562 lines
20 KiB
C++
562 lines
20 KiB
C++
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Copyright 2011, Blender Foundation.
|
|
*/
|
|
|
|
#include "COM_ScaleOperation.h"
|
|
#include "COM_ConstantOperation.h"
|
|
|
|
namespace blender::compositor {
|
|
|
|
#define USE_FORCE_BILINEAR
|
|
/* XXX(campbell): ignore input and use default from old compositor,
|
|
* could become an option like the transform node.
|
|
*
|
|
* NOTE: use bilinear because bicubic makes fuzzy even when not scaling at all (1:1)
|
|
*/
|
|
|
|
BaseScaleOperation::BaseScaleOperation()
|
|
{
|
|
#ifdef USE_FORCE_BILINEAR
|
|
sampler_ = (int)PixelSampler::Bilinear;
|
|
#else
|
|
sampler_ = -1;
|
|
#endif
|
|
variable_size_ = false;
|
|
}
|
|
|
|
void BaseScaleOperation::set_scale_canvas_max_size(Size2f size)
|
|
{
|
|
max_scale_canvas_size_ = size;
|
|
}
|
|
|
|
ScaleOperation::ScaleOperation() : ScaleOperation(DataType::Color)
|
|
{
|
|
}
|
|
|
|
ScaleOperation::ScaleOperation(DataType data_type) : BaseScaleOperation()
|
|
{
|
|
this->add_input_socket(data_type, ResizeMode::None);
|
|
this->add_input_socket(DataType::Value);
|
|
this->add_input_socket(DataType::Value);
|
|
this->add_output_socket(data_type);
|
|
input_operation_ = nullptr;
|
|
input_xoperation_ = nullptr;
|
|
input_yoperation_ = nullptr;
|
|
}
|
|
|
|
float ScaleOperation::get_constant_scale(const int input_op_idx, const float factor)
|
|
{
|
|
const bool is_constant = get_input_operation(input_op_idx)->get_flags().is_constant_operation;
|
|
if (is_constant) {
|
|
return ((ConstantOperation *)get_input_operation(input_op_idx))->get_constant_elem()[0] *
|
|
factor;
|
|
}
|
|
|
|
return 1.0f;
|
|
}
|
|
|
|
float ScaleOperation::get_constant_scale_x(const float width)
|
|
{
|
|
return get_constant_scale(X_INPUT_INDEX, get_relative_scale_x_factor(width));
|
|
}
|
|
|
|
float ScaleOperation::get_constant_scale_y(const float height)
|
|
{
|
|
return get_constant_scale(Y_INPUT_INDEX, get_relative_scale_y_factor(height));
|
|
}
|
|
|
|
bool ScaleOperation::is_scaling_variable()
|
|
{
|
|
return !get_input_operation(X_INPUT_INDEX)->get_flags().is_constant_operation ||
|
|
!get_input_operation(Y_INPUT_INDEX)->get_flags().is_constant_operation;
|
|
}
|
|
|
|
void ScaleOperation::scale_area(rcti &area, float relative_scale_x, float relative_scale_y)
|
|
{
|
|
const rcti src_area = area;
|
|
const float center_x = BLI_rcti_size_x(&area) / 2.0f;
|
|
const float center_y = BLI_rcti_size_y(&area) / 2.0f;
|
|
area.xmin = floorf(scale_coord(area.xmin, center_x, relative_scale_x));
|
|
area.xmax = ceilf(scale_coord(area.xmax, center_x, relative_scale_x));
|
|
area.ymin = floorf(scale_coord(area.ymin, center_y, relative_scale_y));
|
|
area.ymax = ceilf(scale_coord(area.ymax, center_y, relative_scale_y));
|
|
|
|
float scale_offset_x, scale_offset_y;
|
|
ScaleOperation::get_scale_offset(src_area, area, scale_offset_x, scale_offset_y);
|
|
BLI_rcti_translate(&area, -scale_offset_x, -scale_offset_y);
|
|
}
|
|
|
|
void ScaleOperation::clamp_area_size_max(rcti &area, Size2f max_size)
|
|
{
|
|
|
|
if (BLI_rcti_size_x(&area) > max_size.x) {
|
|
area.xmax = area.xmin + max_size.x;
|
|
}
|
|
if (BLI_rcti_size_y(&area) > max_size.y) {
