to_mdata_customdb(ob, &ob->disp,
allvert, totvert, alledge, totedge, allloop, allpoly, totloop, totpoly);
}
/* BMESH: this doesn't calculate all edges from polygons,
* only free standing edges are calculated */
/* Initialize mverts, medges and, faces for converting nurbs to mesh and derived mesh */
/* use specified dispbase */
int nurbs_to_mdata_customdb(Object *ob, ListBase *dispbase, MVert **allvert, int *_totvert,
MEdge **alledge, int *_totedge, MLoop **allloop, MPoly **allpoly,
int *_totloop, int *_totpoly)
{
DispList *dl;
Curve *cu;
MVert *mvert;
MPoly *mpoly;
MLoop *mloop;
MEdge *medge;
float *data;
int a, b, ofs, vertcount, startvert, totvert=0, totedge=0, totloop=0, totvlak=0;
int p1, p2, p3, p4, *index;
int conv_polys= 0;
cu= ob->data;
conv_polys|= cu->flag & CU_3D; /* 2d polys are filled with DL_INDEX3 displists */
conv_polys|= ob->type == OB_SURF; /* surf polys are never filled */
/* count */
dl= dispbase->first;
while(dl) {
if(dl->type==DL_SEGM) {
totvert+= dl->parts*dl->nr;
totedge+= dl->parts*(dl->nr-1);
}
else if(dl->type==DL_POLY) {
if(conv_polys) {
totvert+= dl->parts*dl->nr;
totedge+= dl->parts*dl->nr;
}
}
else if(dl->type==DL_SURF) {
int tot;
totvert+= dl->parts*dl->nr;
tot = (dl->parts-1+((dl->flag & DL_CYCL_V)==2))*(dl->nr-1+(dl->flag & DL_CYCL_U));
totvlak += tot;
totloop += tot * 4;
}
else if(dl->type==DL_INDEX3) {
int tot;
totvert+= dl->nr;
tot = dl->parts;
totvlak+= tot;
totloop += tot * 3;
}
dl= dl->next;
}
if(totvert==0) {
/* error("can't convert"); */
/* Make Sure you check ob->data is a curve */
return -1;
}
*allvert = mvert = MEM_callocN(sizeof(MVert) * totvert, "nurbs_init mvert");
*alledge = medge = MEM_callocN(sizeof(MEdge) * totedge, "nurbs_init medge");
*allloop = mloop = MEM_callocN(sizeof(MLoop) * totvlak * 4, "nurbs_init mloop"); // totloop
*allpoly = mpoly = MEM_callocN(sizeof(MPoly) * totvlak, "nurbs_init mloop");
/* verts and faces */
vertcount= 0;
dl= dispbase->first;
while(dl) {
int smooth= dl->rt & CU_SMOOTH ? 1 : 0;
if(dl->type==DL_SEGM) {
startvert= vertcount;
a= dl->parts*dl->nr;
data= dl->verts;
while(a--) {
copy_v3_v3(mvert->co, data);
data+=3;
vertcount++;
mvert++;
}
for(a=0; a<dl->parts; a++) {
ofs= a*dl->nr;
for(b=1; b<dl->nr; b++) {
medge->v1= startvert+ofs+b-1;
medge->v2= startvert+ofs+b;
medge->flag = ME_LOOSEEDGE|ME_EDGERENDER;
medge++;
}
}
}
else if(dl->type==DL_POLY) {
if(conv_polys) {
startvert= vertcount;
a= dl->parts*dl->nr;
data= dl->verts;
while(a--) {
copy_v3_v3(mvert->co, data);
data+=3;
vertcount++;
mvert++;
}
for(a=0; a<dl->parts; a++) {
ofs= a*dl->nr;
for(b=0; b<dl->nr; b++) {
medge->v1= startvert+ofs+b;
if(b==dl->nr-1) medge->v2= startvert+ofs;
else medge->v2= startvert+ofs+b+1;
medge->flag = ME_LOOSEEDGE|ME_EDGERENDER;
medge++;
}
}
}
}
else if(dl->type==DL_INDEX3) {
startvert= vertcount;
a= dl->nr;
data= dl->verts;
while(a--) {
copy_v3_v3(mvert->co, data);
data+=3;
vertcount++;
mvert++;
}
a= dl->parts;
index= dl->index;
while(a--) {
mloop[0].v = startvert+index[0];
mloop[1].v = startvert+index[2];
mloop[2].v = startvert+index[1];
mpoly->loopstart = (int)(mloop - (*allloop));
mpoly->totloop = 3;
mpoly->mat_nr = dl->col;
if(smooth) mpoly->flag |= ME_SMOOTH;
mpoly++;
mloop+= 3;
index+= 3;
}
}
else if(dl->type==DL_SURF) {
startvert= vertcount;
a= dl->parts*dl->nr;
data= dl->verts;
while(a--) {
copy_v3_v3(mvert->co, data);
data+=3;
vertcount++;
mvert++;
}
for(a=0; a<dl->parts; a++) {
if( (dl->flag & DL_CYCL_V)==0 && a==dl->parts-1) break;
if(dl->flag & DL_CYCL_U) { /* p2 -> p1 -> */
p1= startvert+ dl->nr*a; /* p4 -> p3 -> */
p2= p1+ dl->nr-1; /* -----> next row */
p3= p1+ dl->nr;
p4= p2+ dl->nr;
b= 0;
}
else {
p2= startvert+ dl->nr*a;
p1= p2+1;
p4= p2+ dl->nr;
p3= p1+ dl->nr;
b= 1;
}
if( (dl->flag & DL_CYCL_V) && a==dl->parts-1) {
p3-= dl->parts*dl->nr;
p4-= dl->parts*dl->nr;
}
for(; b<dl->nr; b++) {
mloop[0].v= p1;
mloop[1].v= p3;
mloop[2].v= p4;
mloop[3].v= p2;
mpoly->loopstart = (int)(mloop - (*allloop));
mpoly->totloop = 4;
mpoly->mat_nr = dl->col;
if(smooth) mpoly->flag |= ME_SMOOTH;
mpoly++;
mloop+= 4;
p4= p3;
p3++;
p2= p1;
p1++;
}
}
}
dl= dl->next;
}
*_totpoly= totvlak;
*_totloop= totloop;
*_totedge= totedge;
*_totvert= totvert;
/* not uded for bmesh */
#if 0
make_edges_mdata(*allvert, *allface, *allloop, *allpoly, totvert, totvlak, *_totloop, *_totpoly, 0, alledge, _totedge);
mfaces_strip_loose(*allface, _totface);
#endif
return 0;
}
/* this may fail replacing ob->data, be sure to check ob->type */
void nurbs_to_mesh(Object *ob)
{
Main *bmain= G.main;
Object *ob1;
DerivedMesh *dm= ob->derivedFinal;
Mesh *me;
Curve *cu;
MVert *allvert= NULL;
MEdge *alledge= NULL;
MLoop *allloop = NULL;
MPoly *allpoly = NULL;
int totvert, totedge, totloop, totpoly;
cu= ob->data;
if (dm == NULL) {
if (nurbs_to_mdata (ob, &allvert, &totvert, &alledge, &totedge, &allloop, &allpoly, &totloop, &totpoly) != 0) {
/* Error initializing */
return;
}
/* make mesh */
me= add_mesh("Mesh");
me->totvert= totvert;
me->totedge= totedge;
me->totloop = totloop;
me->totpoly = totpoly;
me->mvert= CustomData_add_layer(&me->vdata, CD_MVERT, CD_ASSIGN, allvert, me->totvert);
