This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/curve.c
Sergey Sharybin 64c3ea272e Todo item: linked curve objects behaves incorrect with modifiers
Use object's displists for storing deformed tesselated curve. Was unable to
totally get rid of curve's displist because of how texture space is calculating.
2011-01-05 10:40:38 +00:00

3241 lines
72 KiB
C

/* curve.c
*
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <math.h> // floor
#include <string.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "DNA_curve_types.h"
#include "DNA_material_types.h"
/* for dereferencing pointers */
#include "DNA_key_types.h"
#include "DNA_scene_types.h"
#include "DNA_vfont_types.h"
#include "DNA_object_types.h"
#include "BKE_animsys.h"
#include "BKE_anim.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_font.h"
#include "BKE_global.h"
#include "BKE_key.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_object.h"
#include "BKE_utildefines.h" // VECCOPY
#include "ED_curve.h"
/* globals */
/* local */
static int cu_isectLL(float *v1, float *v2, float *v3, float *v4,
short cox, short coy,
float *labda, float *mu, float *vec);
void unlink_curve(Curve *cu)
{
int a;
for(a=0; a<cu->totcol; a++) {
if(cu->mat[a]) cu->mat[a]->id.us--;
cu->mat[a]= NULL;
}
if(cu->vfont) cu->vfont->id.us--;
cu->vfont= NULL;
if(cu->vfontb) cu->vfontb->id.us--;
cu->vfontb= NULL;
if(cu->vfonti) cu->vfonti->id.us--;
cu->vfonti= NULL;
if(cu->vfontbi) cu->vfontbi->id.us--;
cu->vfontbi= NULL;
if(cu->key) cu->key->id.us--;
cu->key= NULL;
}
/* frees editcurve entirely */
void BKE_free_editfont(Curve *cu)
{
if(cu->editfont) {
EditFont *ef= cu->editfont;
if(ef->oldstr) MEM_freeN(ef->oldstr);
if(ef->oldstrinfo) MEM_freeN(ef->oldstrinfo);
if(ef->textbuf) MEM_freeN(ef->textbuf);
if(ef->textbufinfo) MEM_freeN(ef->textbufinfo);
if(ef->copybuf) MEM_freeN(ef->copybuf);
if(ef->copybufinfo) MEM_freeN(ef->copybufinfo);
MEM_freeN(ef);
cu->editfont= NULL;
}
}
/* don't free curve itself */
void free_curve(Curve *cu)
{
freeNurblist(&cu->nurb);
BLI_freelistN(&cu->bev);
freedisplist(&cu->disp);
BKE_free_editfont(cu);
free_curve_editNurb(cu);
unlink_curve(cu);
BKE_free_animdata((ID *)cu);
if(cu->mat) MEM_freeN(cu->mat);
if(cu->str) MEM_freeN(cu->str);
if(cu->strinfo) MEM_freeN(cu->strinfo);
if(cu->bb) MEM_freeN(cu->bb);
if(cu->path) free_path(cu->path);
if(cu->tb) MEM_freeN(cu->tb);
}
Curve *add_curve(const char *name, int type)
{
Curve *cu;
cu= alloc_libblock(&G.main->curve, ID_CU, name);
cu->size[0]= cu->size[1]= cu->size[2]= 1.0;
cu->flag= CU_FRONT|CU_BACK|CU_DEFORM_BOUNDS_OFF|CU_PATH_RADIUS;
cu->pathlen= 100;
cu->resolu= cu->resolv= (type == OB_SURF) ? 4 : 12;
cu->width= 1.0;
cu->wordspace = 1.0;
cu->spacing= cu->linedist= 1.0;
cu->fsize= 1.0;
cu->ulheight = 0.05;
cu->texflag= CU_AUTOSPACE;
cu->smallcaps_scale= 0.75f;
cu->twist_mode= CU_TWIST_MINIMUM; // XXX: this one seems to be the best one in most cases, at least for curve deform...
