This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/release/scripts/startup/bl_operators/object_align.py
Campbell Barton 59a7095f79 Cleanup: use consistent copyright location, move descriptions
Order copyright immediately after the license block,
this was done almost everywhere with a few exceptions.

Remove authors from a few files (we had already removed "Contributors"
section however with old patches being applied this gets added back in).

Also move descriptive text into the doxygen comment block under \file.
In some cases remove the text as it was accidentally copied.
2022-02-09 16:00:16 +11:00

431 lines
12 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8-80 compliant>
from bpy.types import Operator
from mathutils import Vector
def worldspace_bounds_from_object_bounds(bb_world):
# Initialize the variables with the 8th vertex
left, right, front, back, down, up = (
bb_world[7][0],
bb_world[7][0],
bb_world[7][1],
bb_world[7][1],
bb_world[7][2],
bb_world[7][2],
)
# Test against the other 7 verts
for i in range(7):
# X Range
val = bb_world[i][0]
if val < left:
left = val
if val > right:
right = val
# Y Range
val = bb_world[i][1]
if val < front:
front = val
if val > back:
back = val
# Z Range
val = bb_world[i][2]
if val < down:
down = val
if val > up:
up = val
return (Vector((left, front, up)), Vector((right, back, down)))
def worldspace_bounds_from_object_data(depsgraph, obj):
matrix_world = obj.matrix_world.copy()
# Initialize the variables with the last vertex
ob_eval = obj.evaluated_get(depsgraph)
me = ob_eval.to_mesh()
verts = me.vertices
val = matrix_world @ (verts[-1].co if verts else Vector((0.0, 0.0, 0.0)))
left, right, front, back, down, up = (
val[0],
val[0],
val[1],
val[1],
val[2],
val[2],
)
# Test against all other verts
for v in verts:
vco = matrix_world @ v.co
# X Range
val = vco[0]
if val < left:
left = val
if val > right:
right = val
# Y Range
val = vco[1]
if val < front:
front = val
if val > back:
back = val
# Z Range
val = vco[2]
if val < down:
down = val
if val > up:
up = val
ob_eval.to_mesh_clear()
return Vector((left, front, up)), Vector((right, back, down))
def align_objects(context,
align_x,
align_y,
align_z,
align_mode,
relative_to,
bb_quality):
depsgraph = context.evaluated_depsgraph_get()
scene = context.scene
cursor = scene.cursor.location
# We are accessing runtime data such as evaluated bounding box, so we need to
# be sure it is properly updated and valid (bounding box might be lost on operator
# redo).
context.view_layer.update()
Left_Front_Up_SEL = [0.0, 0.0, 0.0]
Right_Back_Down_SEL = [0.0, 0.0, 0.0]
flag_first = True
objects = []
for obj in context.selected_objects:
matrix_world = obj.matrix_world.copy()
bb_world = [matrix_world @ Vector(v) for v in obj.bound_box]
objects.append((obj, bb_world))
if not objects:
return False
for obj, bb_world in objects:
if bb_quality and obj.type == 'MESH':
GBB = worldspace_bounds_from_object_data(depsgraph, obj)
else:
GBB = worldspace_bounds_from_object_bounds(bb_world)
Left_Front_Up = GBB[0]
Right_Back_Down = GBB[1]
# Active Center
if obj == context.active_object:
center_active_x = (Left_Front_Up[0] + Right_Back_Down[0]) / 2.0
center_active_y = (Left_Front_Up[1] + Right_Back_Down[1]) / 2.0
center_active_z = (Left_Front_Up[2] + Right_Back_Down[2]) / 2.0
size_active_x = (Right_Back_Down[0] - Left_Front_Up[0]) / 2.0
size_active_y = (Right_Back_Down[1] - Left_Front_Up[1]) / 2.0
size_active_z = (Left_Front_Up[2] - Right_Back_Down[2]) / 2.0
# Selection Center
if flag_first:
flag_first = False
Left_Front_Up_SEL[0] = Left_Front_Up[0]
Left_Front_Up_SEL[1] = Left_Front_Up[1]
Left_Front_Up_SEL[2] = Left_Front_Up[2]
Right_Back_Down_SEL[0] = Right_Back_Down[0]
Right_Back_Down_SEL[1] = Right_Back_Down[1]
Right_Back_Down_SEL[2] = Right_Back_Down[2]
else:
# X axis
if Left_Front_Up[0] < Left_Front_Up_SEL[0]:
Left_Front_Up_SEL[0] = Left_Front_Up[0]
# Y axis
if Left_Front_Up[1] < Left_Front_Up_SEL[1]:
Left_Front_Up_SEL[1] = Left_Front_Up[1]
# Z axis
if Left_Front_Up[2] > Left_Front_Up_SEL[2]:
Left_Front_Up_SEL[2] = Left_Front_Up[2]
# X axis
if Right_Back_Down[0] > Right_Back_Down_SEL[0]:
Right_Back_Down_SEL[0] = Right_Back_Down[0]
# Y axis
if Right_Back_Down[1] > Right_Back_Down_SEL[1]:
Right_Back_Down_SEL[1] = Right_Back_Down[1]
# Z axis
if Right_Back_Down[2] < Right_Back_Down_SEL[2]:
Right_Back_Down_SEL[2] = Right_Back_Down[2]
center_sel_x = (Left_Front_Up_SEL[0] + Right_Back_Down_SEL[0]) / 2.0
center_sel_y = (Left_Front_Up_SEL[1] + Right_Back_Down_SEL[1]) / 2.0
center_sel_z = (Left_Front_Up_SEL[2] + Right_Back_Down_SEL[2]) / 2.0