me->medge= CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, alledge, me->totedge);
me->mloop= CustomData_add_layer(&me->ldata, CD_MLOOP, CD_ASSIGN, allloop, me->totloop);
me->mpoly= CustomData_add_layer(&me->pdata, CD_MPOLY, CD_ASSIGN, allpoly, me->totpoly);
mesh_calc_normals(me->mvert, me->totvert, me->mloop, me->mpoly, me->totloop, me->totpoly, NULL);
BKE_mesh_calc_edges(me, TRUE);
} else {
me= add_mesh("Mesh");
DM_to_mesh(dm, me, ob);
}
me->totcol= cu->totcol;
me->mat= cu->mat;
tex_space_mesh(me);
cu->mat= NULL;
cu->totcol= 0;
if(ob->data) {
free_libblock(&bmain->curve, ob->data);
}
ob->data= me;
ob->type= OB_MESH;
/* other users */
ob1= bmain->object.first;
while(ob1) {
if(ob1->data==cu) {
ob1->type= OB_MESH;
ob1->data= ob->data;
id_us_plus((ID *)ob->data);
}
ob1= ob1->id.next;
}
}
typedef struct EdgeLink {
Link *next, *prev;
void *edge;
} EdgeLink;
typedef struct VertLink {
Link *next, *prev;
unsigned int index;
} VertLink;
static void prependPolyLineVert(ListBase *lb, unsigned int index)
{
VertLink *vl= MEM_callocN(sizeof(VertLink), "VertLink");
vl->index = index;
BLI_addhead(lb, vl);
}
static void appendPolyLineVert(ListBase *lb, unsigned int index)
{
VertLink *vl= MEM_callocN(sizeof(VertLink), "VertLink");
vl->index = index;
BLI_addtail(lb, vl);
}
void mesh_to_curve(Scene *scene, Object *ob)
{
/* make new mesh data from the original copy */
DerivedMesh *dm= mesh_get_derived_final(scene, ob, CD_MASK_MESH);
MVert *mverts= dm->getVertArray(dm);
MEdge *med, *medge= dm->getEdgeArray(dm);
MFace *mf, *mface= dm->getTessFaceArray(dm);
int totedge = dm->getNumEdges(dm);
int totface = dm->getNumTessFaces(dm);
int totedges = 0;
int i, needsFree = 0;
/* only to detect edge polylines */
EdgeHash *eh = BLI_edgehash_new();
EdgeHash *eh_edge = BLI_edgehash_new();
ListBase edges = {NULL, NULL};
/* create edges from all faces (so as to find edges not in any faces) */
mf= mface;
for (i = 0; i < totface; i++, mf++) {
if (!BLI_edgehash_haskey(eh, mf->v1, mf->v2))
BLI_edgehash_insert(eh, mf->v1, mf->v2, NULL);
if (!BLI_edgehash_haskey(eh, mf->v2, mf->v3))
BLI_edgehash_insert(eh, mf->v2, mf->v3, NULL);
if (mf->v4) {
if (!BLI_edgehash_haskey(eh, mf->v3, mf->v4))
BLI_edgehash_insert(eh, mf->v3, mf->v4, NULL);
if (!BLI_edgehash_haskey(eh, mf->v4, mf->v1))
BLI_edgehash_insert(eh, mf->v4, mf->v1, NULL);
} else {
if (!BLI_edgehash_haskey(eh, mf->v3, mf->v1))
BLI_edgehash_insert(eh, mf->v3, mf->v1, NULL);
}
}
med= medge;
for(i=0; i<totedge; i++, med++) {
if (!BLI_edgehash_haskey(eh, med->v1, med->v2)) {
EdgeLink *edl= MEM_callocN(sizeof(EdgeLink), "EdgeLink");
BLI_edgehash_insert(eh_edge, med->v1, med->v2, NULL);
edl->edge= med;
BLI_addtail(&edges, edl); totedges++;
}
}
BLI_edgehash_free(eh_edge, NULL);
BLI_edgehash_free(eh, NULL);
if(edges.first) {
Curve *cu = add_curve(ob->id.name+2, OB_CURVE);
cu->flag |= CU_3D;
while(edges.first) {
/* each iteration find a polyline and add this as a nurbs poly spline */
ListBase polyline = {NULL, NULL}; /* store a list of VertLink's */
int closed = FALSE;
int totpoly= 0;
MEdge *med_current= ((EdgeLink *)edges.last)->edge;
unsigned int startVert= med_current->v1;
unsigned int endVert= med_current->v2;
int ok= TRUE;
appendPolyLineVert(&polyline, startVert); totpoly++;
appendPolyLineVert(&polyline, endVert); totpoly++;
BLI_freelinkN(&edges, edges.last); totedges--;
while(ok) { /* while connected edges are found... */
ok = FALSE;
i= totedges;
while(i) {
EdgeLink *edl;
i-=1;
edl= BLI_findlink(&edges, i);
med= edl->edge;
if(med->v1==endVert) {
endVert = med->v2;
appendPolyLineVert(&polyline, med->v2); totpoly++;
BLI_freelinkN(&edges, edl); totedges--;
ok= TRUE;
}
else if(med->v2==endVert) {
endVert = med->v1;
appendPolyLineVert(&polyline, endVert); totpoly++;
BLI_freelinkN(&edges, edl); totedges--;
ok= TRUE;
}
else if(med->v1==startVert) {
startVert = med->v2;
prependPolyLineVert(&polyline, startVert); totpoly++;
BLI_freelinkN(&edges, edl); totedges--;
ok= TRUE;
}
else if(med->v2==startVert) {
startVert = med->v1;
prependPolyLineVert(&polyline, startVert); totpoly++;
BLI_freelinkN(&edges, edl); totedges--;
ok= TRUE;
}
}
}
/* Now we have a polyline, make into a curve */
if(startVert==endVert) {
BLI_freelinkN(&polyline, polyline.last);
totpoly--;
closed = TRUE;
}
/* --- nurbs --- */
{
Nurb *nu;
BPoint *bp;
VertLink *vl;
/* create new 'nurb' within the curve */
nu = (Nurb *)MEM_callocN(sizeof(Nurb), "MeshNurb");
nu->pntsu= totpoly;
nu->pntsv= 1;
nu->orderu= 4;
nu->flagu= CU_NURB_ENDPOINT | (closed ? CU_NURB_CYCLIC:0); /* endpoint */
nu->resolu= 12;
nu->bp= (BPoint *)MEM_callocN(sizeof(BPoint)*totpoly, "bpoints");
/* add points */
vl= polyline.first;
for (i=0, bp=nu->bp; i < totpoly; i++, bp++, vl=(VertLink *)vl->next) {
copy_v3_v3(bp->vec, mverts[vl->index].co);
bp->f1= SELECT;
bp->radius = bp->weight = 1.0;
}
BLI_freelistN(&polyline);
/* add nurb to curve */
BLI_addtail(&cu->nurb, nu);
}
/* --- done with nurbs --- */
}
((Mesh *)ob->data)->id.us--;
ob->data= cu;
ob->type= OB_CURVE;
/* curve objects can't contain DM in usual cases, we could free memory */
needsFree= 1;
}
