This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/displist.c

1987 lines
47 KiB
C

/* displist.c
*
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/displist.c
* \ingroup bke
*/
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_scene_types.h"
#include "DNA_object_types.h"
#include "DNA_material_types.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_editVert.h"
#include "BLI_scanfill.h"
#include "BLI_utildefines.h"
#include "BKE_global.h"
#include "BKE_displist.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_object.h"
#include "BKE_mball.h"
#include "BKE_material.h"
#include "BKE_curve.h"
#include "BKE_key.h"
#include "BKE_anim.h"
#include "BKE_font.h"
#include "BKE_lattice.h"
#include "BKE_modifier.h"
#include "RE_pipeline.h"
#include "RE_shader_ext.h"
#include "BLO_sys_types.h" // for intptr_t support
#include "ED_curve.h" /* for BKE_curve_nurbs */
static void boundbox_displist(Object *ob);
void free_disp_elem(DispList *dl)
{
if(dl) {
if(dl->verts) MEM_freeN(dl->verts);
if(dl->nors) MEM_freeN(dl->nors);
if(dl->index) MEM_freeN(dl->index);
if(dl->col1) MEM_freeN(dl->col1);
if(dl->col2) MEM_freeN(dl->col2);
if(dl->bevelSplitFlag) MEM_freeN(dl->bevelSplitFlag);
MEM_freeN(dl);
}
}
void freedisplist(ListBase *lb)
{
DispList *dl;
dl= lb->first;
while(dl) {
BLI_remlink(lb, dl);
free_disp_elem(dl);
dl= lb->first;
}
}
DispList *find_displist_create(ListBase *lb, int type)
{
DispList *dl;
dl= lb->first;
while(dl) {
if(dl->type==type) return dl;
dl= dl->next;
}
dl= MEM_callocN(sizeof(DispList), "find_disp");
dl->type= type;
BLI_addtail(lb, dl);
return dl;
}
DispList *find_displist(ListBase *lb, int type)
{
DispList *dl;
dl= lb->first;
while(dl) {
if(dl->type==type) return dl;
dl= dl->next;
}
return NULL;
}
int displist_has_faces(ListBase *lb)
{
DispList *dl;
for(dl= lb->first; dl; dl= dl->next) {
if ELEM3(dl->type, DL_INDEX3, DL_INDEX4, DL_SURF)
return 1;
}
return 0;
}
void copy_displist(ListBase *lbn, ListBase *lb)
{
DispList *dln, *dl;
freedisplist(lbn);
dl= lb->first;
while(dl) {
dln= MEM_dupallocN(dl);
BLI_addtail(lbn, dln);
dln->verts= MEM_dupallocN(dl->verts);
dln->nors= MEM_dupallocN(dl->nors);
dln->index= MEM_dupallocN(dl->index);
dln->col1= MEM_dupallocN(dl->col1);
dln->col2= MEM_dupallocN(dl->col2);
if(dl->bevelSplitFlag)
dln->bevelSplitFlag= MEM_dupallocN(dl->bevelSplitFlag);
dl= dl->next;
}
}
void addnormalsDispList(ListBase *lb)
{
DispList *dl = NULL;
float *vdata, *ndata, nor[3];
float *v1, *v2, *v3, *v4;
float *n1, *n2, *n3, *n4;
int a, b, p1, p2, p3, p4;
dl= lb->first;
while(dl) {
if(dl->type==DL_INDEX3) {
if(dl->nors==NULL) {
dl->nors= MEM_callocN(sizeof(float)*3, "dlnors");
if(dl->verts[2] < 0.0f) dl->nors[2]= -1.0f;
else dl->nors[2]= 1.0f;
}
}
else if(dl->type==DL_SURF) {
if(dl->nors==NULL) {
dl->nors= MEM_callocN(sizeof(float)*3*dl->nr*dl->parts, "dlnors");
vdata= dl->verts;
ndata= dl->nors;
for(a=0; a<dl->parts; a++) {
if (surfindex_displist(dl, a, &b, &p1, &p2, &p3, &p4)==0)
break;
v1= vdata+ 3*p1;
n1= ndata+ 3*p1;
v2= vdata+ 3*p2;
n2= ndata+ 3*p2;
v3= vdata+ 3*p3;
n3= ndata+ 3*p3;
v4= vdata+ 3*p4;
n4= ndata+ 3*p4;
for(; b<dl->nr; b++) {
normal_quad_v3( nor,v1, v3, v4, v2);
add_v3_v3(n1, nor);
add_v3_v3(n2, nor);
add_v3_v3(n3, nor);
add_v3_v3(n4, nor);
v2= v1; v1+= 3;
v4= v3; v3+= 3;
n2= n1; n1+= 3;
n4= n3; n3+= 3;
}
}
a= dl->parts*dl->nr;
v1= ndata;
while(a--) {
normalize_v3(v1);
v1+= 3;
}
}
}
dl= dl->next;
}
}
void count_displist(ListBase *lb, int *totvert, int *totface)
{
DispList *dl;
dl= lb->first;
while(dl) {
switch(dl->type) {
case DL_SURF:
*totvert+= dl->nr*dl->parts;
*totface+= (dl->nr-1)*(dl->parts-1);
break;
case DL_INDEX3:
case DL_INDEX4:
*totvert+= dl->nr;
*totface+= dl->parts;
break;
case DL_POLY:
case DL_SEGM:
*totvert+= dl->nr*dl->parts;
}
dl= dl->next;
}
}
int surfindex_displist(DispList *dl, int a, int *b, int *p1, int *p2, int *p3, int *p4)
{
if((dl->flag & DL_CYCL_V)==0 && a==(dl->parts)-1) {
return 0;
}
if(dl->flag & DL_CYCL_U) {
(*p1)= dl->nr*a;
(*p2)= (*p1)+ dl->nr-1;
(*p3)= (*p1)+ dl->nr;
(*p4)= (*p2)+ dl->nr;
(*b)= 0;
} else {
(*p2)= dl->nr*a;
(*p1)= (*p2)+1;
(*p4)= (*p2)+ dl->nr;
(*p3)= (*p1)+ dl->nr;
(*b)= 1;
}
if( (dl->flag & DL_CYCL_V) && a==dl->parts-1) { \
(*p3)-= dl->nr*dl->parts; \
(*p4)-= dl->nr*dl->parts; \
}
return 1;
}
/* ***************************** shade displist. note colors now are in rgb(a) order ******************** */
/* create default shade input... save cpu cycles with ugly global */
/* XXXX bad code warning: local ShadeInput initialize... */
static ShadeInput shi;
static void init_fastshade_shadeinput(Render *re)
{
memset(&shi, 0, sizeof(ShadeInput));
shi.lay= RE_GetScene(re)->lay;
shi.view[2]= -1.0f;
shi.passflag= SCE_PASS_COMBINED;
shi.combinedflag= -1;
}
static Render *fastshade_get_render(Scene *UNUSED(scene))
{
// XXX 2.5: this crashes combined with previewrender
// due to global R so disabled for now
#if 0
/* XXX ugly global still, but we can't do preview while rendering */
if(G.rendering==0) {
Render *re= RE_GetRender("_Shade View_");
if(re==NULL) {
re= RE_NewRender("_Shade View_");