|
|
area.ymax = area.ymin + max_size.y;
|
|
}
|
|
}
|
|
|
|
void ScaleOperation::init_data()
|
|
{
|
|
canvas_center_x_ = canvas_.xmin + get_width() / 2.0f;
|
|
canvas_center_y_ = canvas_.ymin + get_height() / 2.0f;
|
|
}
|
|
|
|
void ScaleOperation::init_execution()
|
|
{
|
|
input_operation_ = this->get_input_socket_reader(0);
|
|
input_xoperation_ = this->get_input_socket_reader(1);
|
|
input_yoperation_ = this->get_input_socket_reader(2);
|
|
}
|
|
|
|
void ScaleOperation::deinit_execution()
|
|
{
|
|
input_operation_ = nullptr;
|
|
input_xoperation_ = nullptr;
|
|
input_yoperation_ = nullptr;
|
|
}
|
|
|
|
void ScaleOperation::get_scale_offset(const rcti &input_canvas,
|
|
const rcti &scale_canvas,
|
|
float &r_scale_offset_x,
|
|
float &r_scale_offset_y)
|
|
{
|
|
r_scale_offset_x = (BLI_rcti_size_x(&input_canvas) - BLI_rcti_size_x(&scale_canvas)) / 2.0f;
|
|
r_scale_offset_y = (BLI_rcti_size_y(&input_canvas) - BLI_rcti_size_y(&scale_canvas)) / 2.0f;
|
|
}
|
|
|
|
void ScaleOperation::get_scale_area_of_interest(const rcti &input_canvas,
|
|
const rcti &scale_canvas,
|
|
const float relative_scale_x,
|
|
const float relative_scale_y,
|
|
const rcti &output_area,
|
|
rcti &r_input_area)
|
|
{
|
|
const float scale_center_x = BLI_rcti_size_x(&input_canvas) / 2.0f;
|
|
const float scale_center_y = BLI_rcti_size_y(&input_canvas) / 2.0f;
|
|
float scale_offset_x, scale_offset_y;
|
|
ScaleOperation::get_scale_offset(input_canvas, scale_canvas, scale_offset_x, scale_offset_y);
|
|
|
|
r_input_area.xmin = floorf(
|
|
scale_coord_inverted(output_area.xmin + scale_offset_x, scale_center_x, relative_scale_x));
|
|
r_input_area.xmax = ceilf(
|
|
scale_coord_inverted(output_area.xmax + scale_offset_x, scale_center_x, relative_scale_x));
|
|
r_input_area.ymin = floorf(
|
|
scale_coord_inverted(output_area.ymin + scale_offset_y, scale_center_y, relative_scale_y));
|
|
r_input_area.ymax = ceilf(
|
|
scale_coord_inverted(output_area.ymax + scale_offset_y, scale_center_y, relative_scale_y));
|
|
}
|
|
|
|
void ScaleOperation::get_area_of_interest(const int input_idx,
|
|
const rcti &output_area,
|
|
rcti &r_input_area)
|
|
{
|
|
r_input_area = output_area;
|
|
if (input_idx != 0 || is_scaling_variable()) {
|
|
return;
|
|
}
|
|
|
|
NodeOperation *image_op = get_input_operation(IMAGE_INPUT_INDEX);
|
|
const float scale_x = get_constant_scale_x(image_op->get_width());
|
|
const float scale_y = get_constant_scale_y(image_op->get_height());
|
|
|
|
get_scale_area_of_interest(
|
|
image_op->get_canvas(), this->get_canvas(), scale_x, scale_y, output_area, r_input_area);
|
|
expand_area_for_sampler(r_input_area, (PixelSampler)sampler_);
|
|
}
|
|
|
|
void ScaleOperation::update_memory_buffer_partial(MemoryBuffer *output,
|
|
const rcti &area,
|
|
Span<MemoryBuffer *> inputs)
|
|
{
|
|
NodeOperation *input_image_op = get_input_operation(IMAGE_INPUT_INDEX);
|
|
const int input_image_width = input_image_op->get_width();
|
|
const int input_image_height = input_image_op->get_height();
|
|
const float scale_x_factor = get_relative_scale_x_factor(input_image_width);
|
|
const float scale_y_factor = get_relative_scale_y_factor(input_image_height);
|