dm->needsFree = needsFree;
dm->release(dm);
if (needsFree) {
ob->derivedFinal = NULL;
/* curve object could have got bounding box only in special cases */
if(ob->bb) {
MEM_freeN(ob->bb);
ob->bb= NULL;
}
}
}
void mesh_delete_material_index(Mesh *me, short index)
{
int i;
for (i=0; i<me->totpoly; i++) {
MPoly *mp = &((MPoly*) me->mpoly)[i];
if (mp->mat_nr && mp->mat_nr>=index)
mp->mat_nr--;
}
for (i=0; i<me->totface; i++) {
MFace *mf = &((MFace*) me->mface)[i];
if (mf->mat_nr && mf->mat_nr>=index)
mf->mat_nr--;
}
}
void mesh_set_smooth_flag(Object *meshOb, int enableSmooth)
{
Mesh *me = meshOb->data;
int i;
for (i=0; i<me->totpoly; i++) {
MPoly *mp = &((MPoly*) me->mpoly)[i];
if (enableSmooth) {
mp->flag |= ME_SMOOTH;
} else {
mp->flag &= ~ME_SMOOTH;
}
}
for (i=0; i<me->totface; i++) {
MFace *mf = &((MFace*) me->mface)[i];
if (enableSmooth) {
mf->flag |= ME_SMOOTH;
} else {
mf->flag &= ~ME_SMOOTH;
}
}
}
void mesh_calc_normals_mapping(MVert *mverts, int numVerts,
MLoop *mloop, MPoly *mpolys, int numLoops, int numPolys, float (*polyNors_r)[3],
MFace *mfaces, int numFaces, int *origIndexFace, float (*faceNors_r)[3])
{
mesh_calc_normals_mapping_ex(mverts, numVerts, mloop, mpolys,
numLoops, numPolys, polyNors_r, mfaces, numFaces,
origIndexFace, faceNors_r, TRUE);
}
void mesh_calc_normals_mapping_ex(MVert *mverts, int numVerts,
MLoop *mloop, MPoly *mpolys,
int numLoops, int numPolys, float (*polyNors_r)[3],
MFace *mfaces, int numFaces, int *origIndexFace, float (*faceNors_r)[3],
const short only_face_normals)
{
float (*pnors)[3] = polyNors_r, (*fnors)[3] = faceNors_r;
int i;
MFace *mf;
MPoly *mp;
if (numPolys == 0) {
return;
}
/* if we are not calculating verts and no verts were passes thene we have nothign to do */
if ((only_face_normals == TRUE) && (polyNors_r == NULL) && (faceNors_r == NULL)) {
printf("%s: called with nothing to do\n", __func__);
return;
}
if (!pnors) pnors = MEM_callocN(sizeof(float) * 3 * numPolys, "poly_nors mesh.c");
/* if (!fnors) fnors = MEM_callocN(sizeof(float) * 3 * numFaces, "face nors mesh.c"); */ /* NO NEED TO ALLOC YET */
if (only_face_normals == FALSE) {
/* vertex normals are optional, they require some extra calculations,
* so make them optional */
mesh_calc_normals(mverts, numVerts, mloop, mpolys, numLoops, numPolys, pnors);
}
else {
/* only calc poly normals */
mp = mpolys;
for (i=0; i<numPolys; i++, mp++) {
mesh_calc_poly_normal(mp, mloop+mp->loopstart, mverts, pnors[i]);
}
}
if ( origIndexFace &&
/* fnors==faceNors_r */ /* NO NEED TO ALLOC YET */
fnors != NULL &&
numFaces)
{
mf = mfaces;
for (i=0; i<numFaces; i++, mf++, origIndexFace++) {
if (*origIndexFace < numPolys) {
copy_v3_v3(fnors[i], pnors[*origIndexFace]);
} else {
/*eek, we're not corrusponding to polys*/
printf("error in mesh_calc_normals; tesselation face indices are incorrect. normals may look bad.\n");
}
}
}
if (pnors != polyNors_r) MEM_freeN(pnors);
/* if (fnors != faceNors_r) MEM_freeN(fnors); */ /* NO NEED TO ALLOC YET */
fnors = pnors = NULL;
}
void mesh_calc_normals(MVert *mverts, int numVerts, MLoop *mloop, MPoly *mpolys,
int UNUSED(numLoops), int numPolys, float (*polyNors_r)[3])
{
float (*pnors)[3] = polyNors_r;
float (*tnorms)[3], (*edgevecbuf)[3]= NULL;
float **vertcos = NULL, **vertnos = NULL;
BLI_array_declare(vertcos);
BLI_array_declare(vertnos);
BLI_array_declare(edgevecbuf);
int i, j;
MPoly *mp;
MLoop *ml;
if (!pnors) pnors = MEM_callocN(sizeof(float) * 3 * numPolys, "poly_nors mesh.c");
/*first go through and calculate normals for all the polys*/
tnorms = MEM_callocN(sizeof(float)*3*numVerts, "tnorms mesh.c");
mp = mpolys;
for (i=0; i<numPolys; i++, mp++) {
mesh_calc_poly_normal(mp, mloop+mp->loopstart, mverts, pnors[i]);
ml = mloop + mp->loopstart;
BLI_array_empty(vertcos);
BLI_array_empty(vertnos);
for (j=0; j<mp->totloop; j++) {
int vindex = ml[j].v;
BLI_array_append(vertcos, mverts[vindex].co);
BLI_array_append(vertnos, tnorms[vindex]);
}
BLI_array_empty(edgevecbuf);
BLI_array_growitems(edgevecbuf, mp->totloop);
accumulate_vertex_normals_poly(vertnos, pnors[i], vertcos, edgevecbuf, mp->totloop);
}
BLI_array_free(vertcos);
BLI_array_free(vertnos);
BLI_array_free(edgevecbuf);
/* following Mesh convention; we use vertex coordinate itself for normal in this case */
for(i=0; i<numVerts; i++) {
MVert *mv= &mverts[i];
float *no= tnorms[i];
if(normalize_v3(no) == 0.0f)
normalize_v3_v3(no, mv->co);
normal_float_to_short_v3(mv->no, no);
}
MEM_freeN(tnorms);
if (pnors != polyNors_r) MEM_freeN(pnors);
}
void mesh_calc_normals_tessface(MVert *mverts, int numVerts, MFace *mfaces, int numFaces, float (*faceNors_r)[3])
{
float (*tnorms)[3]= MEM_callocN(numVerts*sizeof(*tnorms), "tnorms");
float (*fnors)[3]= (faceNors_r)? faceNors_r: MEM_callocN(sizeof(*fnors)*numFaces, "meshnormals");
int i;
for(i=0; i<numFaces; i++) {
MFace *mf= &mfaces[i];
float *f_no= fnors[i];
float *n4 = (mf->v4)? tnorms[mf->v4]: NULL;
float *c4 = (mf->v4)? mverts[mf->v4].co: NULL;
if(mf->v4)
normal_quad_v3(f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, mverts[mf->v4].co);
else
normal_tri_v3(f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co);