RE_Database_Baking(re, scene, 0, 0); /* 0= no faces */
}
return re;
}
#endif
return NULL;
}
/* called on file reading */
void fastshade_free_render(void)
{
Render *re= RE_GetRender("_Shade View_");
if(re) {
RE_Database_Free(re);
RE_FreeRender(re);
}
}
static int fastshade_customdata_layer_num(int n, int active)
{
/* make the active layer the first */
if (n == active) return 0;
else if (n < active) return n+1;
else return n;
}
static void fastshade_customdata(CustomData *fdata, int a, int j, Material *ma)
{
CustomDataLayer *layer;
MTFace *mtface;
int index, n, needuv= ma->texco & TEXCO_UV;
char *vertcol;
shi.totuv= 0;
shi.totcol= 0;
for(index=0; index<fdata->totlayer; index++) {
layer= &fdata->layers[index];
if(needuv && layer->type == CD_MTFACE && shi.totuv < MAX_MTFACE) {
n= fastshade_customdata_layer_num(shi.totuv, layer->active_rnd);
mtface= &((MTFace*)layer->data)[a];
shi.uv[shi.totuv].uv[0]= 2.0f*mtface->uv[j][0]-1.0f;
shi.uv[shi.totuv].uv[1]= 2.0f*mtface->uv[j][1]-1.0f;
shi.uv[shi.totuv].uv[2]= 1.0f;
shi.uv[shi.totuv].name= layer->name;
shi.totuv++;
}
else if(layer->type == CD_MCOL && shi.totcol < MAX_MCOL) {
n= fastshade_customdata_layer_num(shi.totcol, layer->active_rnd);
vertcol= (char*)&((MCol*)layer->data)[a*4 + j];
shi.col[shi.totcol].col[0]= ((float)vertcol[3])/255.0f;
shi.col[shi.totcol].col[1]= ((float)vertcol[2])/255.0f;
shi.col[shi.totcol].col[2]= ((float)vertcol[1])/255.0f;
shi.col[shi.totcol].name= layer->name;
shi.totcol++;
}
}
if(needuv && shi.totuv == 0)
VECCOPY(shi.uv[0].uv, shi.lo);
if(shi.totcol)
VECCOPY(shi.vcol, shi.col[0].col);
}
static void fastshade(float *co, float *nor, float *orco, Material *ma, char *col1, char *col2)
{
ShadeResult shr;
int a;
VECCOPY(shi.co, co);
shi.vn[0]= -nor[0];
shi.vn[1]= -nor[1];
shi.vn[2]= -nor[2];
VECCOPY(shi.vno, shi.vn);
VECCOPY(shi.facenor, shi.vn);
if(ma->texco) {
VECCOPY(shi.lo, orco);
if(ma->texco & TEXCO_GLOB) {
VECCOPY(shi.gl, shi.lo);
}
if(ma->texco & TEXCO_WINDOW) {
VECCOPY(shi.winco, shi.lo);
}
if(ma->texco & TEXCO_STICKY) {
VECCOPY(shi.sticky, shi.lo);
}
if(ma->texco & TEXCO_OBJECT) {
VECCOPY(shi.co, shi.lo);
}
if(ma->texco & TEXCO_NORM) {
VECCOPY(shi.orn, shi.vn);
}
if(ma->texco & TEXCO_REFL) {
float inp= 2.0f * (shi.vn[2]);
shi.ref[0]= (inp*shi.vn[0]);
shi.ref[1]= (inp*shi.vn[1]);
shi.ref[2]= (-1.0f + inp*shi.vn[2]);
}
}
shi.mat= ma; /* set each time... node shaders change it */
RE_shade_external(NULL, &shi, &shr);
a= 256.0f*(shr.combined[0]);
col1[0]= CLAMPIS(a, 0, 255);
a= 256.0f*(shr.combined[1]);
col1[1]= CLAMPIS(a, 0, 255);
a= 256.0f*(shr.combined[2]);
col1[2]= CLAMPIS(a, 0, 255);
if(col2) {
shi.vn[0]= -shi.vn[0];
shi.vn[1]= -shi.vn[1];
shi.vn[2]= -shi.vn[2];
shi.mat= ma; /* set each time... node shaders change it */
RE_shade_external(NULL, &shi, &shr);
a= 256.0f*(shr.combined[0]);
col2[0]= CLAMPIS(a, 0, 255);
a= 256.0f*(shr.combined[1]);
col2[1]= CLAMPIS(a, 0, 255);
a= 256.0f*(shr.combined[2]);
col2[2]= CLAMPIS(a, 0, 255);
}
}
static void init_fastshade_for_ob(Render *re, Object *ob, int *need_orco_r, float mat[4][4], float imat[3][3])
{
float tmat[4][4];
float amb[3]= {0.0f, 0.0f, 0.0f};
int a;
/* initialize globals in render */
RE_shade_external(re, NULL, NULL);
/* initialize global here */
init_fastshade_shadeinput(re);
RE_DataBase_GetView(re, tmat);
mul_m4_m4m4(mat, ob->obmat, tmat);
invert_m4_m4(tmat, mat);
copy_m3_m4(imat, tmat);
if(ob->transflag & OB_NEG_SCALE) mul_m3_fl(imat, -1.0);
if (need_orco_r) *need_orco_r= 0;
for(a=0; a<ob->totcol; a++) {
Material *ma= give_current_material(ob, a+1);
if(ma) {
init_render_material(ma, 0, amb);
if(ma->texco & TEXCO_ORCO) {
if (need_orco_r) *need_orco_r= 1;
}
}
}
}
static void end_fastshade_for_ob(Object *ob)
{
int a;
for(a=0; a<ob->totcol; a++) {
Material *ma= give_current_material(ob, a+1);
if(ma)
end_render_material(ma);
}
}
static void mesh_create_shadedColors(Render *re, Object *ob, int onlyForMesh, unsigned int **col1_r, unsigned int **col2_r)
{
Mesh *me= ob->data;
DerivedMesh *dm;
MVert *mvert;
MFace *mface;
unsigned int *col1, *col2;
float *orco, *vnors, *nors, imat[3][3], mat[4][4], vec[3];
int a, i, need_orco, totface, totvert;
CustomDataMask dataMask = CD_MASK_BAREMESH | CD_MASK_MCOL
| CD_MASK_MTFACE | CD_MASK_NORMAL;
init_fastshade_for_ob(re, ob, &need_orco, mat, imat);
if(need_orco)
dataMask |= CD_MASK_ORCO;
if (onlyForMesh)
dm = mesh_get_derived_deform(RE_GetScene(re), ob, dataMask);
else
dm = mesh_get_derived_final(RE_GetScene(re), ob, dataMask);
mvert = dm->getVertArray(dm);
mface = dm->getFaceArray(dm);
nors = dm->getFaceDataArray(dm, CD_NORMAL);
totvert = dm->getNumVerts(dm);
totface = dm->getNumFaces(dm);
orco= dm->getVertDataArray(dm, CD_ORCO);
if (onlyForMesh) {
col1 = *col1_r;
col2 = NULL;
} else {
*col1_r = col1 = MEM_mallocN(sizeof(*col1)*totface*4, "col1");
if (col2_r && (me->flag & ME_TWOSIDED))
col2 = MEM_mallocN(sizeof(*col2)*totface*4, "col2");
else
col2 = NULL;
if (col2_r) *col2_r = col2;
}
/* vertexnormals */
vnors= MEM_mallocN(totvert*3*sizeof(float), "vnors disp");
for (a=0; a<totvert; a++) {
MVert *mv = &mvert[a];
