Required by Metal backend for efficient shader compilation. EEVEE material resource binding permutations now controlled via CreateInfo and selected based on material options. Other existing CreateInfo's also modified to ensure explicitness for depth-writing mode. Other missing bindings also addressed to ensure full compliance with the Metal backend. Authored by Apple: Michael Parkin-White Ref T96261 Reviewed By: fclem Differential Revision: https://developer.blender.org/D16243
227 lines
7.8 KiB
GLSL
227 lines
7.8 KiB
GLSL
|
|
#pragma BLENDER_REQUIRE(common_view_lib.glsl)
|
|
#pragma BLENDER_REQUIRE(common_math_lib.glsl)
|
|
#pragma BLENDER_REQUIRE(common_uniforms_lib.glsl)
|
|
|
|
/**
|
|
* Screen-Space Raytracing functions.
|
|
*/
|
|
|
|
struct Ray {
|
|
vec3 origin;
|
|
/* Ray direction premultiplied by its maximum length. */
|
|
vec3 direction;
|
|
};
|
|
|
|
/* Inputs expected to be in viewspace. */
|
|
void raytrace_clip_ray_to_near_plane(inout Ray ray)
|
|
{
|
|
float near_dist = get_view_z_from_depth(0.0);
|
|
if ((ray.origin.z + ray.direction.z) > near_dist) {
|
|
ray.direction *= abs((near_dist - ray.origin.z) / ray.direction.z);
|
|
}
|
|
}
|
|
|
|
/* Screenspace ray ([0..1] "uv" range) where direction is normalize to be as small as one
|
|
* full-resolution pixel. The ray is also clipped to all frustum sides.
|
|
*/
|
|
struct ScreenSpaceRay {
|
|
vec4 origin;
|
|
vec4 direction;
|
|
float max_time;
|
|
};
|
|
|
|
void raytrace_screenspace_ray_finalize(inout ScreenSpaceRay ray)
|
|
{
|
|
/* Constant bias (due to depth buffer precision). Helps with self intersection. */
|
|
/* Magic numbers for 24bits of precision.
|
|
* From http://terathon.com/gdc07_lengyel.pdf (slide 26) */
|
|
const float bias = -2.4e-7 * 2.0;
|
|
ray.origin.zw += bias;
|
|
ray.direction.zw += bias;
|
|
|
|
ray.direction -= ray.origin;
|
|
/* If the line is degenerate, make it cover at least one pixel
|
|
* to not have to handle zero-pixel extent as a special case later */
|
|
if (len_squared(ray.direction.xy) < 0.00001) {
|
|
ray.direction.xy = vec2(0.0, 0.00001);
|
|
}
|
|
float ray_len_sqr = len_squared(ray.direction.xyz);
|
|
/* Make ray.direction cover one pixel. */
|
|
bool is_more_vertical = abs(ray.direction.x / ssrPixelSize.x) <
|
|
abs(ray.direction.y / ssrPixelSize.y);
|
|
ray.direction /= (is_more_vertical) ? abs(ray.direction.y) : abs(ray.direction.x);
|
|
ray.direction *= (is_more_vertical) ? ssrPixelSize.y : ssrPixelSize.x;
|
|
/* Clip to segment's end. */
|
|
ray.max_time = sqrt(ray_len_sqr * safe_rcp(len_squared(ray.direction.xyz)));
|
|
/* Clipping to frustum sides. */
|
|
float clip_dist = line_unit_box_intersect_dist_safe(ray.origin.xyz, ray.direction.xyz);
|
|
ray.max_time = min(ray.max_time, clip_dist);
|
|
/* Convert to texture coords [0..1] range. */
|
|
ray.origin = ray.origin * 0.5 + 0.5;
|
|
ray.direction *= 0.5;
|
|
}
|
|
|
|
ScreenSpaceRay raytrace_screenspace_ray_create(Ray ray)
|
|
{
|
|
ScreenSpaceRay ssray;
|
|
ssray.origin.xyz = project_point(ProjectionMatrix, ray.origin);
|
|
ssray.direction.xyz = project_point(ProjectionMatrix, ray.origin + ray.direction);
|
|
|
|
raytrace_screenspace_ray_finalize(ssray);
|
|
return ssray;
|
|
}
|
|
|
|
ScreenSpaceRay raytrace_screenspace_ray_create(Ray ray, float thickness)
|
|
{
|
|
ScreenSpaceRay ssray;
|
|
ssray.origin.xyz = project_point(ProjectionMatrix, ray.origin);
|
|
ssray.direction.xyz = project_point(ProjectionMatrix, ray.origin + ray.direction);
|
|
/* Interpolate thickness in screen space.