accumulate_vertex_normals(tnorms[mf->v1], tnorms[mf->v2], tnorms[mf->v3], n4,
f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, c4);
}
/* following Mesh convention; we use vertex coordinate itself for normal in this case */
for(i=0; i<numVerts; i++) {
MVert *mv= &mverts[i];
float *no= tnorms[i];
if(normalize_v3(no) == 0.0f)
normalize_v3_v3(no, mv->co);
normal_float_to_short_v3(mv->no, no);
}
MEM_freeN(tnorms);
if(fnors != faceNors_r)
MEM_freeN(fnors);
}
static void bmesh_corners_to_loops(Mesh *me, int findex, int loopstart, int numTex, int numCol)
{
MTFace *texface;
MTexPoly *texpoly;
MCol *mcol;
MLoopCol *mloopcol;
MLoopUV *mloopuv;
MFace *mf;
int i;
mf = me->mface + findex;
for(i=0; i < numTex; i++){
texface = CustomData_get_n(&me->fdata, CD_MTFACE, findex, i);
texpoly = CustomData_get_n(&me->pdata, CD_MTEXPOLY, findex, i);
texpoly->tpage = texface->tpage;
texpoly->flag = texface->flag;
texpoly->transp = texface->transp;
texpoly->mode = texface->mode;
texpoly->tile = texface->tile;
texpoly->unwrap = texface->unwrap;
mloopuv = CustomData_get_n(&me->ldata, CD_MLOOPUV, loopstart, i);
mloopuv->uv[0] = texface->uv[0][0]; mloopuv->uv[1] = texface->uv[0][1]; mloopuv++;
mloopuv->uv[0] = texface->uv[1][0]; mloopuv->uv[1] = texface->uv[1][1]; mloopuv++;
mloopuv->uv[0] = texface->uv[2][0]; mloopuv->uv[1] = texface->uv[2][1]; mloopuv++;
if (mf->v4) {
mloopuv->uv[0] = texface->uv[3][0]; mloopuv->uv[1] = texface->uv[3][1]; mloopuv++;
}
}
for(i=0; i < numCol; i++){
mloopcol = CustomData_get_n(&me->ldata, CD_MLOOPCOL, loopstart, i);
mcol = CustomData_get_n(&me->fdata, CD_MCOL, findex, i);
mloopcol->r = mcol[0].r; mloopcol->g = mcol[0].g; mloopcol->b = mcol[0].b; mloopcol->a = mcol[0].a; mloopcol++;
mloopcol->r = mcol[1].r; mloopcol->g = mcol[1].g; mloopcol->b = mcol[1].b; mloopcol->a = mcol[1].a; mloopcol++;
mloopcol->r = mcol[2].r; mloopcol->g = mcol[2].g; mloopcol->b = mcol[2].b; mloopcol->a = mcol[2].a; mloopcol++;
if (mf->v4) {
mloopcol->r = mcol[3].r; mloopcol->g = mcol[3].g; mloopcol->b = mcol[3].b; mloopcol->a = mcol[3].a; mloopcol++;
}
}
if (CustomData_has_layer(&me->fdata, CD_MDISPS)) {
MDisps *ld = CustomData_get(&me->ldata, loopstart, CD_MDISPS);
MDisps *fd = CustomData_get(&me->fdata, findex, CD_MDISPS);
float (*disps)[3] = fd->disps;
int i, tot = mf->v4 ? 4 : 3;
int side, corners;
corners = multires_mdisp_corners(fd);
if (corners == 0) {
/* Empty MDisp layers appear in at least one of the sintel.blend files.
Not sure why this happens, but it seems fine to just ignore them here.
If corners==0 for a non-empty layer though, something went wrong. */
BLI_assert(fd->totdisp == 0);
}
else {
side = sqrt(fd->totdisp / corners);
for (i=0; i<tot; i++, disps += side*side, ld++) {
ld->totdisp = side*side;
if (ld->disps)
MEM_freeN(ld->disps);
ld->disps = MEM_callocN(sizeof(float)*3*side*side, "converted loop mdisps");
if (fd->disps) {
memcpy(ld->disps, disps, sizeof(float)*3*side*side);
}
}
}
}
}
void convert_mfaces_to_mpolys(Mesh *mesh)
{
MFace *mf;
MLoop *ml;
MPoly *mp;
MEdge *me;
EdgeHash *eh;
int numTex, numCol;
int i, j, totloop;
mesh->totpoly = mesh->totface;
mesh->mpoly = MEM_callocN(sizeof(MPoly)*mesh->totpoly, "mpoly converted");
CustomData_add_layer(&mesh->pdata, CD_MPOLY, CD_ASSIGN, mesh->mpoly, mesh->totpoly);
numTex = CustomData_number_of_layers(&mesh->fdata, CD_MTFACE);
numCol = CustomData_number_of_layers(&mesh->fdata, CD_MCOL);
totloop = 0;
mf = mesh->mface;
for (i=0; i<mesh->totface; i++, mf++) {
totloop += mf->v4 ? 4 : 3;
}
mesh->totloop = totloop;
mesh->mloop = MEM_callocN(sizeof(MLoop)*mesh->totloop, "mloop converted");
CustomData_add_layer(&mesh->ldata, CD_MLOOP, CD_ASSIGN, mesh->mloop, totloop);
CustomData_to_bmeshpoly(&mesh->fdata, &mesh->pdata, &mesh->ldata,
mesh->totloop, mesh->totpoly);
eh = BLI_edgehash_new();
/*build edge hash*/
me = mesh->medge;
for (i=0; i<mesh->totedge; i++, me++) {
BLI_edgehash_insert(eh, me->v1, me->v2, SET_INT_IN_POINTER(i));
}
j = 0; /*current loop index*/
ml = mesh->mloop;
mf = mesh->mface;
mp = mesh->mpoly;
for (i=0; i<mesh->totface; i++, mf++, mp++) {
mp->loopstart = j;
mp->totloop = mf->v4 ? 4 : 3;
mp->mat_nr = mf->mat_nr;
mp->flag = mf->flag;
#define ML(v1, v2) {ml->v = mf->v1; ml->e = GET_INT_FROM_POINTER(BLI_edgehash_lookup(eh, mf->v1, mf->v2)); ml++; j++;}
ML(v1, v2);
ML(v2, v3);
if (mf->v4) {
ML(v3, v4);
ML(v4, v1);
} else {
ML(v3, v1);
}
#undef ML
bmesh_corners_to_loops(mesh, i, mp->loopstart, numTex, numCol);
}
/* note, we dont convert FGons at all, these are not even real ngons,
* they have their own UV's, colors etc - its more an editing feature. */
mesh_update_customdata_pointers(mesh, TRUE);
BLI_edgehash_free(eh, NULL);
}
float (*mesh_getVertexCos(Mesh *me, int *numVerts_r))[3]
{
int i, numVerts = me->totvert;
float (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "vertexcos1");
if (numVerts_r) *numVerts_r = numVerts;
for (i=0; i<numVerts; i++)
copy_v3_v3(cos[i], me->mvert[i].co);
return cos;
}
/* ngon version wip, based on EDBM_make_uv_vert_map */
/* this replaces the non bmesh function (in trunk) which takes MTFace's, if we ever need it back we could