|
const float scale_center_x = input_image_width / 2.0f;
|
|
const float scale_center_y = input_image_height / 2.0f;
|
|
float from_scale_offset_x, from_scale_offset_y;
|
|
ScaleOperation::get_scale_offset(
|
|
input_image_op->get_canvas(), this->get_canvas(), from_scale_offset_x, from_scale_offset_y);
|
|
|
|
const MemoryBuffer *input_image = inputs[IMAGE_INPUT_INDEX];
|
|
MemoryBuffer *input_x = inputs[X_INPUT_INDEX];
|
|
MemoryBuffer *input_y = inputs[Y_INPUT_INDEX];
|
|
BuffersIterator<float> it = output->iterate_with({input_x, input_y}, area);
|
|
for (; !it.is_end(); ++it) {
|
|
const float rel_scale_x = *it.in(0) * scale_x_factor;
|
|
const float rel_scale_y = *it.in(1) * scale_y_factor;
|
|
const float scaled_x = scale_coord_inverted(
|
|
from_scale_offset_x + canvas_.xmin + it.x, scale_center_x, rel_scale_x);
|
|
const float scaled_y = scale_coord_inverted(
|
|
from_scale_offset_y + canvas_.ymin + it.y, scale_center_y, rel_scale_y);
|
|
|
|
input_image->read_elem_sampled(
|
|
scaled_x - canvas_.xmin, scaled_y - canvas_.ymin, (PixelSampler)sampler_, it.out);
|
|
}
|
|
}
|
|
|
|
void ScaleOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
|
|
{
|
|
if (execution_model_ == eExecutionModel::Tiled) {
|
|
NodeOperation::determine_canvas(preferred_area, r_area);
|
|
return;
|
|
}
|
|
|
|
const bool image_determined =
|
|
get_input_socket(IMAGE_INPUT_INDEX)->determine_canvas(preferred_area, r_area);
|
|
if (image_determined) {
|
|
rcti image_canvas = r_area;
|
|
rcti unused = COM_AREA_NONE;
|
|
NodeOperationInput *x_socket = get_input_socket(X_INPUT_INDEX);
|
|
NodeOperationInput *y_socket = get_input_socket(Y_INPUT_INDEX);
|
|
x_socket->determine_canvas(image_canvas, unused);
|
|
y_socket->determine_canvas(image_canvas, unused);
|
|
if (is_scaling_variable()) {
|
|
/* Do not scale canvas. */
|
|
return;
|
|
}
|
|
|
|
/* Determine scaled canvas. */
|
|
const float input_width = BLI_rcti_size_x(&r_area);
|
|
const float input_height = BLI_rcti_size_y(&r_area);
|
|
const float scale_x = get_constant_scale_x(input_width);
|
|
const float scale_y = get_constant_scale_y(input_height);
|
|
scale_area(r_area, scale_x, scale_y);
|
|
const Size2f max_scale_size = {MAX2(input_width, max_scale_canvas_size_.x),
|
|
MAX2(input_height, max_scale_canvas_size_.y)};
|
|
clamp_area_size_max(r_area, max_scale_size);
|
|
|
|
/* Re-determine canvases of x and y constant inputs with scaled canvas as preferred. */
|
|
get_input_operation(X_INPUT_INDEX)->unset_canvas();
|
|
get_input_operation(Y_INPUT_INDEX)->unset_canvas();
|
|
x_socket->determine_canvas(r_area, unused);
|
|
y_socket->determine_canvas(r_area, unused);
|
|
}
|
|
}
|
|
|
|
ScaleRelativeOperation::ScaleRelativeOperation() : ScaleOperation()
|
|
{
|
|
}
|
|
|
|
ScaleRelativeOperation::ScaleRelativeOperation(DataType data_type) : ScaleOperation(data_type)
|
|
{
|
|
}
|
|
|
|
void ScaleRelativeOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
PixelSampler effective_sampler = get_effective_sampler(sampler);
|
|
|
|
float scaleX[4];
|
|
float scaleY[4];
|
|
|
|
input_xoperation_->read_sampled(scaleX, x, y, effective_sampler);
|
|
input_yoperation_->read_sampled(scaleY, x, y, effective_sampler);