float *vn= &vnors[a*3];
float xn= mv->no[0];
float yn= mv->no[1];
float zn= mv->no[2];
/* transpose ! */
vn[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
vn[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
vn[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
normalize_v3(vn);
}
for (i=0; i<totface; i++) {
extern Material defmaterial; /* material.c */
MFace *mf= &mface[i];
Material *ma= give_current_material(ob, mf->mat_nr+1);
int j, vidx[4], nverts= mf->v4?4:3;
unsigned char *col1base= (unsigned char*) &col1[i*4];
unsigned char *col2base= (unsigned char*) (col2?&col2[i*4]:NULL);
float nor[3], n1[3];
if(ma==NULL) ma= &defmaterial;
vidx[0]= mf->v1;
vidx[1]= mf->v2;
vidx[2]= mf->v3;
vidx[3]= mf->v4;
if (nors) {
VECCOPY(nor, &nors[i*3]);
} else {
if (mf->v4)
normal_quad_v3( nor,mvert[mf->v1].co, mvert[mf->v2].co, mvert[mf->v3].co, mvert[mf->v4].co);
else
normal_tri_v3( nor,mvert[mf->v1].co, mvert[mf->v2].co, mvert[mf->v3].co);
}
n1[0]= imat[0][0]*nor[0]+imat[0][1]*nor[1]+imat[0][2]*nor[2];
n1[1]= imat[1][0]*nor[0]+imat[1][1]*nor[1]+imat[1][2]*nor[2];
n1[2]= imat[2][0]*nor[0]+imat[2][1]*nor[1]+imat[2][2]*nor[2];
normalize_v3(n1);
for (j=0; j<nverts; j++) {
MVert *mv= &mvert[vidx[j]];
char *col1= (char*)&col1base[j*4];
char *col2= (char*)(col2base?&col2base[j*4]:NULL);
float *vn = (mf->flag & ME_SMOOTH)?&vnors[3*vidx[j]]:n1;
mul_v3_m4v3(vec, mat, mv->co);
mul_v3_v3fl(vec, vn, 0.001f);
fastshade_customdata(&dm->faceData, i, j, ma);
fastshade(vec, vn, orco?&orco[vidx[j]*3]:mv->co, ma, col1, col2);
}
}
MEM_freeN(vnors);
dm->release(dm);
end_fastshade_for_ob(ob);
}
void shadeMeshMCol(Scene *scene, Object *ob, Mesh *me)
{
Render *re= fastshade_get_render(scene);
int a;
char *cp;
unsigned int *mcol= (unsigned int*)me->mcol;
if(re) {
mesh_create_shadedColors(re, ob, 1, &mcol, NULL);
me->mcol= (MCol*)mcol;
/* swap bytes */
for(cp= (char *)me->mcol, a= 4*me->totface; a>0; a--, cp+=4) {
SWAP(char, cp[0], cp[3]);
SWAP(char, cp[1], cp[2]);
}
}
}
/* has base pointer, to check for layer */
/* called from drawobject.c */
void shadeDispList(Scene *scene, Base *base)
{
Object *ob= base->object;
DispList *dl, *dlob;
Material *ma = NULL;
Render *re;
float imat[3][3], mat[4][4], vec[3];
float *fp, *nor, n1[3];
unsigned int *col1;
int a, need_orco;
re= fastshade_get_render(scene);
if(re==NULL)
return;
dl = find_displist(&ob->disp, DL_VERTCOL);
if (dl) {
BLI_remlink(&ob->disp, dl);
free_disp_elem(dl);
}
if(ob->type==OB_MESH) {
dl= MEM_callocN(sizeof(DispList), "displistshade");
dl->type= DL_VERTCOL;
mesh_create_shadedColors(re, ob, 0, &dl->col1, &dl->col2);
/* add dl to ob->disp after mesh_create_shadedColors, because it
might indirectly free ob->disp */
BLI_addtail(&ob->disp, dl);
}
else {
init_fastshade_for_ob(re, ob, &need_orco, mat, imat);
if (ELEM3(ob->type, OB_CURVE, OB_SURF, OB_FONT)) {
/* now we need the normals */
dl= ob->disp.first;
while(dl) {
extern Material defmaterial; /* material.c */
dlob= MEM_callocN(sizeof(DispList), "displistshade");
BLI_addtail(&ob->disp, dlob);
dlob->type= DL_VERTCOL;
dlob->parts= dl->parts;
dlob->nr= dl->nr;
if(dl->type==DL_INDEX3) {
col1= dlob->col1= MEM_mallocN(sizeof(int)*dl->nr, "col1");
}
else {
col1= dlob->col1= MEM_mallocN(sizeof(int)*dl->parts*dl->nr, "col1");
}
ma= give_current_material(ob, dl->col+1);
if(ma==NULL) ma= &defmaterial;
if(dl->type==DL_INDEX3) {
if(dl->nors) {
/* there's just one normal */
n1[0]= imat[0][0]*dl->nors[0]+imat[0][1]*dl->nors[1]+imat[0][2]*dl->nors[2];
n1[1]= imat[1][0]*dl->nors[0]+imat[1][1]*dl->nors[1]+imat[1][2]*dl->nors[2];
n1[2]= imat[2][0]*dl->nors[0]+imat[2][1]*dl->nors[1]+imat[2][2]*dl->nors[2];
normalize_v3(n1);
fp= dl->verts;
a= dl->nr;
while(a--) {
mul_v3_m4v3(vec, mat, fp);
fastshade(vec, n1, fp, ma, (char *)col1, NULL);
fp+= 3; col1++;
}
}
}
else if(dl->type==DL_SURF) {
if(dl->nors) {
a= dl->nr*dl->parts;
fp= dl->verts;
nor= dl->nors;
while(a--) {
mul_v3_m4v3(vec, mat, fp);
n1[0]= imat[0][0]*nor[0]+imat[0][1]*nor[1]+imat[0][2]*nor[2];
n1[1]= imat[1][0]*nor[0]+imat[1][1]*nor[1]+imat[1][2]*nor[2];
n1[2]= imat[2][0]*nor[0]+imat[2][1]*nor[1]+imat[2][2]*nor[2];
normalize_v3(n1);
fastshade(vec, n1, fp, ma, (char *)col1, NULL);
fp+= 3; nor+= 3; col1++;
}
}
}
dl= dl->next;
}
}
else if(ob->type==OB_MBALL) {
/* there are normals already */
dl= ob->disp.first;
while(dl) {
if(dl->type==DL_INDEX4) {
if(dl->nors) {
extern Material defmaterial; /* material.c */
if(dl->col1) MEM_freeN(dl->col1);
col1= dl->col1= MEM_mallocN(sizeof(int)*dl->nr, "col1");
ma= give_current_material(ob, dl->col+1);
if(ma==NULL) ma= &defmaterial;
fp= dl->verts;
nor= dl->nors;
a= dl->nr;
while(a--) {
mul_v3_m4v3(vec, mat, fp);
/* transpose ! */
n1[0]= imat[0][0]*nor[0]+imat[0][1]*nor[1]+imat[0][2]*nor[2];
n1[1]= imat[1][0]*nor[0]+imat[1][1]*nor[1]+imat[1][2]*nor[2];
n1[2]= imat[2][0]*nor[0]+imat[2][1]*nor[1]+imat[2][2]*nor[2];
normalize_v3(n1);
fastshade(vec, n1, fp, ma, (char *)col1, NULL);
fp+= 3; col1++; nor+= 3;
}
}
}
dl= dl->next;
}
}
end_fastshade_for_ob(ob);
}
}
/* frees render and shade part of displists */
/* note: dont do a shade again, until a redraw happens */