* but for now this replaces it because its unused. */
UvVertMap *make_uv_vert_map(struct MPoly *mpoly, struct MLoop *mloop, struct MLoopUV *mloopuv, unsigned int totpoly, unsigned int totvert, int selected, float *limit)
{
UvVertMap *vmap;
UvMapVert *buf;
MPoly *mp;
unsigned int a;
int i, totuv, nverts;
totuv = 0;
/* generate UvMapVert array */
mp= mpoly;
for(a=0; a<totpoly; a++, mp++)
if(!selected || (!(mp->flag & ME_HIDE) && (mp->flag & ME_FACE_SEL)))
totuv += mp->totloop;
if(totuv==0)
return NULL;
vmap= (UvVertMap*)MEM_callocN(sizeof(*vmap), "UvVertMap");
if (!vmap)
return NULL;
vmap->vert= (UvMapVert**)MEM_callocN(sizeof(*vmap->vert)*totvert, "UvMapVert*");
buf= vmap->buf= (UvMapVert*)MEM_callocN(sizeof(*vmap->buf)*totuv, "UvMapVert");
if (!vmap->vert || !vmap->buf) {
free_uv_vert_map(vmap);
return NULL;
}
mp= mpoly;
for(a=0; a<totpoly; a++, mp++) {
if(!selected || (!(mp->flag & ME_HIDE) && (mp->flag & ME_FACE_SEL))) {
nverts= mp->totloop;
for(i=0; i<nverts; i++) {
buf->tfindex= i;
buf->f= a;
buf->separate = 0;
buf->next= vmap->vert[mloop[mp->loopstart + i].v];
vmap->vert[mloop[mp->loopstart + i].v]= buf;
buf++;
}
}
}
/* sort individual uvs for each vert */
for(a=0; a<totvert; a++) {
UvMapVert *newvlist= NULL, *vlist=vmap->vert[a];
UvMapVert *iterv, *v, *lastv, *next;
float *uv, *uv2, uvdiff[2];
while(vlist) {
v= vlist;
vlist= vlist->next;
v->next= newvlist;
newvlist= v;
uv= mloopuv[mpoly[v->f].loopstart + v->tfindex].uv;
lastv= NULL;
iterv= vlist;
while(iterv) {
next= iterv->next;
uv2= mloopuv[mpoly[iterv->f].loopstart + iterv->tfindex].uv;
sub_v2_v2v2(uvdiff, uv2, uv);
if(fabsf(uv[0]-uv2[0]) < limit[0] && fabsf(uv[1]-uv2[1]) < limit[1]) {
if(lastv) lastv->next= next;
else vlist= next;
iterv->next= newvlist;
newvlist= iterv;
}
else
lastv=iterv;
iterv= next;
}
newvlist->separate = 1;
}
vmap->vert[a]= newvlist;
}
return vmap;
}
UvMapVert *get_uv_map_vert(UvVertMap *vmap, unsigned int v)
{
return vmap->vert[v];
}
void free_uv_vert_map(UvVertMap *vmap)
{
if (vmap) {
if (vmap->vert) MEM_freeN(vmap->vert);
if (vmap->buf) MEM_freeN(vmap->buf);
MEM_freeN(vmap);
}
}
/* Generates a map where the key is the vertex and the value is a list
of faces that use that vertex as a corner. The lists are allocated
from one memory pool. */
void create_vert_face_map(ListBase **map, IndexNode **mem, const MFace *mface, const int totvert, const int totface)
{
int i,j;
IndexNode *node = NULL;
(*map) = MEM_callocN(sizeof(ListBase) * totvert, "vert face map");
(*mem) = MEM_callocN(sizeof(IndexNode) * totface*4, "vert face map mem");
node = *mem;
/* Find the users */
for(i = 0; i < totface; ++i){
for(j = 0; j < (mface[i].v4?4:3); ++j, ++node) {
node->index = i;
BLI_addtail(&(*map)[((unsigned int*)(&mface[i]))[j]], node);
}
}
}
/* Generates a map where the key is the vertex and the value is a list
of edges that use that vertex as an endpoint. The lists are allocated
from one memory pool. */
void create_vert_edge_map(ListBase **map, IndexNode **mem, const MEdge *medge, const int totvert, const int totedge)
{
int i, j;
IndexNode *node = NULL;
(*map) = MEM_callocN(sizeof(ListBase) * totvert, "vert edge map");
(*mem) = MEM_callocN(sizeof(IndexNode) * totedge * 2, "vert edge map mem");
node = *mem;
/* Find the users */
for(i = 0; i < totedge; ++i){
for(j = 0; j < 2; ++j, ++node) {
node->index = i;
BLI_addtail(&(*map)[((unsigned int*)(&medge[i].v1))[j]], node);
}
}
}
void mesh_loops_to_mface_corners(CustomData *fdata, CustomData *ldata,
CustomData *pdata, int lindex[4], int findex,
const int polyindex,
const int mf_len, /* 3 or 4 */
/* cache values to avoid lookups every time */
const int numTex, /* CustomData_number_of_layers(pdata, CD_MTEXPOLY) */
const int numCol, /* CustomData_number_of_layers(ldata, CD_MLOOPCOL) */
const int hasWCol /* CustomData_has_layer(ldata, CD_WEIGHT_MLOOPCOL) */
)
{
MTFace *texface;
MTexPoly *texpoly;
MCol *mcol;
MLoopCol *mloopcol;
MLoopUV *mloopuv;
int i, j;
for(i=0; i < numTex; i++){
texface = CustomData_get_n(fdata, CD_MTFACE, findex, i);
texpoly = CustomData_get_n(pdata, CD_MTEXPOLY, polyindex, i);
texface->tpage = texpoly->tpage;
texface->flag = texpoly->flag;
texface->transp = texpoly->transp;
texface->mode = texpoly->mode;
texface->tile = texpoly->tile;
texface->unwrap = texpoly->unwrap;
for (j=0; j < mf_len; j++) {
mloopuv = CustomData_get_n(ldata, CD_MLOOPUV, lindex[j], i);
texface->uv[j][0] = mloopuv->uv[0];
texface->uv[j][1] = mloopuv->uv[1];
}
}
for(i=0; i < numCol; i++){
mcol = CustomData_get_n(fdata, CD_MCOL, findex, i);
for (j=0; j < mf_len; j++) {
mloopcol = CustomData_get_n(ldata, CD_MLOOPCOL, lindex[j], i);
mcol[j].r = mloopcol->r;
mcol[j].g = mloopcol->g;
mcol[j].b = mloopcol->b;
mcol[j].a = mloopcol->a;
}
}
if (hasWCol) {
mcol = CustomData_get(fdata, findex, CD_WEIGHT_MCOL);
for (j=0; j < mf_len; j++) {
mloopcol = CustomData_get(ldata, lindex[j], CD_WEIGHT_MLOOPCOL);
mcol[j].r = mloopcol->r;
mcol[j].g = mloopcol->g;
mcol[j].b = mloopcol->b;
mcol[j].a = mloopcol->a;
}
}
}
/*
this function recreates a tesselation.
returns number of tesselation faces.