|
|
|
|
const float scx = scaleX[0];
|
|
const float scy = scaleY[0];
|
|
|
|
float nx = this->canvas_center_x_ + (x - this->canvas_center_x_) / scx;
|
|
float ny = this->canvas_center_y_ + (y - this->canvas_center_y_) / scy;
|
|
input_operation_->read_sampled(output, nx, ny, effective_sampler);
|
|
}
|
|
|
|
bool ScaleRelativeOperation::determine_depending_area_of_interest(
|
|
rcti *input, ReadBufferOperation *read_operation, rcti *output)
|
|
{
|
|
rcti new_input;
|
|
if (!variable_size_) {
|
|
float scaleX[4];
|
|
float scaleY[4];
|
|
|
|
input_xoperation_->read_sampled(scaleX, 0, 0, PixelSampler::Nearest);
|
|
input_yoperation_->read_sampled(scaleY, 0, 0, PixelSampler::Nearest);
|
|
|
|
const float scx = scaleX[0];
|
|
const float scy = scaleY[0];
|
|
|
|
new_input.xmax = this->canvas_center_x_ + (input->xmax - this->canvas_center_x_) / scx + 1;
|
|
new_input.xmin = this->canvas_center_x_ + (input->xmin - this->canvas_center_x_) / scx - 1;
|
|
new_input.ymax = this->canvas_center_y_ + (input->ymax - this->canvas_center_y_) / scy + 1;
|
|
new_input.ymin = this->canvas_center_y_ + (input->ymin - this->canvas_center_y_) / scy - 1;
|
|
}
|
|
else {
|
|
new_input.xmax = this->get_width();
|
|
new_input.xmin = 0;
|
|
new_input.ymax = this->get_height();
|
|
new_input.ymin = 0;
|
|
}
|
|
return BaseScaleOperation::determine_depending_area_of_interest(
|
|
&new_input, read_operation, output);
|
|
}
|
|
|
|
void ScaleAbsoluteOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
PixelSampler effective_sampler = get_effective_sampler(sampler);
|
|
|
|
float scaleX[4];
|
|
float scaleY[4];
|
|
|
|
input_xoperation_->read_sampled(scaleX, x, y, effective_sampler);
|
|
input_yoperation_->read_sampled(scaleY, x, y, effective_sampler);
|
|
|
|
const float scx = scaleX[0]; /* Target absolute scale. */
|
|
const float scy = scaleY[0]; /* Target absolute scale. */
|
|
|
|
const float width = this->get_width();
|
|
const float height = this->get_height();
|
|
/* Divide. */
|
|
float relative_xscale = scx / width;
|
|
float relative_yscale = scy / height;
|
|
|
|
float nx = this->canvas_center_x_ + (x - this->canvas_center_x_) / relative_xscale;
|
|
float ny = this->canvas_center_y_ + (y - this->canvas_center_y_) / relative_yscale;
|
|
|
|
input_operation_->read_sampled(output, nx, ny, effective_sampler);
|
|
}
|
|
|
|
bool ScaleAbsoluteOperation::determine_depending_area_of_interest(
|
|
rcti *input, ReadBufferOperation *read_operation, rcti *output)
|
|
{
|
|
rcti new_input;
|
|
if (!variable_size_) {
|
|
float scaleX[4];
|
|
float scaleY[4];
|
|
|
|
input_xoperation_->read_sampled(scaleX, 0, 0, PixelSampler::Nearest);
|
|
input_yoperation_->read_sampled(scaleY, 0, 0, PixelSampler::Nearest);
|
|
|
|
const float scx = scaleX[0];
|
|
const float scy = scaleY[0];
|
|
const float width = this->get_width();
|
|
const float height = this->get_height();
|
|
/* Divide. */
|
|
float relateve_xscale = scx / width;
|
|
float relateve_yscale = scy / height;
|
|
|
|
new_input.xmax = this->canvas_center_x_ +
|
|
(input->xmax - this->canvas_center_x_) / relateve_xscale;
|
|
new_input.xmin = this->canvas_center_x_ +
|
|
(input->xmin - this->canvas_center_x_) / relateve_xscale;