cu->bb= unit_boundbox();
if(type==OB_FONT) {
cu->vfont= cu->vfontb= cu->vfonti= cu->vfontbi= get_builtin_font();
cu->vfont->id.us+=4;
cu->str= MEM_mallocN(12, "str");
BLI_strncpy(cu->str, "Text", 12);
cu->len= cu->pos= 4;
cu->strinfo= MEM_callocN(12*sizeof(CharInfo), "strinfo new");
cu->totbox= cu->actbox= 1;
cu->tb= MEM_callocN(MAXTEXTBOX*sizeof(TextBox), "textbox");
cu->tb[0].w = cu->tb[0].h = 0.0;
}
return cu;
}
Curve *copy_curve(Curve *cu)
{
Curve *cun;
int a;
cun= copy_libblock(cu);
cun->nurb.first= cun->nurb.last= 0;
duplicateNurblist( &(cun->nurb), &(cu->nurb));
cun->mat= MEM_dupallocN(cu->mat);
for(a=0; a<cun->totcol; a++) {
id_us_plus((ID *)cun->mat[a]);
}
cun->str= MEM_dupallocN(cu->str);
cun->strinfo= MEM_dupallocN(cu->strinfo);
cun->tb= MEM_dupallocN(cu->tb);
cun->bb= MEM_dupallocN(cu->bb);
cun->key= copy_key(cu->key);
if(cun->key) cun->key->from= (ID *)cun;
cun->disp.first= cun->disp.last= 0;
cun->bev.first= cun->bev.last= 0;
cun->path= 0;
cun->editnurb= NULL;
cun->editfont= NULL;
#if 0 // XXX old animation system
/* single user ipo too */
if(cun->ipo) cun->ipo= copy_ipo(cun->ipo);
#endif // XXX old animation system
id_us_plus((ID *)cun->vfont);
id_us_plus((ID *)cun->vfontb);
id_us_plus((ID *)cun->vfonti);
id_us_plus((ID *)cun->vfontbi);
return cun;
}
void make_local_curve(Curve *cu)
{
Object *ob = 0;
Curve *cun;
int local=0, lib=0;
/* - when there are only lib users: don't do
* - when there are only local users: set flag
* - mixed: do a copy
*/
if(cu->id.lib==0) return;
if(cu->vfont) cu->vfont->id.lib= NULL;
if(cu->vfontb) cu->vfontb->id.lib= NULL;
if(cu->vfonti) cu->vfonti->id.lib= NULL;
if(cu->vfontbi) cu->vfontbi->id.lib= NULL;
if(cu->id.us==1) {
cu->id.lib= 0;
cu->id.flag= LIB_LOCAL;
new_id(0, (ID *)cu, 0);
return;
}
ob= G.main->object.first;
while(ob) {
if(ob->data==cu) {
if(ob->id.lib) lib= 1;
else local= 1;
}
ob= ob->id.next;
}
if(local && lib==0) {
cu->id.lib= 0;
cu->id.flag= LIB_LOCAL;
new_id(0, (ID *)cu, 0);
}
else if(local && lib) {
cun= copy_curve(cu);
cun->id.us= 0;
ob= G.main->object.first;
while(ob) {
if(ob->data==cu) {
if(ob->id.lib==0) {
ob->data= cun;
cun->id.us++;
cu->id.us--;
}
}
ob= ob->id.next;
}
}
}
short curve_type(Curve *cu)
{
Nurb *nu;
if(cu->vfont) {
return OB_FONT;
}
for (nu= cu->nurb.first; nu; nu= nu->next) {
if(nu->pntsv>1) {
return OB_SURF;
}
}
return OB_CURVE;
}
void test_curve_type(Object *ob)
{
ob->type = curve_type(ob->data);
}
void tex_space_curve(Curve *cu)
{
DispList *dl;
BoundBox *bb;
float *fp, min[3], max[3];
int tot, doit= 0;
if(cu->bb==NULL) cu->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
bb= cu->bb;
INIT_MINMAX(min, max);
dl= cu->disp.first;
while(dl) {
if(dl->type==DL_INDEX3 || dl->type==DL_INDEX3) tot= dl->nr;
else tot= dl->nr*dl->parts;