*/
int mesh_recalcTesselation(CustomData *fdata,
CustomData *ldata, CustomData *pdata,
MVert *mvert, int totface, int UNUSED(totloop),
int totpoly,
/* when teseelating to recalcilate normals after
* we can skip copying here */
const int do_face_nor_cpy)
{
/* use this to avoid locking pthread for _every_ polygon
* and calling the fill function */
#define USE_TESSFACE_SPEEDUP
#define USE_TESSFACE_QUADS // NEEDS FURTHER TESTING
#define TESSFACE_SCANFILL (1<<0)
#define TESSFACE_IS_QUAD (1<<1)
MPoly *mp, *mpoly;
MLoop *ml, *mloop;
MFace *mface = NULL, *mf;
BLI_array_declare(mface);
EditVert *v, *lastv, *firstv;
EditFace *f;
int *mface_orig_index = NULL;
BLI_array_declare(mface_orig_index);
int *mface_to_poly_map = NULL;
BLI_array_declare(mface_to_poly_map);
int lindex[4]; /* only ever use 3 in this case */
int *poly_orig_index;
int poly_index, j, mface_index;
const int numTex = CustomData_number_of_layers(pdata, CD_MTEXPOLY);
const int numCol = CustomData_number_of_layers(ldata, CD_MLOOPCOL);
const int hasWCol = CustomData_has_layer(ldata, CD_WEIGHT_MLOOPCOL);
mpoly = CustomData_get_layer(pdata, CD_MPOLY);
mloop = CustomData_get_layer(ldata, CD_MLOOP);
/* allocate the length of totfaces, avoid many small reallocs,
* if all faces are tri's it will be correct, quads == 2x allocs */
BLI_array_reserve(mface_to_poly_map, totpoly);
BLI_array_reserve(mface, totpoly);
mface_index = 0;
mp = mpoly;
poly_orig_index = CustomData_get_layer(pdata, CD_ORIGINDEX);
for (poly_index = 0; poly_index < totpoly; poly_index++, mp++) {
if (mp->totloop < 3) {
/* do nothing */
}
#ifdef USE_TESSFACE_SPEEDUP
#define ML_TO_MF(i1, i2, i3) \
BLI_array_growone(mface_to_poly_map); \
BLI_array_growone(mface); \
mface_to_poly_map[mface_index] = poly_index; \
mf= &mface[mface_index]; \
/* set loop indices, transformed to vert indices later */ \
mf->v1 = mp->loopstart + i1; \
mf->v2 = mp->loopstart + i2; \
mf->v3 = mp->loopstart + i3; \
mf->v4 = 0; \
mf->mat_nr = mp->mat_nr; \
mf->flag = mp->flag; \
if (poly_orig_index) { \
BLI_array_append(mface_orig_index, \
poly_orig_index[poly_index]); \
} \
/* ALMOST IDENTICAL TO DEFINE ABOVE (see EXCEPTION) */
#define ML_TO_MF_QUAD() \
BLI_array_growone(mface_to_poly_map); \
BLI_array_growone(mface); \
mface_to_poly_map[mface_index] = poly_index; \
mf= &mface[mface_index]; \
/* set loop indices, transformed to vert indices later */ \
mf->v1 = mp->loopstart + 0; /* EXCEPTION */ \
mf->v2 = mp->loopstart + 1; /* EXCEPTION */ \
mf->v3 = mp->loopstart + 2; /* EXCEPTION */ \
mf->v4 = mp->loopstart + 3; /* EXCEPTION */ \
mf->mat_nr = mp->mat_nr; \
mf->flag = mp->flag; \
if (poly_orig_index) { \
BLI_array_append(mface_orig_index, \
poly_orig_index[poly_index]); \
} \
mf->edcode |= TESSFACE_IS_QUAD; /* EXCEPTION */ \
else if (mp->totloop == 3) {
ml = mloop + mp->loopstart;
ML_TO_MF(0, 1, 2)
mface_index++;
}
else if (mp->totloop == 4) {
#ifdef USE_TESSFACE_QUADS
ml = mloop + mp->loopstart;
ML_TO_MF_QUAD()
mface_index++;
#else
ml = mloop + mp->loopstart;
ML_TO_MF(0, 1, 2)
mface_index++;
ML_TO_MF(0, 2, 3)
mface_index++;
#endif
}
#endif /* USE_TESSFACE_SPEEDUP */
else {
int totfilltri;
ml = mloop + mp->loopstart;
BLI_begin_edgefill();
firstv = NULL;
lastv = NULL;
for (j=0; j<mp->totloop; j++, ml++) {
v = BLI_addfillvert(mvert[ml->v].co);
v->keyindex = mp->loopstart + j;
if (lastv)
BLI_addfilledge(lastv, v);
if (!firstv)
firstv = v;
lastv = v;
}
BLI_addfilledge(lastv, firstv);
totfilltri = BLI_edgefill(2);
if (totfilltri) {
BLI_array_growitems(mface_to_poly_map, totfilltri);
BLI_array_growitems(mface, totfilltri);
if (poly_orig_index) {
BLI_array_growitems(mface_orig_index, totfilltri);
}
for (f = fillfacebase.first; f; f = f->next, mf++) {
mface_to_poly_map[mface_index] = poly_index;
mf= &mface[mface_index];
/* set loop indices, transformed to vert indices later */
mf->v1 = f->v1->keyindex;
mf->v2 = f->v2->keyindex;
mf->v3 = f->v3->keyindex;
mf->v4 = 0;
mf->mat_nr = mp->mat_nr;
mf->flag = mp->flag;
#ifdef USE_TESSFACE_SPEEDUP
mf->edcode |= TESSFACE_SCANFILL; /* tag for sorting loop indicies */
#endif
if (poly_orig_index) {
mface_orig_index[mface_index] = poly_orig_index[poly_index];
}
mface_index++;
}
}
BLI_end_edgefill();
}
}
CustomData_free(fdata, totface);
memset(fdata, 0, sizeof(CustomData));
totface = mface_index;
/* note essential but without this we store over-alloc'd memory in the CustomData layers */
if (LIKELY((MEM_allocN_len(mface) / sizeof(*mface)) != totface)) {
mface = MEM_reallocN(mface, sizeof(*mface) * totface);
mface_to_poly_map = MEM_reallocN(mface_to_poly_map, sizeof(*mface_to_poly_map) * totface);
if (mface_orig_index) {
mface_orig_index = MEM_reallocN(mface_orig_index, sizeof(*mface_orig_index) * totface);
}
}
CustomData_add_layer(fdata, CD_MFACE, CD_ASSIGN, mface, totface);
/* CD_POLYINDEX will contain an array of indices from tessfaces to the polygons
* they are directly tesselated from */
CustomData_add_layer(fdata, CD_POLYINDEX, CD_ASSIGN, mface_to_poly_map, totface);
if (mface_orig_index) {
/* If polys had a CD_ORIGINDEX layer, then the tesselated faces will get this
* layer as well, pointing to polys from the original mesh (not the polys
* that just got tesselated) */