|
|
new_input.ymax = this->canvas_center_y_ +
|
|
(input->ymax - this->canvas_center_y_) / relateve_yscale;
|
|
new_input.ymin = this->canvas_center_y_ +
|
|
(input->ymin - this->canvas_center_y_) / relateve_yscale;
|
|
}
|
|
else {
|
|
new_input.xmax = this->get_width();
|
|
new_input.xmin = 0;
|
|
new_input.ymax = this->get_height();
|
|
new_input.ymin = 0;
|
|
}
|
|
return ScaleOperation::determine_depending_area_of_interest(&new_input, read_operation, output);
|
|
}
|
|
|
|
ScaleFixedSizeOperation::ScaleFixedSizeOperation() : BaseScaleOperation()
|
|
{
|
|
this->add_input_socket(DataType::Color, ResizeMode::None);
|
|
this->add_output_socket(DataType::Color);
|
|
this->set_canvas_input_index(0);
|
|
input_operation_ = nullptr;
|
|
is_offset_ = false;
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::init_data(const rcti &input_canvas)
|
|
{
|
|
const int input_width = BLI_rcti_size_x(&input_canvas);
|
|
const int input_height = BLI_rcti_size_y(&input_canvas);
|
|
rel_x_ = input_width / (float)new_width_;
|
|
rel_y_ = input_height / (float)new_height_;
|
|
|
|
/* *** all the options below are for a fairly special case - camera framing *** */
|
|
if (offset_x_ != 0.0f || offset_y_ != 0.0f) {
|
|
is_offset_ = true;
|
|
|
|
if (new_width_ > new_height_) {
|
|
offset_x_ *= new_width_;
|
|
offset_y_ *= new_width_;
|
|
}
|
|
else {
|
|
offset_x_ *= new_height_;
|
|
offset_y_ *= new_height_;
|
|
}
|
|
}
|
|
|
|
if (is_aspect_) {
|
|
/* apply aspect from clip */
|
|
const float w_src = input_width;
|
|
const float h_src = input_height;
|
|
|
|
/* destination aspect is already applied from the camera frame */
|
|
const float w_dst = new_width_;
|
|
const float h_dst = new_height_;
|
|
|
|
const float asp_src = w_src / h_src;
|
|
const float asp_dst = w_dst / h_dst;
|
|
|
|
if (fabsf(asp_src - asp_dst) >= FLT_EPSILON) {
|
|
if ((asp_src > asp_dst) == (is_crop_ == true)) {
|
|
/* fit X */
|
|
const float div = asp_src / asp_dst;
|
|
rel_x_ /= div;
|
|
offset_x_ += ((w_src - (w_src * div)) / (w_src / w_dst)) / 2.0f;
|
|
if (is_crop_ && execution_model_ == eExecutionModel::FullFrame) {
|
|
int fit_width = new_width_ * div;
|
|
if (fit_width > max_scale_canvas_size_.x) {
|
|
fit_width = max_scale_canvas_size_.x;
|
|
}
|
|
|
|
const int added_width = fit_width - new_width_;
|
|
new_width_ += added_width;
|
|
offset_x_ += added_width / 2.0f;
|
|
}
|
|
}
|
|
else {
|
|
/* fit Y */
|
|
const float div = asp_dst / asp_src;
|
|
rel_y_ /= div;
|
|
offset_y_ += ((h_src - (h_src * div)) / (h_src / h_dst)) / 2.0f;
|
|
if (is_crop_ && execution_model_ == eExecutionModel::FullFrame) {
|
|
int fit_height = new_height_ * div;
|
|
if (fit_height > max_scale_canvas_size_.y) {
|
|
fit_height = max_scale_canvas_size_.y;
|
|
}
|
|
|
|
const int added_height = fit_height - new_height_;
|
|
new_height_ += added_height;
|
|
offset_y_ += added_height / 2.0f;
|
|
}
|
|
}
|
|
|
|
is_offset_ = true;
|
|
}
|
|
}
|
|
/* *** end framing options *** */
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::init_execution()
|
|
{
|
|
input_operation_ = this->get_input_socket_reader(0);
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::deinit_execution()