if(tot) doit= 1;
fp= dl->verts;
while(tot--) {
DO_MINMAX(fp, min, max);
fp += 3;
}
dl= dl->next;
}
if(!doit) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
boundbox_set_from_min_max(bb, min, max);
if(cu->texflag & CU_AUTOSPACE) {
mid_v3_v3v3(cu->loc, min, max);
cu->size[0]= (max[0]-min[0])/2.0f;
cu->size[1]= (max[1]-min[1])/2.0f;
cu->size[2]= (max[2]-min[2])/2.0f;
cu->rot[0]= cu->rot[1]= cu->rot[2]= 0.0;
if(cu->size[0]==0.0) cu->size[0]= 1.0;
else if(cu->size[0]>0.0 && cu->size[0]<0.00001) cu->size[0]= 0.00001;
else if(cu->size[0]<0.0 && cu->size[0]> -0.00001) cu->size[0]= -0.00001;
if(cu->size[1]==0.0) cu->size[1]= 1.0;
else if(cu->size[1]>0.0 && cu->size[1]<0.00001) cu->size[1]= 0.00001;
else if(cu->size[1]<0.0 && cu->size[1]> -0.00001) cu->size[1]= -0.00001;
if(cu->size[2]==0.0) cu->size[2]= 1.0;
else if(cu->size[2]>0.0 && cu->size[2]<0.00001) cu->size[2]= 0.00001;
else if(cu->size[2]<0.0 && cu->size[2]> -0.00001) cu->size[2]= -0.00001;
}
}
int count_curveverts(ListBase *nurb)
{
Nurb *nu;
int tot=0;
nu= nurb->first;
while(nu) {
if(nu->bezt) tot+= 3*nu->pntsu;
else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
nu= nu->next;
}
return tot;
}
int count_curveverts_without_handles(ListBase *nurb)
{
Nurb *nu;
int tot=0;
nu= nurb->first;
while(nu) {
if(nu->bezt) tot+= nu->pntsu;
else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
nu= nu->next;
}
return tot;
}
/* **************** NURBS ROUTINES ******************** */
void freeNurb(Nurb *nu)
{
if(nu==0) return;
if(nu->bezt) MEM_freeN(nu->bezt);
nu->bezt= 0;
if(nu->bp) MEM_freeN(nu->bp);
nu->bp= 0;
if(nu->knotsu) MEM_freeN(nu->knotsu);
nu->knotsu= NULL;
if(nu->knotsv) MEM_freeN(nu->knotsv);
nu->knotsv= NULL;
/* if(nu->trim.first) freeNurblist(&(nu->trim)); */
MEM_freeN(nu);
}
void freeNurblist(ListBase *lb)
{
Nurb *nu, *next;
if(lb==0) return;
nu= lb->first;
while(nu) {
next= nu->next;
freeNurb(nu);
nu= next;
}
lb->first= lb->last= 0;
}
Nurb *duplicateNurb(Nurb *nu)
{
Nurb *newnu;
int len;
newnu= (Nurb*)MEM_mallocN(sizeof(Nurb),"duplicateNurb");
if(newnu==0) return 0;
memcpy(newnu, nu, sizeof(Nurb));
if(nu->bezt) {
newnu->bezt=
(BezTriple*)MEM_mallocN((nu->pntsu)* sizeof(BezTriple),"duplicateNurb2");
memcpy(newnu->bezt, nu->bezt, nu->pntsu*sizeof(BezTriple));
}
else {
len= nu->pntsu*nu->pntsv;
newnu->bp=
(BPoint*)MEM_mallocN((len)* sizeof(BPoint),"duplicateNurb3");
memcpy(newnu->bp, nu->bp, len*sizeof(BPoint));
newnu->knotsu= newnu->knotsv= NULL;
if(nu->knotsu) {
len= KNOTSU(nu);
if(len) {
newnu->knotsu= MEM_mallocN(len*sizeof(float), "duplicateNurb4");
memcpy(newnu->knotsu, nu->knotsu, sizeof(float)*len);
}
}
if(nu->pntsv>1 && nu->knotsv) {
len= KNOTSV(nu);
if(len) {
newnu->knotsv= MEM_mallocN(len*sizeof(float), "duplicateNurb5");