CustomData_add_layer(fdata, CD_ORIGINDEX, CD_ASSIGN, mface_orig_index, totface);
}
CustomData_from_bmeshpoly(fdata, pdata, ldata, totface);
if (do_face_nor_cpy) {
/* If polys have a normals layer, copying that to faces can help
* avoid the need to recalculate normals later */
if (CustomData_has_layer(pdata, CD_NORMAL)) {
float (*pnors)[3] = CustomData_get_layer(pdata, CD_NORMAL);
float (*fnors)[3] = CustomData_add_layer(fdata, CD_NORMAL, CD_CALLOC, NULL, totface);
for (mface_index = 0; mface_index < totface; mface_index++) {
copy_v3_v3(fnors[mface_index], pnors[mface_to_poly_map[mface_index]]);
}
}
}
mf = mface;
for (mface_index=0; mface_index < totface; mface_index++, mf++) {
#ifdef USE_TESSFACE_QUADS
const int mf_len = mf->edcode & TESSFACE_IS_QUAD ? 4 : 3;
#endif
#ifdef USE_TESSFACE_SPEEDUP
/* skip sorting when not using ngons */
if (UNLIKELY(mf->edcode & TESSFACE_SCANFILL))
#endif
{
/* sort loop indices to ensure winding is correct */
if (mf->v1 > mf->v2) SWAP(int, mf->v1, mf->v2);
if (mf->v2 > mf->v3) SWAP(int, mf->v2, mf->v3);
if (mf->v1 > mf->v2) SWAP(int, mf->v1, mf->v2);
if (mf->v1 > mf->v2) SWAP(int, mf->v1, mf->v2);
if (mf->v2 > mf->v3) SWAP(int, mf->v2, mf->v3);
if (mf->v1 > mf->v2) SWAP(int, mf->v1, mf->v2);
}
/* end abusing the edcode */
#if defined(USE_TESSFACE_QUADS) || defined(USE_TESSFACE_SPEEDUP)
mf->edcode = 0;
#endif
lindex[0] = mf->v1;
lindex[1] = mf->v2;
lindex[2] = mf->v3;
#ifdef USE_TESSFACE_QUADS
if (mf_len == 4) lindex[3] = mf->v4;
#endif
/*transform loop indices to vert indices*/
mf->v1 = mloop[mf->v1].v;
mf->v2 = mloop[mf->v2].v;
mf->v3 = mloop[mf->v3].v;
#ifdef USE_TESSFACE_QUADS
if (mf_len == 4) mf->v4 = mloop[mf->v4].v;
#endif
mesh_loops_to_mface_corners(fdata, ldata, pdata,
lindex, mface_index, mface_to_poly_map[mface_index],
#ifdef USE_TESSFACE_QUADS
mf_len,
#else
3,
#endif
numTex, numCol, hasWCol);
#ifdef USE_TESSFACE_QUADS
test_index_face(mf, fdata, mface_index, mf_len);
#endif
}
return totface;
#undef USE_TESSFACE_SPEEDUP
}
#ifdef USE_BMESH_SAVE_AS_COMPAT
/*
* this function recreates a tesselation.
* returns number of tesselation faces.
*/
int mesh_mpoly_to_mface(struct CustomData *fdata, struct CustomData *ldata,
struct CustomData *pdata, int totface, int UNUSED(totloop), int totpoly)
{
MLoop *mloop;
int lindex[4];
int i;
int k;
MPoly *mp, *mpoly;
MFace *mface = NULL, *mf;
BLI_array_declare(mface);
const int numTex = CustomData_number_of_layers(pdata, CD_MTEXPOLY);
const int numCol = CustomData_number_of_layers(ldata, CD_MLOOPCOL);
const int hasWCol = CustomData_has_layer(ldata, CD_WEIGHT_MLOOPCOL);
mpoly = CustomData_get_layer(pdata, CD_MPOLY);
mloop = CustomData_get_layer(ldata, CD_MLOOP);
mp = mpoly;
k = 0;
for (i = 0; i<totpoly; i++, mp++) {
if (ELEM(mp->totloop, 3, 4)) {
BLI_array_growone(mface);
mf = &mface[k];
mf->mat_nr = mp->mat_nr;
mf->flag = mp->flag;
mf->v1 = mp->loopstart + 0;
mf->v2 = mp->loopstart + 1;
mf->v3 = mp->loopstart + 2;
mf->v4 = (mp->totloop == 4) ? (mp->loopstart + 3) : 0;
/* abuse edcode for temp storage and clear next loop */
mf->edcode = (char)mp->totloop; /* only ever 3 or 4 */
k++;
}
}
CustomData_free(fdata, totface);
memset(fdata, 0, sizeof(CustomData));
totface= k;
CustomData_add_layer(fdata, CD_MFACE, CD_ASSIGN, mface, totface);
CustomData_from_bmeshpoly(fdata, pdata, ldata, totface);
mp = mpoly;
k = 0;
for (i = 0; i<totpoly; i++, mp++) {
if (ELEM(mp->totloop, 3, 4)) {
mf = &mface[k];
if (mf->edcode == 3) {
/*sort loop indices to ensure winding is correct*/
/* NO SORT - looks like we can skip this */
lindex[0] = mf->v1;
lindex[1] = mf->v2;
lindex[2] = mf->v3;
lindex[3] = 0; /* unused */
/*transform loop indices to vert indices*/
mf->v1 = mloop[mf->v1].v;
mf->v2 = mloop[mf->v2].v;
mf->v3 = mloop[mf->v3].v;
mesh_loops_to_mface_corners(fdata, ldata, pdata,
lindex, k, i, 3,
numTex, numCol, hasWCol);
test_index_face(mf, fdata, k, 3);
}
else {
/*sort loop indices to ensure winding is correct*/
/* NO SORT - looks like we can skip this */
lindex[0] = mf->v1;
lindex[1] = mf->v2;
lindex[2] = mf->v3;
lindex[3] = mf->v4;
/*transform loop indices to vert indices*/
mf->v1 = mloop[mf->v1].v;
mf->v2 = mloop[mf->v2].v;
mf->v3 = mloop[mf->v3].v;
mf->v4 = mloop[mf->v4].v;
mesh_loops_to_mface_corners(fdata, ldata, pdata,
lindex, k, i, 4,
numTex, numCol, hasWCol);
test_index_face(mf, fdata, k, 4);
}
mf->edcode= 0;
k++;
}
}
return k;
}
#endif /* USE_BMESH_SAVE_AS_COMPAT */
/*
* COMPUTE POLY NORMAL
*
* Computes the normal of a planar
* polygon See Graphics Gems for
* computing newell normal.
*
*/
static void mesh_calc_ngon_normal(MPoly *mpoly, MLoop *loopstart,
MVert *mvert, float normal[3])
{
MVert *v1, *v2, *v3;
double u[3], v[3], w[3];
double n[3] = {0.0, 0.0, 0.0}, l;
int i;
for(i = 0; i < mpoly->totloop; i++){
v1 = mvert + loopstart[i].v;
v2 = mvert + loopstart[(i+1)%mpoly->totloop].v;
v3 = mvert + loopstart[(i+2)%mpoly->totloop].v;
VECCOPY(u, v1->co);
VECCOPY(v, v2->co);
VECCOPY(w, v3->co);
/*this fixes some weird numerical error*/
if (i==0) {
u[0] += 0.0001f;
u[1] += 0.0001f;
u[2] += 0.0001f;
}
/* newell's method
so thats?:
(a[1] - b[1]) * (a[2] + b[2]);
a[1]*b[2] - b[1]*a[2] - b[1]*b[2] + a[1]*a[2]
odd. half of that is the cross product. . .what's the
other half?