# Main Loop
for obj, bb_world in objects:
matrix_world = obj.matrix_world.copy()
bb_world = [matrix_world @ Vector(v[:]) for v in obj.bound_box]
if bb_quality and obj.type == 'MESH':
GBB = worldspace_bounds_from_object_data(depsgraph, obj)
else:
GBB = worldspace_bounds_from_object_bounds(bb_world)
Left_Front_Up = GBB[0]
Right_Back_Down = GBB[1]
center_x = (Left_Front_Up[0] + Right_Back_Down[0]) / 2.0
center_y = (Left_Front_Up[1] + Right_Back_Down[1]) / 2.0
center_z = (Left_Front_Up[2] + Right_Back_Down[2]) / 2.0
positive_x = Right_Back_Down[0]
positive_y = Right_Back_Down[1]
positive_z = Left_Front_Up[2]
negative_x = Left_Front_Up[0]
negative_y = Left_Front_Up[1]
negative_z = Right_Back_Down[2]
obj_loc = obj.location
if align_x:
# Align Mode
if relative_to == 'OPT_4': # Active relative
if align_mode == 'OPT_1':
obj_x = obj_loc[0] - negative_x - size_active_x
elif align_mode == 'OPT_3':
obj_x = obj_loc[0] - positive_x + size_active_x
else: # Everything else relative
if align_mode == 'OPT_1':
obj_x = obj_loc[0] - negative_x
elif align_mode == 'OPT_3':
obj_x = obj_loc[0] - positive_x
if align_mode == 'OPT_2': # All relative
obj_x = obj_loc[0] - center_x
# Relative To
if relative_to == 'OPT_1':
loc_x = obj_x
elif relative_to == 'OPT_2':
loc_x = obj_x + cursor[0]
elif relative_to == 'OPT_3':
loc_x = obj_x + center_sel_x
elif relative_to == 'OPT_4':
loc_x = obj_x + center_active_x
obj.location[0] = loc_x
if align_y:
# Align Mode
if relative_to == 'OPT_4': # Active relative
if align_mode == 'OPT_1':
obj_y = obj_loc[1] - negative_y - size_active_y
elif align_mode == 'OPT_3':
obj_y = obj_loc[1] - positive_y + size_active_y
else: # Everything else relative
if align_mode == 'OPT_1':
obj_y = obj_loc[1] - negative_y
elif align_mode == 'OPT_3':
obj_y = obj_loc[1] - positive_y
if align_mode == 'OPT_2': # All relative
obj_y = obj_loc[1] - center_y
# Relative To
if relative_to == 'OPT_1':
loc_y = obj_y
elif relative_to == 'OPT_2':
loc_y = obj_y + cursor[1]
elif relative_to == 'OPT_3':
loc_y = obj_y + center_sel_y
elif relative_to == 'OPT_4':
loc_y = obj_y + center_active_y
obj.location[1] = loc_y
if align_z:
# Align Mode
if relative_to == 'OPT_4': # Active relative
if align_mode == 'OPT_1':
obj_z = obj_loc[2] - negative_z - size_active_z
elif align_mode == 'OPT_3':
obj_z = obj_loc[2] - positive_z + size_active_z
else: # Everything else relative
if align_mode == 'OPT_1':
obj_z = obj_loc[2] - negative_z
elif align_mode == 'OPT_3':
obj_z = obj_loc[2] - positive_z
if align_mode == 'OPT_2': # All relative
obj_z = obj_loc[2] - center_z
# Relative To
if relative_to == 'OPT_1':
loc_z = obj_z
elif relative_to == 'OPT_2':
loc_z = obj_z + cursor[2]
elif relative_to == 'OPT_3':
loc_z = obj_z + center_sel_z
elif relative_to == 'OPT_4':
loc_z = obj_z + center_active_z
obj.location[2] = loc_z
return True
from bpy.props import (
BoolProperty,
EnumProperty,
)
class AlignObjects(Operator):
"""Align objects"""
bl_idname = "object.align"
bl_label = "Align Objects"
bl_options = {'REGISTER', 'UNDO'}
bb_quality: BoolProperty(
name="High Quality",
description=(
"Enables high quality but slow calculation of the "
"bounding box for perfect results on complex "
"shape meshes with rotation/scale"
),
default=True,
)
align_mode: EnumProperty(
name="Align Mode",
description="Side of object to use for alignment",
items=(
('OPT_1', "Negative Sides", ""),
('OPT_2', "Centers", ""),
('OPT_3', "Positive Sides", ""),
),
default='OPT_2',
)
relative_to: EnumProperty(
name="Relative To",
description="Reference location to align to",
items=(
('OPT_1', "Scene Origin", "Use the scene origin as the position for the selected objects to align to"),
('OPT_2', "3D Cursor", "Use the 3D cursor as the position for the selected objects to align to"),
('OPT_3', "Selection", "Use the selected objects as the position for the selected objects to align to"),
('OPT_4', "Active", "Use the active object as the position for the selected objects to align to"),
),
default='OPT_4',
)
align_axis: EnumProperty(
name="Align",
description="Align to axis",
items=(
('X', "X", ""),
('Y', "Y", ""),
('Z', "Z", ""),
),
options={'ENUM_FLAG'},
)
@classmethod
def poll(cls, context):
return context.mode == 'OBJECT'
def execute(self, context):
align_axis = self.align_axis
ret = align_objects(
context,
'X' in align_axis,
'Y' in align_axis,
'Z' in align_axis,
self.align_mode,
self.relative_to,
self.bb_quality,
)
if not ret:
self.report({'WARNING'}, "No objects with bound-box selected")
return {'CANCELLED'}
else:
return {'FINISHED'}
classes = (
AlignObjects,
)