void reshadeall_displist(Scene *scene)
{
Base *base;
Object *ob;
fastshade_free_render();
for(base= scene->base.first; base; base= base->next) {
ob= base->object;
if(ELEM5(ob->type, OB_MESH, OB_CURVE, OB_SURF, OB_FONT, OB_MBALL))
freedisplist(&ob->disp);
if(base->lay & scene->lay) {
/* Metaballs have standard displist at the Object */
if(ob->type==OB_MBALL) shadeDispList(scene, base);
}
}
}
/* ****************** make displists ********************* */
static void curve_to_displist(Curve *cu, ListBase *nubase, ListBase *dispbase, int forRender)
{
Nurb *nu;
DispList *dl;
BezTriple *bezt, *prevbezt;
BPoint *bp;
float *data;
int a, len, resolu;
nu= nubase->first;
while(nu) {
if(nu->hide==0) {
if(forRender && cu->resolu_ren!=0)
resolu= cu->resolu_ren;
else
resolu= nu->resolu;
if(!check_valid_nurb_u(nu));
else if(nu->type == CU_BEZIER) {
/* count */
len= 0;
a= nu->pntsu-1;
if(nu->flagu & CU_NURB_CYCLIC) a++;
prevbezt= nu->bezt;
bezt= prevbezt+1;
while(a--) {
if(a==0 && (nu->flagu & CU_NURB_CYCLIC)) bezt= nu->bezt;
if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) len++;
else len+= resolu;
if(a==0 && (nu->flagu & CU_NURB_CYCLIC)==0) len++;
prevbezt= bezt;
bezt++;
}
dl= MEM_callocN(sizeof(DispList), "makeDispListbez");
/* len+1 because of 'forward_diff_bezier' function */
dl->verts= MEM_callocN( (len+1)*3*sizeof(float), "dlverts");
BLI_addtail(dispbase, dl);
dl->parts= 1;
dl->nr= len;
dl->col= nu->mat_nr;
dl->charidx= nu->charidx;
data= dl->verts;
if(nu->flagu & CU_NURB_CYCLIC) {
dl->type= DL_POLY;
a= nu->pntsu;
}
else {
dl->type= DL_SEGM;
a= nu->pntsu-1;
}
prevbezt= nu->bezt;
bezt= prevbezt+1;
while(a--) {
if(a==0 && dl->type== DL_POLY) bezt= nu->bezt;
if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) {
VECCOPY(data, prevbezt->vec[1]);
data+= 3;
}
else {
int j;
for(j=0; j<3; j++) {
forward_diff_bezier( prevbezt->vec[1][j],
prevbezt->vec[2][j],
bezt->vec[0][j],
bezt->vec[1][j],
data+j, resolu, 3*sizeof(float));
}
data+= 3*resolu;
}
if(a==0 && dl->type==DL_SEGM) {
VECCOPY(data, bezt->vec[1]);
}
prevbezt= bezt;
bezt++;
}
}
else if(nu->type == CU_NURBS) {
len= (resolu*SEGMENTSU(nu));
dl= MEM_callocN(sizeof(DispList), "makeDispListsurf");
dl->verts= MEM_callocN(len*3*sizeof(float), "dlverts");
BLI_addtail(dispbase, dl);
dl->parts= 1;
dl->nr= len;
dl->col= nu->mat_nr;
dl->charidx = nu->charidx;
data= dl->verts;
if(nu->flagu & CU_NURB_CYCLIC) dl->type= DL_POLY;
else dl->type= DL_SEGM;
makeNurbcurve(nu, data, NULL, NULL, NULL, resolu, 3*sizeof(float));
}
else if(nu->type == CU_POLY) {
len= nu->pntsu;
dl= MEM_callocN(sizeof(DispList), "makeDispListpoly");
dl->verts= MEM_callocN(len*3*sizeof(float), "dlverts");
BLI_addtail(dispbase, dl);
dl->parts= 1;
dl->nr= len;
dl->col= nu->mat_nr;
dl->charidx = nu->charidx;
data= dl->verts;
if(nu->flagu & CU_NURB_CYCLIC) dl->type= DL_POLY;
else dl->type= DL_SEGM;
a= len;
bp= nu->bp;
while(a--) {
VECCOPY(data, bp->vec);
bp++;
data+= 3;
}
}
}
nu= nu->next;
}
}
void filldisplist(ListBase *dispbase, ListBase *to, int flipnormal)
{
EditVert *eve, *v1, *vlast;
EditFace *efa;
DispList *dlnew=NULL, *dl;
float *f1;
int colnr=0, charidx=0, cont=1, tot, a, *index, nextcol= 0;
intptr_t totvert;
if(dispbase==NULL) return;
if(dispbase->first==NULL) return;
while(cont) {
cont= 0;
totvert= 0;
nextcol= 0;
dl= dispbase->first;
while(dl) {
if(dl->type==DL_POLY) {
if(charidx<dl->charidx) cont= 1;
else if(charidx==dl->charidx) { /* character with needed index */
if(colnr==dl->col) {
/* make editverts and edges */
f1= dl->verts;
a= dl->nr;
eve= v1= NULL;
while(a--) {
vlast= eve;
eve= BLI_addfillvert(f1);
totvert++;
if(vlast==NULL) v1= eve;
else {
BLI_addfilledge(vlast, eve);
}
f1+=3;
}
if(eve!=NULL && v1!=NULL) {
BLI_addfilledge(eve, v1);
}
} else if (colnr<dl->col) {
/* got poly with next material at current char */
cont= 1;
nextcol= 1;
}
}
}
dl= dl->next;
}
if(totvert && BLI_edgefill(0)) { // XXX (obedit && obedit->actcol)?(obedit->actcol-1):0)) {
/* count faces */
tot= 0;
efa= fillfacebase.first;
while(efa) {
tot++;
efa= efa->next;
}
if(tot) {
dlnew= MEM_callocN(sizeof(DispList), "filldisplist");
dlnew->type= DL_INDEX3;
dlnew->col= colnr;
dlnew->nr= totvert;
dlnew->parts= tot;
dlnew->index= MEM_mallocN(tot*3*sizeof(int), "dlindex");
dlnew->verts= MEM_mallocN(totvert*3*sizeof(float), "dlverts");
/* vert data */
f1= dlnew->verts;
totvert= 0;
eve= fillvertbase.first;
while(eve) {
VECCOPY(f1, eve->co);
f1+= 3;
/* index number */
eve->tmp.l = totvert;
totvert++;
eve= eve->next;
}
/* index data */
efa= fillfacebase.first;
index= dlnew->index;
while(efa) {
index[0]= (intptr_t)efa->v1->tmp.l;
index[1]= (intptr_t)efa->v2->tmp.l;
index[2]= (intptr_t)efa->v3->tmp.l;
if(flipnormal)
SWAP(int, index[0], index[2]);
index+= 3;
efa= efa->next;
}
}
BLI_addhead(to, dlnew);
}
BLI_end_edgefill();
if(nextcol) {
/* stay at current char but fill polys with next material */
colnr++;
} else {
/* switch to next char and start filling from first material */
charidx++;
colnr= 0;
}
}
/* do not free polys, needed for wireframe display */
}
