This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/operations/COM_GaussianAlphaXBlurOperation.cc

185 lines
5.4 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2011, Blender Foundation.
*/
#include "COM_GaussianAlphaXBlurOperation.h"
namespace blender::compositor {
GaussianAlphaXBlurOperation::GaussianAlphaXBlurOperation()
: GaussianAlphaBlurBaseOperation(eDimension::X)
{
}
void *GaussianAlphaXBlurOperation::initialize_tile_data(rcti * /*rect*/)
{
lock_mutex();
if (!sizeavailable_) {
update_gauss();
}
void *buffer = get_input_operation(0)->initialize_tile_data(nullptr);
unlock_mutex();
return buffer;
}
void GaussianAlphaXBlurOperation::init_execution()
{
GaussianAlphaBlurBaseOperation::init_execution();
init_mutex();
if (sizeavailable_ && execution_model_ == eExecutionModel::Tiled) {
float rad = max_ff(size_ * data_.sizex, 0.0f);
filtersize_ = min_ii(ceil(rad), MAX_GAUSSTAB_RADIUS);
gausstab_ = BlurBaseOperation::make_gausstab(rad, filtersize_);
distbuf_inv_ = BlurBaseOperation::make_dist_fac_inverse(rad, filtersize_, falloff_);
}
}
void GaussianAlphaXBlurOperation::update_gauss()
{
if (gausstab_ == nullptr) {
update_size();
float rad = max_ff(size_ * data_.sizex, 0.0f);
filtersize_ = min_ii(ceil(rad), MAX_GAUSSTAB_RADIUS);
gausstab_ = BlurBaseOperation::make_gausstab(rad, filtersize_);
}
if (distbuf_inv_ == nullptr) {
update_size();
float rad = max_ff(size_ * data_.sizex, 0.0f);
rad = min_ff(rad, MAX_GAUSSTAB_RADIUS);
filtersize_ = min_ii(ceil(rad), MAX_GAUSSTAB_RADIUS);
distbuf_inv_ = BlurBaseOperation::make_dist_fac_inverse(rad, filtersize_, falloff_);
}
}
void GaussianAlphaXBlurOperation::execute_pixel(float output[4], int x, int y, void *data)
{
const bool do_invert = do_subtract_;
MemoryBuffer *input_buffer = (MemoryBuffer *)data;
float *buffer = input_buffer->get_buffer();
int bufferwidth = input_buffer->get_width();
const rcti &input_rect = input_buffer->get_rect();
int bufferstartx = input_rect.xmin;
int bufferstarty = input_rect.ymin;
const rcti &rect = input_buffer->get_rect();
int xmin = max_ii(x - filtersize_, rect.xmin);
int xmax = min_ii(x + filtersize_ + 1, rect.xmax);
int ymin = max_ii(y, rect.ymin);
/* *** this is the main part which is different to 'GaussianXBlurOperation' *** */
int step = get_step();
int bufferindex = ((xmin - bufferstartx)) + ((ymin - bufferstarty) * bufferwidth);
/* gauss */
float alpha_accum = 0.0f;
float multiplier_accum = 0.0f;
/* dilate */
float value_max = finv_test(
buffer[(x) + (y * bufferwidth)],
do_invert); /* init with the current color to avoid unneeded lookups */
float distfacinv_max = 1.0f; /* 0 to 1 */
for (int nx = xmin; nx < xmax; nx += step) {
const int index = (nx - x) + filtersize_;
float value = finv_test(buffer[bufferindex], do_invert);
float multiplier;
/* gauss */
{
multiplier = gausstab_[index];
alpha_accum += value * multiplier;
multiplier_accum += multiplier;
}
/* dilate - find most extreme color */
if (value > value_max) {
multiplier = distbuf_inv_[index];
value *= multiplier;
if (value > value_max) {
value_max = value;
distfacinv_max = multiplier;
}
}
bufferindex += step;
}
/* blend between the max value and gauss blue - gives nice feather */
const float value_blur = alpha_accum / multiplier_accum;
const float value_final = (value_max * distfacinv_max) + (value_blur * (1.0f - distfacinv_max));
output[0] = finv_test(value_final, do_invert);
}
void GaussianAlphaXBlurOperation::deinit_execution()
{
GaussianAlphaBlurBaseOperation::deinit_execution();
if (gausstab_) {
MEM_freeN(gausstab_);
gausstab_ = nullptr;
}
if (distbuf_inv_) {
MEM_freeN(distbuf_inv_);
distbuf_inv_ = nullptr;
}
deinit_mutex();
}
bool GaussianAlphaXBlurOperation::determine_depending_area_of_interest(
rcti *input, ReadBufferOperation *read_operation, rcti *output)
{
rcti new_input;
#if 0 /* until we add size input */
rcti size_input;
size_input.xmin = 0;
size_input.ymin = 0;
size_input.xmax = 5;
size_input.ymax = 5;
NodeOperation *operation = this->get_input_operation(1);
if (operation->determine_depending_area_of_interest(&size_input, read_operation, output)) {
return true;
}
else
#endif
{
if (sizeavailable_ && gausstab_ != nullptr) {
new_input.xmax = input->xmax + filtersize_ + 1;
new_input.xmin = input->xmin - filtersize_ - 1;
new_input.ymax = input->ymax;
new_input.ymin = input->ymin;
}
else {
new_input.xmax = this->get_width();
new_input.xmin = 0;
new_input.ymax = this->get_height();
new_input.ymin = 0;
}
return NodeOperation::determine_depending_area_of_interest(&new_input, read_operation, output);
}
}
} // namespace blender::compositor