memcpy(newnu->knotsv, nu->knotsv, sizeof(float)*len);
}
}
}
return newnu;
}
void duplicateNurblist(ListBase *lb1, ListBase *lb2)
{
Nurb *nu, *nun;
freeNurblist(lb1);
nu= lb2->first;
while(nu) {
nun= duplicateNurb(nu);
BLI_addtail(lb1, nun);
nu= nu->next;
}
}
void test2DNurb(Nurb *nu)
{
BezTriple *bezt;
BPoint *bp;
int a;
if((nu->flag & CU_2D)==0)
return;
if(nu->type == CU_BEZIER) {
a= nu->pntsu;
bezt= nu->bezt;
while(a--) {
bezt->vec[0][2]= 0.0;
bezt->vec[1][2]= 0.0;
bezt->vec[2][2]= 0.0;
bezt++;
}
}
else {
a= nu->pntsu*nu->pntsv;
bp= nu->bp;
while(a--) {
bp->vec[2]= 0.0;
bp++;
}
}
}
void minmaxNurb(Nurb *nu, float *min, float *max)
{
BezTriple *bezt;
BPoint *bp;
int a;
if(nu->type == CU_BEZIER) {
a= nu->pntsu;
bezt= nu->bezt;
while(a--) {
DO_MINMAX(bezt->vec[0], min, max);
DO_MINMAX(bezt->vec[1], min, max);
DO_MINMAX(bezt->vec[2], min, max);
bezt++;
}
}
else {
a= nu->pntsu*nu->pntsv;
bp= nu->bp;
while(a--) {
DO_MINMAX(bp->vec, min, max);
bp++;
}
}
}
/* be sure to call makeknots after this */
void addNurbPoints(Nurb *nu, int number)
{
BPoint *tmp= nu->bp;
int i;
nu->bp= (BPoint *)MEM_mallocN((nu->pntsu + number) * sizeof(BPoint), "rna_Curve_spline_points_add");
if(tmp) {
memmove(nu->bp, tmp, nu->pntsu * sizeof(BPoint));
MEM_freeN(tmp);
}
memset(nu->bp + nu->pntsu, 0, number * sizeof(BPoint));
for(i=0, tmp= nu->bp + nu->pntsu; i < number; i++, tmp++) {
tmp->radius= 1.0f;
}
nu->pntsu += number;
}
void addNurbPointsBezier(Nurb *nu, int number)
{
BezTriple *tmp= nu->bezt;
int i;
nu->bezt= (BezTriple *)MEM_mallocN((nu->pntsu + number) * sizeof(BezTriple), "rna_Curve_spline_points_add");
if(tmp) {
memmove(nu->bezt, tmp, nu->pntsu * sizeof(BezTriple));
MEM_freeN(tmp);
}
memset(nu->bezt + nu->pntsu, 0, number * sizeof(BezTriple));
for(i=0, tmp= nu->bezt + nu->pntsu; i < number; i++, tmp++) {
tmp->radius= 1.0f;
}
nu->pntsu += number;
}
/* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */
static void calcknots(float *knots, short aantal, short order, short type)
/* knots: number of pnts NOT corrected for cyclic */
/* type; 0: uniform, 1: endpoints, 2: bezier */
{
float k;
int a, t;
t = aantal+order;
if(type==0) {
for(a=0;a<t;a++) {
knots[a]= (float)a;
}
}
else if(type==1) {
k= 0.0;
for(a=1;a<=t;a++) {
knots[a-1]= k;
if(a>=order && a<=aantal) k+= 1.0;
}
}
else if(type==2) {
/* Warning, the order MUST be 2 or 4, if this is not enforced, the displist will be corrupt */
if(order==4) {
k= 0.34;
for(a=0;a<t;a++) {
knots[a]= (float)floor(k);
k+= (1.0/3.0);
}
}
else if(order==3) {
k= 0.6;
for(a=0;a<t;a++) {
if(a>=order && a<=aantal) k+= (0.5);
knots[a]= (float)floor(k);
}
}
else {
printf("bez nurb curve order is not 3 or 4, should never happen\n");
}
}
}
static void makecyclicknots(float *knots, short pnts, short order)
/* pnts, order: number of pnts NOT corrected for cyclic */