|
|
* Calculate thickness further away to avoid near plane clipping issues. */
|
|
ssray.origin.w = get_depth_from_view_z(ray.origin.z - thickness) * 2.0 - 1.0;
|
|
ssray.direction.w = get_depth_from_view_z(ray.origin.z + ray.direction.z - thickness) * 2.0 -
|
|
1.0;
|
|
|
|
raytrace_screenspace_ray_finalize(ssray);
|
|
return ssray;
|
|
}
|
|
|
|
struct RayTraceParameters {
|
|
/** ViewSpace thickness the objects. */
|
|
float thickness;
|
|
/** Jitter along the ray to avoid banding artifact when steps are too large. */
|
|
float jitter;
|
|
/** Determine how fast the sample steps are getting bigger. */
|
|
float trace_quality;
|
|
/** Determine how we can use lower depth mipmaps to make the tracing faster. */
|
|
float roughness;
|
|
};
|
|
|
|
/* Returns true on hit. */
|
|
/* TODO(fclem): remove the back-face check and do it the SSR resolve code. */
|
|
bool raytrace(Ray ray,
|
|
RayTraceParameters params,
|
|
const bool discard_backface,
|
|
const bool allow_self_intersection,
|
|
out vec3 hit_position)
|
|
{
|
|
/* Clip to near plane for perspective view where there is a singularity at the camera origin. */
|
|
if (ProjectionMatrix[3][3] == 0.0) {
|
|
raytrace_clip_ray_to_near_plane(ray);
|
|
}
|
|
|
|
ScreenSpaceRay ssray = raytrace_screenspace_ray_create(ray, params.thickness);
|
|
/* Avoid no iteration. */
|
|
if (!allow_self_intersection && ssray.max_time < 1.1) {
|
|
hit_position = ssray.origin.xyz + ssray.direction.xyz;
|
|
return false;
|
|
}
|
|
|
|
ssray.max_time = max(1.1, ssray.max_time);
|
|
|
|
float prev_delta = 0.0, prev_time = 0.0;
|
|
float depth_sample = get_depth_from_view_z(ray.origin.z);
|
|
float delta = depth_sample - ssray.origin.z;
|
|
|
|
float lod_fac = saturate(fast_sqrt(params.roughness) * 2.0 - 0.4);
|
|
|
|
/* Cross at least one pixel. */
|
|
float t = 1.001, time = 1.001;
|
|
bool hit = false;
|
|
const float max_steps = 255.0;
|
|
for (float iter = 1.0; !hit && (time < ssray.max_time) && (iter < max_steps); iter++) {
|
|
float stride = 1.0 + iter * params.trace_quality;
|
|
float lod = log2(stride) * lod_fac;
|
|
|
|
prev_time = time;
|
|
prev_delta = delta;
|
|
|
|
time = min(t + stride * params.jitter, ssray.max_time);
|
|
t += stride;
|
|
|
|
vec4 ss_p = ssray.origin + ssray.direction * time;
|
|
depth_sample = textureLod(maxzBuffer, ss_p.xy * hizUvScale.xy, floor(lod)).r;
|
|
|
|
delta = depth_sample - ss_p.z;
|
|
/* Check if the ray is below the surface ... */
|
|
hit = (delta < 0.0);
|
|
/* ... and above it with the added thickness. */
|
|
hit = hit && (delta > ss_p.z - ss_p.w || abs(delta) < abs(ssray.direction.z * stride * 2.0));
|
|
}
|
|
/* Discard back-face hits. */
|
|
hit = hit && !(discard_backface && prev_delta < 0.0);
|
|
/* Reject hit if background. */
|
|
hit = hit && (depth_sample != 1.0);
|
|
/* Refine hit using intersection between the sampled heightfield and the ray.