static void bevels_to_filledpoly(Curve *cu, ListBase *dispbase)
{
ListBase front, back;
DispList *dl, *dlnew;
float *fp, *fp1;
int a, dpoly;
front.first= front.last= back.first= back.last= NULL;
dl= dispbase->first;
while(dl) {
if(dl->type==DL_SURF) {
if( (dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U)==0 ) {
if( (cu->flag & CU_BACK) && (dl->flag & DL_BACK_CURVE) ) {
dlnew= MEM_callocN(sizeof(DispList), "filldisp");
BLI_addtail(&front, dlnew);
dlnew->verts= fp1= MEM_mallocN(sizeof(float)*3*dl->parts, "filldisp1");
dlnew->nr= dl->parts;
dlnew->parts= 1;
dlnew->type= DL_POLY;
dlnew->col= dl->col;
dlnew->charidx = dl->charidx;
fp= dl->verts;
dpoly= 3*dl->nr;
a= dl->parts;
while(a--) {
VECCOPY(fp1, fp);
fp1+= 3;
fp+= dpoly;
}
}
if( (cu->flag & CU_FRONT) && (dl->flag & DL_FRONT_CURVE) ) {
dlnew= MEM_callocN(sizeof(DispList), "filldisp");
BLI_addtail(&back, dlnew);
dlnew->verts= fp1= MEM_mallocN(sizeof(float)*3*dl->parts, "filldisp1");
dlnew->nr= dl->parts;
dlnew->parts= 1;
dlnew->type= DL_POLY;
dlnew->col= dl->col;
dlnew->charidx= dl->charidx;
fp= dl->verts+3*(dl->nr-1);
dpoly= 3*dl->nr;
a= dl->parts;
while(a--) {
VECCOPY(fp1, fp);
fp1+= 3;
fp+= dpoly;
}
}
}
}
dl= dl->next;
}
filldisplist(&front, dispbase, 1);
filldisplist(&back, dispbase, 0);
freedisplist(&front);
freedisplist(&back);
filldisplist(dispbase, dispbase, 0);
}
static void curve_to_filledpoly(Curve *cu, ListBase *UNUSED(nurb), ListBase *dispbase)
{
if(cu->flag & CU_3D) return;
if(dispbase->first && ((DispList*) dispbase->first)->type==DL_SURF) {
bevels_to_filledpoly(cu, dispbase);
}
else {
filldisplist(dispbase, dispbase, 0);
}
}
/* taper rules:
- only 1 curve
- first point left, last point right
- based on subdivided points in original curve, not on points in taper curve (still)
*/
float calc_taper(Scene *scene, Object *taperobj, int cur, int tot)
{
DispList *dl;
if(taperobj==NULL || taperobj->type!=OB_CURVE) return 1.0;
dl= taperobj->disp.first;
if(dl==NULL) {
makeDispListCurveTypes(scene, taperobj, 0);
dl= taperobj->disp.first;
}
if(dl) {
float fac= ((float)cur)/(float)(tot-1);
float minx, dx, *fp;
int a;
/* horizontal size */
minx= dl->verts[0];
dx= dl->verts[3*(dl->nr-1)] - minx;
if(dx > 0.0f) {
fp= dl->verts;
for(a=0; a<dl->nr; a++, fp+=3) {
if( (fp[0]-minx)/dx >= fac) {
/* interpolate with prev */
if(a>0) {
float fac1= (fp[-3]-minx)/dx;
float fac2= (fp[0]-minx)/dx;
if(fac1!=fac2)
return fp[1]*(fac1-fac)/(fac1-fac2) + fp[-2]*(fac-fac2)/(fac1-fac2);
}
return fp[1];
}
}
return fp[-2]; // last y coord
}
}
return 1.0;
}
void makeDispListMBall(Scene *scene, Object *ob)
{
if(!ob || ob->type!=OB_MBALL) return;
// XXX: mball stuff uses plenty of global variables
// while this is unchanged updating during render is unsafe
if(G.rendering) return;
freedisplist(&(ob->disp));
if(ob->type==OB_MBALL) {
if(ob==find_basis_mball(scene, ob)) {
metaball_polygonize(scene, ob, &ob->disp);
tex_space_mball(ob);
object_deform_mball(ob, &ob->disp);
}
}
boundbox_displist(ob);
}
void makeDispListMBall_forRender(Scene *scene, Object *ob, ListBase *dispbase)
{
metaball_polygonize(scene, ob, dispbase);
tex_space_mball(ob);
object_deform_mball(ob, dispbase);
}
static ModifierData *curve_get_tesselate_point(Scene *scene, Object *ob, int forRender, int editmode)
{
ModifierData *md = modifiers_getVirtualModifierList(ob);
ModifierData *preTesselatePoint;
int required_mode;
if(forRender) required_mode = eModifierMode_Render;
else required_mode = eModifierMode_Realtime;
if(editmode) required_mode |= eModifierMode_Editmode;
preTesselatePoint = NULL;
for (; md; md=md->next) {
ModifierTypeInfo *mti = modifierType_getInfo(md->type);
if (!modifier_isEnabled(scene, md, required_mode)) continue;
if (mti->type == eModifierTypeType_Constructive) return preTesselatePoint;
if (ELEM3(md->type, eModifierType_Hook, eModifierType_Softbody, eModifierType_MeshDeform)) {
preTesselatePoint = md;
/* this modifiers are moving point of tesselation automatically
(some of them even can't be applied on tesselated curve), set flag
for incformation button in modifier's header */
md->mode |= eModifierMode_ApplyOnSpline;
} else if(md->mode&eModifierMode_ApplyOnSpline) {
preTesselatePoint = md;
}
}
return preTesselatePoint;
}
static void curve_calc_modifiers_pre(Scene *scene, Object *ob, int forRender, float (**originalVerts_r)[3], float (**deformedVerts_r)[3], int *numVerts_r)
{
ModifierData *md = modifiers_getVirtualModifierList(ob);
ModifierData *preTesselatePoint;
Curve *cu= ob->data;
ListBase *nurb= BKE_curve_nurbs(cu);
int numVerts = 0;
int editmode = (!forRender && cu->editnurb);
float (*originalVerts)[3] = NULL;
float (*deformedVerts)[3] = NULL;
float *keyVerts= NULL;
int required_mode;
if(forRender) required_mode = eModifierMode_Render;
else required_mode = eModifierMode_Realtime;
preTesselatePoint = curve_get_tesselate_point(scene, ob, forRender, editmode);
if(editmode) required_mode |= eModifierMode_Editmode;
if(cu->editnurb==NULL) {
keyVerts= do_ob_key(scene, ob);
if(keyVerts) {
/* split coords from key data, the latter also includes
tilts, which is passed through in the modifier stack.