{
int a, b, order2, c;
if(knots==0) return;
order2=order-1;
/* do first long rows (order -1), remove identical knots at endpoints */
if(order>2) {
b= pnts+order2;
for(a=1; a<order2; a++) {
if(knots[b]!= knots[b-a]) break;
}
if(a==order2) knots[pnts+order-2]+= 1.0;
}
b= order;
c=pnts + order + order2;
for(a=pnts+order2; a<c; a++) {
knots[a]= knots[a-1]+ (knots[b]-knots[b-1]);
b--;
}
}
static void makeknots(Nurb *nu, short uv)
{
if(nu->type == CU_NURBS) {
if(uv == 1) {
if(nu->knotsu) MEM_freeN(nu->knotsu);
if(check_valid_nurb_u(nu)) {
nu->knotsu= MEM_callocN(4+sizeof(float)*KNOTSU(nu), "makeknots");
if(nu->flagu & CU_NURB_CYCLIC) {
calcknots(nu->knotsu, nu->pntsu, nu->orderu, 0); /* cyclic should be uniform */
makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu);
} else {
calcknots(nu->knotsu, nu->pntsu, nu->orderu, nu->flagu>>1);
}
}
else nu->knotsu= NULL;
} else if(uv == 2) {
if(nu->knotsv) MEM_freeN(nu->knotsv);
if(check_valid_nurb_v(nu)) {
nu->knotsv= MEM_callocN(4+sizeof(float)*KNOTSV(nu), "makeknots");
if(nu->flagv & CU_NURB_CYCLIC) {
calcknots(nu->knotsv, nu->pntsv, nu->orderv, 0); /* cyclic should be uniform */
makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv);
} else {
calcknots(nu->knotsv, nu->pntsv, nu->orderv, nu->flagv>>1);
}
}
else nu->knotsv= NULL;
}
}
}
void nurbs_knot_calc_u(Nurb *nu)
{
makeknots(nu, 1);
}
void nurbs_knot_calc_v(Nurb *nu)
{
makeknots(nu, 2);
}
static void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end)
{
float d, e;
int i, i1 = 0, i2 = 0 ,j, orderpluspnts, opp2, o2;
orderpluspnts= order+pnts;
opp2 = orderpluspnts-1;
/* this is for float inaccuracy */
if(t < knots[0]) t= knots[0];
else if(t > knots[opp2]) t= knots[opp2];
/* this part is order '1' */
o2 = order + 1;
for(i=0;i<opp2;i++) {
if(knots[i]!=knots[i+1] && t>= knots[i] && t<=knots[i+1]) {
basis[i]= 1.0;
i1= i-o2;
if(i1<0) i1= 0;
i2= i;
i++;
while(i<opp2) {
basis[i]= 0.0;
i++;
}
break;
}
else basis[i]= 0.0;
}
basis[i]= 0.0;
/* this is order 2,3,... */
for(j=2; j<=order; j++) {
if(i2+j>= orderpluspnts) i2= opp2-j;
for(i= i1; i<=i2; i++) {
if(basis[i]!=0.0)
d= ((t-knots[i])*basis[i]) / (knots[i+j-1]-knots[i]);
else
d= 0.0;
if(basis[i+1]!=0.0)
e= ((knots[i+j]-t)*basis[i+1]) / (knots[i+j]-knots[i+1]);
else
e= 0.0;
basis[i]= d+e;
}
}
*start= 1000;
*end= 0;
for(i=i1; i<=i2; i++) {
if(basis[i]>0.0) {
*end= i;
if(*start==1000) *start= i;
}
}
}
void makeNurbfaces(Nurb *nu, float *coord_array, int rowstride, int resolu, int resolv)
/* coord_array has to be 3*4*resolu*resolv in size, and zero-ed */
{
BPoint *bp;
float *basisu, *basis, *basisv, *sum, *fp, *in;
float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv;
int i, j, iofs, jofs, cycl, len, curu, curv;