also could be like a[1]*(b[2] + a[2]) - b[1]*(a[2] - b[2])
*/
n[0] += (u[1] - v[1]) * (u[2] + v[2]);
n[1] += (u[2] - v[2]) * (u[0] + v[0]);
n[2] += (u[0] - v[0]) * (u[1] + v[1]);
}
l = n[0]*n[0]+n[1]*n[1]+n[2]*n[2];
l = sqrt(l);
if (l == 0.0) {
normal[0] = 0.0f;
normal[1] = 0.0f;
normal[2] = 1.0f;
return;
} else l = 1.0f / l;
n[0] *= l;
n[1] *= l;
n[2] *= l;
normal[0] = (float) n[0];
normal[1] = (float) n[1];
normal[2] = (float) n[2];
}
void mesh_calc_poly_normal(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray, float no[3])
{
if (mpoly->totloop > 4) {
mesh_calc_ngon_normal(mpoly, loopstart, mvarray, no);
}
else if (mpoly->totloop == 3){
normal_tri_v3(no,
mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co
);
}
else if (mpoly->totloop == 4) {
normal_quad_v3(no,
mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co,
mvarray[loopstart[3].v].co
);
}
else { /* horrible, two sided face! */
no[0] = 0.0;
no[1] = 0.0;
no[2] = 1.0;
}
}
/* duplicate of function above _but_ takes coords rather then mverts */
static void mesh_calc_ngon_normal_coords(MPoly *mpoly, MLoop *loopstart,
const float (*vertex_coords)[3], float normal[3])
{
const float *v1, *v2, *v3;
double u[3], v[3], w[3];
double n[3] = {0.0, 0.0, 0.0}, l;
int i;
for(i = 0; i < mpoly->totloop; i++){
v1 = (const float *)(vertex_coords + loopstart[i].v);
v2 = (const float *)(vertex_coords + loopstart[(i+1)%mpoly->totloop].v);
v3 = (const float *)(vertex_coords + loopstart[(i+2)%mpoly->totloop].v);
VECCOPY(u, v1);
VECCOPY(v, v2);
VECCOPY(w, v3);
/*this fixes some weird numerical error*/
if (i==0) {
u[0] += 0.0001f;
u[1] += 0.0001f;
u[2] += 0.0001f;
}
n[0] += (u[1] - v[1]) * (u[2] + v[2]);
n[1] += (u[2] - v[2]) * (u[0] + v[0]);
n[2] += (u[0] - v[0]) * (u[1] + v[1]);
}
l = n[0]*n[0]+n[1]*n[1]+n[2]*n[2];
l = sqrt(l);
if (l == 0.0) {
normal[0] = 0.0f;
normal[1] = 0.0f;
normal[2] = 1.0f;
return;
} else l = 1.0f / l;
n[0] *= l;
n[1] *= l;
n[2] *= l;
normal[0] = (float) n[0];
normal[1] = (float) n[1];
normal[2] = (float) n[2];
}
void mesh_calc_poly_normal_coords(MPoly *mpoly, MLoop *loopstart,
const float (*vertex_coords)[3], float no[3])
{
if (mpoly->totloop > 4) {
mesh_calc_ngon_normal_coords(mpoly, loopstart, vertex_coords, no);
}
else if (mpoly->totloop == 3){
normal_tri_v3(no,
vertex_coords[loopstart[0].v],
vertex_coords[loopstart[1].v],
vertex_coords[loopstart[2].v]
);
}
else if (mpoly->totloop == 4) {
normal_quad_v3(no,
vertex_coords[loopstart[0].v],
vertex_coords[loopstart[1].v],
vertex_coords[loopstart[2].v],
vertex_coords[loopstart[3].v]
);
}
else { /* horrible, two sided face! */
no[0] = 0.0;
no[1] = 0.0;
no[2] = 1.0;
}
}
static void mesh_calc_ngon_center(MPoly *mpoly, MLoop *loopstart,
MVert *mvert, float cent[3])
{
const float w= 1.0f / (float)mpoly->totloop;
int i;
zero_v3(cent);
for (i = 0; i < mpoly->totloop; i++) {
madd_v3_v3fl(cent, mvert[(loopstart++)->v].co, w);
}
}
void mesh_calc_poly_center(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray, float cent[3])
{
if (mpoly->totloop == 3) {
cent_tri_v3(cent,
mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co
);
}
else if (mpoly->totloop == 4) {
cent_quad_v3(cent,
mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co,
mvarray[loopstart[3].v].co
);
}
else {
mesh_calc_ngon_center(mpoly, loopstart, mvarray, cent);
}
}
/* note, passing polynormal is only a speedup so we can skip calculating it */
float mesh_calc_poly_area(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray, float polynormal[3])
{
if (mpoly->totloop == 3) {
return area_tri_v3(mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co
);
}
else if (mpoly->totloop == 4) {
return area_quad_v3(mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co,
mvarray[loopstart[3].v].co
);
}
else {
int i;
float area, polynorm_local[3], (*vertexcos)[3];
float *no= polynormal ? polynormal : polynorm_local;
BLI_array_fixedstack_declare(vertexcos, BM_NGON_STACK_SIZE, mpoly->totloop, __func__);
/* pack vertex cos into an array for area_poly_v3 */
for (i = 0; i < mpoly->totloop; i++) {
copy_v3_v3(vertexcos[i], mvarray[(loopstart++)->v].co);
}
/* need normal for area_poly_v3 as well */
if (polynormal == NULL) {
mesh_calc_poly_normal(mpoly, loopstart, mvarray, no);
}
/* finally calculate the area */
area = area_poly_v3(mpoly->totloop, vertexcos, no);
BLI_array_fixedstack_free(vertexcos);
return area;
}
}
/* basic vertex data functions */
int minmax_mesh(Mesh *me, float min[3], float max[3])
{
int i= me->totvert;
MVert *mvert;
for(mvert= me->mvert; i--; mvert++) {
DO_MINMAX(mvert->co, min, max);
}
return (me->totvert != 0);
}
int mesh_center_median(Mesh *me, float cent[3])
{
int i= me->totvert;
MVert *mvert;
zero_v3(cent);
for(mvert= me->mvert; i--; mvert++) {
add_v3_v3(cent, mvert->co);
}
/* otherwise we get NAN for 0 verts */
if(me->totvert) {
mul_v3_fl(cent, 1.0f/(float)me->totvert);
}
return (me->totvert != 0);
}
int mesh_center_bounds(Mesh *me, float cent[3])
{
float min[3], max[3];
INIT_MINMAX(min, max);
if(minmax_mesh(me, min, max)) {
mid_v3_v3v3(cent, min, max);
return 1;
}
return 0;
}
void mesh_translate(Mesh *me, float offset[3], int do_keys)
{
int i= me->totvert;
MVert *mvert;
for(mvert= me->mvert; i--; mvert++) {
add_v3_v3(mvert->co, offset);
}
if (do_keys && me->key) {
KeyBlock *kb;
for (kb=me->key->block.first; kb; kb=kb->next) {
float *fp= kb->data;
for (i= kb->totelem; i--; fp+=3) {
add_v3_v3(fp, offset);
}
}
}
}
void BKE_mesh_ensure_navmesh(Mesh *me)
{
if (!CustomData_has_layer(&me->fdata, CD_RECAST)) {
int i;
int numFaces = me->totface;
int* recastData;
CustomData_add_layer_named(&me->fdata, CD_RECAST, CD_CALLOC, NULL, numFaces, "recastData");
recastData = (int*)CustomData_get_layer(&me->fdata, CD_RECAST);
for (i=0; i<numFaces; i++) {
recastData[i] = i+1;
}
CustomData_add_layer_named(&me->fdata, CD_RECAST, CD_REFERENCE, recastData, numFaces, "recastData");
}
}