this is also the reason curves do not use a virtual
shape key modifier yet. */
deformedVerts= curve_getKeyVertexCos(cu, nurb, keyVerts);
originalVerts= MEM_dupallocN(deformedVerts);
}
}
if (preTesselatePoint) {
for (; md; md=md->next) {
ModifierTypeInfo *mti = modifierType_getInfo(md->type);
md->scene= scene;
if ((md->mode & required_mode) != required_mode) continue;
if (mti->isDisabled && mti->isDisabled(md, forRender)) continue;
if (mti->type!=eModifierTypeType_OnlyDeform) continue;
if (!deformedVerts) {
deformedVerts = curve_getVertexCos(cu, nurb, &numVerts);
originalVerts = MEM_dupallocN(deformedVerts);
}
mti->deformVerts(md, ob, NULL, deformedVerts, numVerts, forRender, editmode);
if (md==preTesselatePoint)
break;
}
}
if (deformedVerts)
curve_applyVertexCos(cu, nurb, deformedVerts);
if (keyVerts) /* these are not passed through modifier stack */
curve_applyKeyVertexTilts(cu, nurb, keyVerts);
if(keyVerts)
MEM_freeN(keyVerts);
*originalVerts_r = originalVerts;
*deformedVerts_r = deformedVerts;
*numVerts_r = numVerts;
}
static float (*displist_get_allverts (ListBase *dispbase, int *totvert))[3]
{
DispList *dl;
float (*allverts)[3], *fp;
*totvert= 0;
for (dl=dispbase->first; dl; dl=dl->next)
*totvert+= (dl->type==DL_INDEX3)?dl->nr:dl->parts*dl->nr;
allverts= MEM_mallocN((*totvert)*sizeof(float)*3, "displist_get_allverts allverts");
fp= (float*)allverts;
for (dl=dispbase->first; dl; dl=dl->next) {
int offs= 3 * ((dl->type==DL_INDEX3)?dl->nr:dl->parts*dl->nr);
memcpy(fp, dl->verts, sizeof(float) * offs);
fp+= offs;
}
return allverts;
}
static void displist_apply_allverts(ListBase *dispbase, float (*allverts)[3])
{
DispList *dl;
float *fp;
fp= (float*)allverts;
for (dl=dispbase->first; dl; dl=dl->next) {
int offs= 3 * ((dl->type==DL_INDEX3)?dl->nr:dl->parts*dl->nr);
memcpy(dl->verts, fp, sizeof(float) * offs);
fp+= offs;
}
}
static void curve_calc_modifiers_post(Scene *scene, Object *ob, ListBase *dispbase,
DerivedMesh **derivedFinal, int forRender, float (*originalVerts)[3], float (*deformedVerts)[3])
{
ModifierData *md = modifiers_getVirtualModifierList(ob);
ModifierData *preTesselatePoint;
Curve *cu= ob->data;
ListBase *nurb= BKE_curve_nurbs(cu);
int required_mode = 0, totvert = 0;
int editmode = (!forRender && cu->editnurb);
DerivedMesh *dm= NULL, *ndm;
float (*vertCos)[3] = NULL;
if(forRender) required_mode = eModifierMode_Render;
else required_mode = eModifierMode_Realtime;
preTesselatePoint = curve_get_tesselate_point(scene, ob, forRender, editmode);
if(editmode) required_mode |= eModifierMode_Editmode;
if (preTesselatePoint) {
md = preTesselatePoint->next;
}
if (derivedFinal && *derivedFinal) {
(*derivedFinal)->release (*derivedFinal);
}
for (; md; md=md->next) {
ModifierTypeInfo *mti = modifierType_getInfo(md->type);
md->scene= scene;
if ((md->mode & required_mode) != required_mode) continue;
if (mti->isDisabled && mti->isDisabled(md, forRender)) continue;
if (mti->type == eModifierTypeType_OnlyDeform ||
(mti->type == eModifierTypeType_DeformOrConstruct && !dm)) {
if (dm) {
if (!vertCos) {
totvert = dm->getNumVerts(dm);
vertCos = MEM_mallocN(sizeof(*vertCos) * totvert, "dfmv");
dm->getVertCos(dm, vertCos);
}
mti->deformVerts(md, ob, dm, vertCos, totvert, forRender, editmode);
} else {
if (!vertCos) {
vertCos= displist_get_allverts(dispbase, &totvert);
}
mti->deformVerts(md, ob, NULL, vertCos, totvert, forRender, editmode);
}
} else {
if (!derivedFinal) {
/* makeDisplistCurveTypes could be used for beveling, where derived mesh */
/* is totally unnecessary, so we could stop modifiers applying */
/* when we found constructive modifier but derived mesh is unwanted result */
break;
}
if (dm) {
if (vertCos) {
DerivedMesh *tdm = CDDM_copy(dm);
dm->release(dm);
dm = tdm;
CDDM_apply_vert_coords(dm, vertCos);
CDDM_calc_normals(dm);
}
} else {
if (vertCos) {
displist_apply_allverts(dispbase, vertCos);
}
if (ELEM(ob->type, OB_CURVE, OB_FONT) && (cu->flag & CU_DEFORM_FILL)) {
curve_to_filledpoly(cu, nurb, dispbase);
}
dm= CDDM_from_curve_customDB(ob, dispbase);
CDDM_calc_normals(dm);
}
if (vertCos) {
/* Vertex coordinates were applied to necessary data, could free it */
MEM_freeN(vertCos);
vertCos= NULL;
}
ndm = mti->applyModifier(md, ob, dm, forRender, editmode);
if (ndm) {
/* Modifier returned a new derived mesh */
if (dm && dm != ndm) /* Modifier */
dm->release (dm);
dm = ndm;
}
}
}
if (vertCos) {
if (dm) {
DerivedMesh *tdm = CDDM_copy(dm);
dm->release(dm);
dm = tdm;
CDDM_apply_vert_coords(dm, vertCos);
CDDM_calc_normals(dm);
MEM_freeN(vertCos);
} else {
displist_apply_allverts(dispbase, vertCos);
MEM_freeN(vertCos);
vertCos= NULL;
}
}
if (derivedFinal) {
(*derivedFinal) = dm;
}
if (deformedVerts) {
curve_applyVertexCos(ob->data, nurb, originalVerts);
MEM_freeN(originalVerts);
MEM_freeN(deformedVerts);
}
}
static void displist_surf_indices(DispList *dl)
{
int a, b, p1, p2, p3, p4;
int *index;
dl->totindex= 0;
index=dl->index= MEM_mallocN( 4*sizeof(int)*(dl->parts+1)*(dl->nr+1), "index array nurbs");
for(a=0; a<dl->parts; a++) {
if (surfindex_displist(dl, a, &b, &p1, &p2, &p3, &p4)==0)
break;
for(; b<dl->nr; b++, index+=4) {
index[0]= p1;
index[1]= p2;
index[2]= p4;
index[3]= p3;
dl->totindex++;
p2= p1; p1++;
p4= p3; p3++;
}
}
}
static DerivedMesh *create_orco_dm(Scene *scene, Object *ob)
{
DerivedMesh *dm;
ListBase disp= {NULL, NULL};
/* OrcoDM should be created from underformed disp lists */
makeDispListCurveTypes_forOrco(scene, ob, &disp);
dm= CDDM_from_curve_customDB(ob, &disp);
freedisplist(&disp);
return dm;
}