int istart, iend, jsta, jen, *jstart, *jend, ratcomp;
int totu = nu->pntsu*resolu, totv = nu->pntsv*resolv;
if(nu->knotsu==NULL || nu->knotsv==NULL) return;
if(nu->orderu>nu->pntsu) return;
if(nu->orderv>nu->pntsv) return;
if(coord_array==NULL) return;
/* allocate and initialize */
len = totu * totv;
if(len==0) return;
sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbfaces1");
len= totu*totv;
if(len==0) {
MEM_freeN(sum);
return;
}
bp= nu->bp;
i= nu->pntsu*nu->pntsv;
ratcomp=0;
while(i--) {
if(bp->vec[3]!=1.0) {
ratcomp= 1;
break;
}
bp++;
}
fp= nu->knotsu;
ustart= fp[nu->orderu-1];
if(nu->flagu & CU_NURB_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1];
else uend= fp[nu->pntsu];
ustep= (uend-ustart)/((nu->flagu & CU_NURB_CYCLIC) ? totu : totu - 1);
basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbfaces3");
fp= nu->knotsv;
vstart= fp[nu->orderv-1];
if(nu->flagv & CU_NURB_CYCLIC) vend= fp[nu->pntsv+nu->orderv-1];
else vend= fp[nu->pntsv];
vstep= (vend-vstart)/((nu->flagv & CU_NURB_CYCLIC) ? totv : totv - 1);
len= KNOTSV(nu);
basisv= (float *)MEM_mallocN(sizeof(float)*len*totv, "makeNurbfaces3");
jstart= (int *)MEM_mallocN(sizeof(float)*totv, "makeNurbfaces4");
jend= (int *)MEM_mallocN(sizeof(float)*totv, "makeNurbfaces5");
/* precalculation of basisv and jstart,jend */
if(nu->flagv & CU_NURB_CYCLIC) cycl= nu->orderv-1;
else cycl= 0;
v= vstart;
basis= basisv;
curv= totv;
while(curv--) {
basisNurb(v, nu->orderv, (short)(nu->pntsv+cycl), nu->knotsv, basis, jstart+curv, jend+curv);
basis+= KNOTSV(nu);
v+= vstep;
}
if(nu->flagu & CU_NURB_CYCLIC) cycl= nu->orderu-1;
else cycl= 0;
in= coord_array;
u= ustart;
curu= totu;
while(curu--) {
basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
basis= basisv;
curv= totv;
while(curv--) {
jsta= jstart[curv];
jen= jend[curv];
/* calculate sum */
sumdiv= 0.0;
fp= sum;
for(j= jsta; j<=jen; j++) {
if(j>=nu->pntsv) jofs= (j - nu->pntsv);
else jofs= j;
bp= nu->bp+ nu->pntsu*jofs+istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>= nu->pntsu) {
iofs= i- nu->pntsu;
bp= nu->bp+ nu->pntsu*jofs+iofs;
}
else bp++;
if(ratcomp) {
*fp= basisu[i]*basis[j]*bp->vec[3];
sumdiv+= *fp;
}
else *fp= basisu[i]*basis[j];
}
}
if(ratcomp) {
fp= sum;
for(j= jsta; j<=jen; j++) {
for(i= istart; i<=iend; i++, fp++) {
*fp/= sumdiv;
}
}
}
/* one! (1.0) real point now */
fp= sum;
for(j= jsta; j<=jen; j++) {
if(j>=nu->pntsv) jofs= (j - nu->pntsv);
else jofs= j;
bp= nu->bp+ nu->pntsu*jofs+istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>= nu->pntsu) {
iofs= i- nu->pntsu;
bp= nu->bp+ nu->pntsu*jofs+iofs;
}
else bp++;
if(*fp!=0.0) {
in[0]+= (*fp) * bp->vec[0];
in[1]+= (*fp) * bp->vec[1];
in[2]+= (*fp) * bp->vec[2];
}
}
}
in+=3;
basis+= KNOTSV(nu);
}
u+= ustep;