|
|
{
|
|
input_operation_ = nullptr;
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
PixelSampler effective_sampler = get_effective_sampler(sampler);
|
|
|
|
if (is_offset_) {
|
|
float nx = ((x - offset_x_) * rel_x_);
|
|
float ny = ((y - offset_y_) * rel_y_);
|
|
input_operation_->read_sampled(output, nx, ny, effective_sampler);
|
|
}
|
|
else {
|
|
input_operation_->read_sampled(output, x * rel_x_, y * rel_y_, effective_sampler);
|
|
}
|
|
}
|
|
|
|
bool ScaleFixedSizeOperation::determine_depending_area_of_interest(
|
|
rcti *input, ReadBufferOperation *read_operation, rcti *output)
|
|
{
|
|
rcti new_input;
|
|
|
|
new_input.xmax = (input->xmax - offset_x_) * rel_x_ + 1;
|
|
new_input.xmin = (input->xmin - offset_x_) * rel_x_;
|
|
new_input.ymax = (input->ymax - offset_y_) * rel_y_ + 1;
|
|
new_input.ymin = (input->ymin - offset_y_) * rel_y_;
|
|
|
|
return BaseScaleOperation::determine_depending_area_of_interest(
|
|
&new_input, read_operation, output);
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
|
|
{
|
|
rcti local_preferred = preferred_area;
|
|
local_preferred.xmax = local_preferred.xmin + new_width_;
|
|
local_preferred.ymax = local_preferred.ymin + new_height_;
|
|
rcti input_canvas = COM_AREA_NONE;
|
|
const bool input_determined = get_input_socket(0)->determine_canvas(local_preferred,
|
|
input_canvas);
|
|
if (input_determined) {
|
|
init_data(input_canvas);
|
|
r_area = input_canvas;
|
|
if (execution_model_ == eExecutionModel::FullFrame) {
|
|
r_area.xmin /= rel_x_;
|
|
r_area.ymin /= rel_y_;
|
|
r_area.xmin += offset_x_;
|
|
r_area.ymin += offset_y_;
|
|
}
|
|
|
|
r_area.xmax = r_area.xmin + new_width_;
|
|
r_area.ymax = r_area.ymin + new_height_;
|
|
}
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::get_area_of_interest(const int input_idx,
|
|
const rcti &output_area,
|
|
rcti &r_input_area)
|
|
{
|
|
BLI_assert(input_idx == 0);
|
|
UNUSED_VARS_NDEBUG(input_idx);
|
|
|
|
r_input_area.xmax = ceilf((output_area.xmax - offset_x_) * rel_x_);
|
|
r_input_area.xmin = floorf((output_area.xmin - offset_x_) * rel_x_);
|
|
r_input_area.ymax = ceilf((output_area.ymax - offset_y_) * rel_y_);
|
|
r_input_area.ymin = floorf((output_area.ymin - offset_y_) * rel_y_);
|
|
expand_area_for_sampler(r_input_area, (PixelSampler)sampler_);
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::update_memory_buffer_partial(MemoryBuffer *output,
|
|
const rcti &area,
|
|
Span<MemoryBuffer *> inputs)
|
|
{
|
|
const MemoryBuffer *input_img = inputs[0];
|
|
PixelSampler sampler = (PixelSampler)sampler_;
|
|
BuffersIterator<float> it = output->iterate_with({}, area);
|
|
if (is_offset_) {
|
|
for (; !it.is_end(); ++it) {
|
|
const float nx = (canvas_.xmin + it.x - offset_x_) * rel_x_;
|
|
const float ny = (canvas_.ymin + it.y - offset_y_) * rel_y_;
|
|
input_img->read_elem_sampled(nx - canvas_.xmin, ny - canvas_.ymin, sampler, it.out);
|
|
}
|
|
}
|
|
else {
|
|
for (; !it.is_end(); ++it) {
|
|
input_img->read_elem_sampled((canvas_.xmin + it.x) * rel_x_ - canvas_.xmin,
|
|
(canvas_.ymin + it.y) * rel_y_ - canvas_.ymin,
|
|
sampler,
|
|
it.out);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace blender::compositor
|