static void add_orco_dm(Scene *scene, Object *ob, DerivedMesh *dm, DerivedMesh *orcodm)
{
float (*orco)[3], (*layerorco)[3];
int totvert, a;
Curve *cu= ob->data;
totvert= dm->getNumVerts(dm);
if(orcodm) {
orco= MEM_callocN(sizeof(float)*3*totvert, "dm orco");
if(orcodm->getNumVerts(orcodm) == totvert)
orcodm->getVertCos(orcodm, orco);
else
dm->getVertCos(dm, orco);
}
else {
orco= (float(*)[3])make_orco_curve(scene, ob);
}
for(a=0; a<totvert; a++) {
float *co = orco[a];
co[0] = (co[0]-cu->loc[0])/cu->size[0];
co[1] = (co[1]-cu->loc[1])/cu->size[1];
co[2] = (co[2]-cu->loc[2])/cu->size[2];
}
if((layerorco = DM_get_vert_data_layer(dm, CD_ORCO))) {
memcpy(layerorco, orco, sizeof(float)*totvert);
MEM_freeN(orco);
}
else
DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, orco);
}
static void curve_calc_orcodm(Scene *scene, Object *ob, DerivedMesh *derivedFinal, int forRender)
{
/* this function represents logic of mesh's orcodm calculation */
/* for displist-based objects */
ModifierData *md = modifiers_getVirtualModifierList(ob);
ModifierData *preTesselatePoint;
Curve *cu= ob->data;
int required_mode;
int editmode = (!forRender && cu->editnurb);
DerivedMesh *ndm, *orcodm= NULL;
if(forRender) required_mode = eModifierMode_Render;
else required_mode = eModifierMode_Realtime;
preTesselatePoint = curve_get_tesselate_point(scene, ob, forRender, editmode);
if(editmode) required_mode |= eModifierMode_Editmode;
if (preTesselatePoint) {
md = preTesselatePoint->next;
}
for (; md; md=md->next) {
ModifierTypeInfo *mti = modifierType_getInfo(md->type);
md->scene= scene;
if ((md->mode & required_mode) != required_mode) continue;
if (mti->isDisabled && mti->isDisabled(md, forRender)) continue;
if (mti->type!=eModifierTypeType_Constructive) continue;
if(!orcodm)
orcodm= create_orco_dm(scene, ob);
ndm = mti->applyModifier(md, ob, orcodm, forRender, 0);
if(ndm) {
/* if the modifier returned a new dm, release the old one */
if(orcodm && orcodm != ndm) {
orcodm->release(orcodm);
}
orcodm = ndm;
}
}
/* add an orco layer if needed */
add_orco_dm(scene, ob, derivedFinal, orcodm);
if(orcodm)
orcodm->release(orcodm);
}
void makeDispListSurf(Scene *scene, Object *ob, ListBase *dispbase,
DerivedMesh **derivedFinal, int forRender, int forOrco)
{
ListBase *nubase;
Nurb *nu;
Curve *cu = ob->data;
DispList *dl;
float *data;
int len;
int numVerts;
float (*originalVerts)[3];
float (*deformedVerts)[3];
if(!forRender && cu->editnurb)
nubase= ED_curve_editnurbs(cu);
else
nubase= &cu->nurb;
if(!forOrco)
curve_calc_modifiers_pre(scene, ob, forRender, &originalVerts, &deformedVerts, &numVerts);
for (nu=nubase->first; nu; nu=nu->next) {
if(forRender || nu->hide==0) {
int resolu= nu->resolu, resolv= nu->resolv;
if(forRender){
if(cu->resolu_ren) resolu= cu->resolu_ren;
if(cu->resolv_ren) resolv= cu->resolv_ren;
}
if(nu->pntsv==1) {
len= SEGMENTSU(nu)*resolu;
dl= MEM_callocN(sizeof(DispList), "makeDispListsurf");
dl->verts= MEM_callocN(len*3*sizeof(float), "dlverts");
BLI_addtail(dispbase, dl);
dl->parts= 1;
dl->nr= len;
dl->col= nu->mat_nr;
dl->charidx= nu->charidx;
/* dl->rt will be used as flag for render face and */
/* CU_2D conflicts with R_NOPUNOFLIP */
dl->rt= nu->flag & ~CU_2D;
data= dl->verts;
if(nu->flagu & CU_NURB_CYCLIC) dl->type= DL_POLY;
else dl->type= DL_SEGM;
makeNurbcurve(nu, data, NULL, NULL, NULL, resolu, 3*sizeof(float));
}
else {
len= (nu->pntsu*resolu) * (nu->pntsv*resolv);
dl= MEM_callocN(sizeof(DispList), "makeDispListsurf");
dl->verts= MEM_callocN(len*3*sizeof(float), "dlverts");
BLI_addtail(dispbase, dl);
dl->col= nu->mat_nr;
dl->charidx= nu->charidx;
/* dl->rt will be used as flag for render face and */
/* CU_2D conflicts with R_NOPUNOFLIP */
dl->rt= nu->flag & ~CU_2D;
data= dl->verts;
dl->type= DL_SURF;
dl->parts= (nu->pntsu*resolu); /* in reverse, because makeNurbfaces works that way */
dl->nr= (nu->pntsv*resolv);
if(nu->flagv & CU_NURB_CYCLIC) dl->flag|= DL_CYCL_U; /* reverse too! */
if(nu->flagu & CU_NURB_CYCLIC) dl->flag|= DL_CYCL_V;
makeNurbfaces(nu, data, 0, resolu, resolv);
/* gl array drawing: using indices */
displist_surf_indices(dl);
}
}
}
/* make copy of 'undeformed" displist for texture space calculation
actually, it's not totally undeformed -- pre-tesselation modifiers are
already applied, thats how it worked for years, so keep for compatibility (sergey) */
copy_displist(&cu->disp, dispbase);
if (!forRender) {
tex_space_curve(cu);
}
if(!forOrco)
curve_calc_modifiers_post(scene, ob, dispbase, derivedFinal,
forRender, originalVerts, deformedVerts);
}
static void do_makeDispListCurveTypes(Scene *scene, Object *ob, ListBase *dispbase,
DerivedMesh **derivedFinal, int forRender, int forOrco)
{
Curve *cu = ob->data;
/* we do allow duplis... this is only displist on curve level */
if(!ELEM3(ob->type, OB_SURF, OB_CURVE, OB_FONT)) return;
if(ob->type==OB_SURF) {
makeDispListSurf(scene, ob, dispbase, derivedFinal, forRender, forOrco);
}
else if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
ListBase dlbev;
ListBase *nubase;
float (*originalVerts)[3];
float (*deformedVerts)[3];
int numVerts;
nubase= BKE_curve_nurbs(cu);
BLI_freelistN(&(cu->bev));
if(cu->path) free_path(cu->path);
cu->path= NULL;
if(ob->type==OB_FONT) BKE_text_to_curve(scene, ob, 0);
if(!forOrco) curve_calc_modifiers_pre(scene, ob, forRender, &originalVerts, &deformedVerts, &numVerts);
makeBevelList(ob);
/* If curve has no bevel will return nothing */
makebevelcurve(scene, ob, &dlbev, forRender);
/* no bevel or extrude, and no width correction? */
if (!dlbev.first && cu->width==1.0f) {