|
|
* This simplifies nicely to this single line. */
|
|
time = mix(prev_time, time, saturate(prev_delta / (prev_delta - delta)));
|
|
|
|
hit_position = ssray.origin.xyz + ssray.direction.xyz * time;
|
|
|
|
return hit;
|
|
}
|
|
|
|
bool raytrace_planar(Ray ray, RayTraceParameters params, int planar_ref_id, out vec3 hit_position)
|
|
{
|
|
/* Clip to near plane for perspective view where there is a singularity at the camera origin. */
|
|
if (ProjectionMatrix[3][3] == 0.0) {
|
|
raytrace_clip_ray_to_near_plane(ray);
|
|
}
|
|
|
|
ScreenSpaceRay ssray = raytrace_screenspace_ray_create(ray);
|
|
|
|
/* Planar Reflections have X mirrored. */
|
|
ssray.origin.x = 1.0 - ssray.origin.x;
|
|
ssray.direction.x = -ssray.direction.x;
|
|
|
|
float prev_delta = 0.0, prev_time = 0.0;
|
|
float depth_sample = texture(planarDepth, vec3(ssray.origin.xy, planar_ref_id)).r;
|
|
float delta = depth_sample - ssray.origin.z;
|
|
|
|
float t = 0.0, time = 0.0;
|
|
/* On very sharp reflections, the ray can be perfectly aligned with the view direction
|
|
* making the tracing useless. Bypass tracing in this case. */
|
|
bool hit = false;
|
|
const float max_steps = 255.0;
|
|
for (float iter = 1.0; !hit && (time < ssray.max_time) && (iter < max_steps); iter++) {
|
|
float stride = 1.0 + iter * params.trace_quality;
|
|
|
|
prev_time = time;
|
|
prev_delta = delta;
|
|
|
|
time = min(t + stride * params.jitter, ssray.max_time);
|
|
t += stride;
|
|
|
|
vec4 ss_ray = ssray.origin + ssray.direction * time;
|
|
|
|
depth_sample = texture(planarDepth, vec3(ss_ray.xy, planar_ref_id)).r;
|
|
|
|
delta = depth_sample - ss_ray.z;
|
|
/* Check if the ray is below the surface. */
|
|
hit = (delta < 0.0);
|
|
}
|
|
/* Reject hit if background. */
|
|
hit = hit && (depth_sample != 1.0);
|
|
/* Refine hit using intersection between the sampled heightfield and the ray.
|
|
* This simplifies nicely to this single line. */
|
|
time = mix(prev_time, time, saturate(prev_delta / (prev_delta - delta)));
|
|
|
|
hit_position = ssray.origin.xyz + ssray.direction.xyz * time;
|
|
/* Planar Reflections have X mirrored. */
|
|
hit_position.x = 1.0 - hit_position.x;
|
|
|
|
return hit;
|
|
}
|
|
|
|
float screen_border_mask(vec2 hit_co)
|
|
{
|
|
const float margin = 0.003;
|
|
float atten = ssrBorderFac + margin; /* Screen percentage */
|
|
hit_co = smoothstep(0.0, atten, hit_co) * (1.0 - smoothstep(1.0 - atten, 1.0, hit_co));
|
|
|
|
float screenfade = hit_co.x * hit_co.y;
|
|
|
|
return screenfade;
|
|
}
|