curve_to_displist(cu, nubase, dispbase, forRender);
} else {
float widfac= cu->width - 1.0f;
BevList *bl= cu->bev.first;
Nurb *nu= nubase->first;
for (; bl && nu; bl=bl->next,nu=nu->next) {
DispList *dl;
float *fp1, *data;
BevPoint *bevp;
int a,b;
if (bl->nr) { /* blank bevel lists can happen */
/* exception handling; curve without bevel or extrude, with width correction */
if(dlbev.first==NULL) {
dl= MEM_callocN(sizeof(DispList), "makeDispListbev");
dl->verts= MEM_callocN(3*sizeof(float)*bl->nr, "dlverts");
BLI_addtail(dispbase, dl);
if(bl->poly!= -1) dl->type= DL_POLY;
else dl->type= DL_SEGM;
if(dl->type==DL_SEGM) dl->flag = (DL_FRONT_CURVE|DL_BACK_CURVE);
dl->parts= 1;
dl->nr= bl->nr;
dl->col= nu->mat_nr;
dl->charidx= nu->charidx;
/* dl->rt will be used as flag for render face and */
/* CU_2D conflicts with R_NOPUNOFLIP */
dl->rt= nu->flag & ~CU_2D;
a= dl->nr;
bevp= (BevPoint *)(bl+1);
data= dl->verts;
while(a--) {
data[0]= bevp->vec[0]+widfac*bevp->sina;
data[1]= bevp->vec[1]+widfac*bevp->cosa;
data[2]= bevp->vec[2];
bevp++;
data+=3;
}
}
else {
DispList *dlb;
for (dlb=dlbev.first; dlb; dlb=dlb->next) {
/* for each part of the bevel use a separate displblock */
dl= MEM_callocN(sizeof(DispList), "makeDispListbev1");
dl->verts= data= MEM_callocN(3*sizeof(float)*dlb->nr*bl->nr, "dlverts");
BLI_addtail(dispbase, dl);
dl->type= DL_SURF;
dl->flag= dlb->flag & (DL_FRONT_CURVE|DL_BACK_CURVE);
if(dlb->type==DL_POLY) dl->flag |= DL_CYCL_U;
if(bl->poly>=0) dl->flag |= DL_CYCL_V;
dl->parts= bl->nr;
dl->nr= dlb->nr;
dl->col= nu->mat_nr;
dl->charidx= nu->charidx;
/* dl->rt will be used as flag for render face and */
/* CU_2D conflicts with R_NOPUNOFLIP */
dl->rt= nu->flag & ~CU_2D;
dl->bevelSplitFlag= MEM_callocN(sizeof(*dl->col2)*((bl->nr+0x1F)>>5), "bevelSplitFlag");
/* for each point of poly make a bevel piece */
bevp= (BevPoint *)(bl+1);
for(a=0; a<bl->nr; a++,bevp++) {
float fac=1.0;
if (cu->taperobj==NULL) {
if ( (cu->bevobj!=NULL) || !((cu->flag & CU_FRONT) || (cu->flag & CU_BACK)) )
fac = bevp->radius;
} else {
fac = calc_taper(scene, cu->taperobj, a, bl->nr);
}
if (bevp->split_tag) {
dl->bevelSplitFlag[a>>5] |= 1<<(a&0x1F);
}
/* rotate bevel piece and write in data */
fp1= dlb->verts;
for (b=0; b<dlb->nr; b++,fp1+=3,data+=3) {
if(cu->flag & CU_3D) {
float vec[3];
vec[0]= fp1[1]+widfac;
vec[1]= fp1[2];
vec[2]= 0.0;
mul_qt_v3(bevp->quat, vec);
data[0]= bevp->vec[0] + fac*vec[0];
data[1]= bevp->vec[1] + fac*vec[1];
data[2]= bevp->vec[2] + fac*vec[2];
}
else {
data[0]= bevp->vec[0] + fac*(widfac+fp1[1])*bevp->sina;
data[1]= bevp->vec[1] + fac*(widfac+fp1[1])*bevp->cosa;
data[2]= bevp->vec[2] + fac*fp1[2];
}
}
}
/* gl array drawing: using indices */
displist_surf_indices(dl);
}
}
}
}
freedisplist(&dlbev);
}
if (!(cu->flag & CU_DEFORM_FILL)) {
curve_to_filledpoly(cu, nubase, dispbase);
}
if(cu->flag & CU_PATH) calc_curvepath(ob);
/* make copy of 'undeformed" displist for texture space calculation
actually, it's not totally undeformed -- pre-tesselation modifiers are
already applied, thats how it worked for years, so keep for compatibility (sergey) */
copy_displist(&cu->disp, dispbase);
if (!forRender) {
tex_space_curve(cu);
}
if(!forOrco) curve_calc_modifiers_post(scene, ob, dispbase, derivedFinal, forRender, originalVerts, deformedVerts);
if (cu->flag & CU_DEFORM_FILL && !ob->derivedFinal) {
curve_to_filledpoly(cu, nubase, dispbase);
}
}
}
void makeDispListCurveTypes(Scene *scene, Object *ob, int forOrco)
{
Curve *cu= ob->data;
ListBase *dispbase;
freedisplist(&(ob->disp));
dispbase= &(ob->disp);
freedisplist(dispbase);
/* free displist used for textspace */
freedisplist(&cu->disp);
do_makeDispListCurveTypes(scene, ob, dispbase, &ob->derivedFinal, 0, forOrco);
if (ob->derivedFinal) {
DM_set_object_boundbox (ob, ob->derivedFinal);
} else {
boundbox_displist (ob);
/* if there is no derivedMesh, object's boundbox is unneeded */
if (ob->bb) {
MEM_freeN(ob->bb);
ob->bb= NULL;
}
}
}
void makeDispListCurveTypes_forRender(Scene *scene, Object *ob, ListBase *dispbase,
DerivedMesh **derivedFinal, int forOrco)
{
do_makeDispListCurveTypes(scene, ob, dispbase, derivedFinal, 1, forOrco);
}
void makeDispListCurveTypes_forOrco(struct Scene *scene, struct Object *ob, struct ListBase *dispbase)
{
do_makeDispListCurveTypes(scene, ob, dispbase, NULL, 1, 1);
}
/* add Orco layer to the displist object which has got derived mesh and return orco */
float *makeOrcoDispList(Scene *scene, Object *ob, DerivedMesh *derivedFinal, int forRender) {
float *orco;
if (derivedFinal == NULL)
derivedFinal= ob->derivedFinal;
if (!derivedFinal->getVertDataArray(derivedFinal, CD_ORCO)) {
curve_calc_orcodm(scene, ob, derivedFinal, forRender);
}
orco= derivedFinal->getVertDataArray(derivedFinal, CD_ORCO);
if(orco) {
orco= MEM_dupallocN(orco);
}
return orco;
}
/* this is confusing, there's also min_max_object, appplying the obmat... */
static void boundbox_displist(Object *ob)
{
BoundBox *bb=NULL;
float min[3], max[3];
DispList *dl;
float *vert;
int a, tot=0;
INIT_MINMAX(min, max);
if(ELEM3(ob->type, OB_CURVE, OB_SURF, OB_FONT)) {
Curve *cu= ob->data;
int doit= 0;
if(cu->bb==NULL) cu->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
bb= cu->bb;
dl= ob->disp.first;
while (dl) {
if(dl->type==DL_INDEX3) tot= dl->nr;
else tot= dl->nr*dl->parts;
vert= dl->verts;
for(a=0; a<tot; a++, vert+=3) {
doit= 1;
DO_MINMAX(vert, min, max);
}
dl= dl->next;
}
if(!doit) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
}
if(bb) {
boundbox_set_from_min_max(bb, min, max);
}
}