if (rowstride!=0) in = (float*) (((unsigned char*) in) + (rowstride - 3*totv*sizeof(*in)));
}
/* free */
MEM_freeN(sum);
MEM_freeN(basisu);
MEM_freeN(basisv);
MEM_freeN(jstart);
MEM_freeN(jend);
}
void makeNurbcurve(Nurb *nu, float *coord_array, float *tilt_array, float *radius_array, float *weight_array, int resolu, int stride)
/* coord_array has to be 3*4*pntsu*resolu in size and zero-ed
* tilt_array and radius_array will be written to if valid */
{
BPoint *bp;
float u, ustart, uend, ustep, sumdiv;
float *basisu, *sum, *fp;
float *coord_fp= coord_array, *tilt_fp= tilt_array, *radius_fp= radius_array, *weight_fp= weight_array;
int i, len, istart, iend, cycl;
if(nu->knotsu==NULL) return;
if(nu->orderu>nu->pntsu) return;
if(coord_array==0) return;
/* allocate and initialize */
len= nu->pntsu;
if(len==0) return;
sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1");
resolu= (resolu*SEGMENTSU(nu));
if(resolu==0) {
MEM_freeN(sum);
return;
}
fp= nu->knotsu;
ustart= fp[nu->orderu-1];
if(nu->flagu & CU_NURB_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1];
else uend= fp[nu->pntsu];
ustep= (uend-ustart)/(resolu - ((nu->flagu & CU_NURB_CYCLIC) ? 0 : 1));
basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbcurve3");
if(nu->flagu & CU_NURB_CYCLIC) cycl= nu->orderu-1;
else cycl= 0;
u= ustart;
while(resolu--) {
basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
/* calc sum */
sumdiv= 0.0;
fp= sum;
bp= nu->bp+ istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
else bp++;
*fp= basisu[i]*bp->vec[3];
sumdiv+= *fp;
}
if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) {
/* is normalizing needed? */
fp= sum;
for(i= istart; i<=iend; i++, fp++) {
*fp/= sumdiv;
}
}
/* one! (1.0) real point */
fp= sum;
bp= nu->bp+ istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
else bp++;
if(*fp!=0.0) {
coord_fp[0]+= (*fp) * bp->vec[0];
coord_fp[1]+= (*fp) * bp->vec[1];
coord_fp[2]+= (*fp) * bp->vec[2];
if (tilt_fp)
(*tilt_fp) += (*fp) * bp->alfa;
if (radius_fp)
(*radius_fp) += (*fp) * bp->radius;
if (weight_fp)
(*weight_fp) += (*fp) * bp->weight;
}
}
coord_fp = (float *)(((char *)coord_fp) + stride);
if (tilt_fp) tilt_fp = (float *)(((char *)tilt_fp) + stride);
if (radius_fp) radius_fp = (float *)(((char *)radius_fp) + stride);
if (weight_fp) weight_fp = (float *)(((char *)weight_fp) + stride);
u+= ustep;
}
/* free */
MEM_freeN(sum);
MEM_freeN(basisu);
}
/* forward differencing method for bezier curve */
void forward_diff_bezier(float q0, float q1, float q2, float q3, float *p, int it, int stride)
{
float rt0,rt1,rt2,rt3,f;
int a;
f= (float)it;
rt0= q0;
rt1= 3.0f*(q1-q0)/f;
f*= f;
rt2= 3.0f*(q0-2.0f*q1+q2)/f;
f*= it;
rt3= (q3-q0+3.0f*(q1-q2))/f;
q0= rt0;
q1= rt1+rt2+rt3;
q2= 2*rt2+6*rt3;
q3= 6*rt3;
for(a=0; a<=it; a++) {
*p= q0;
p = (float *)(((char *)p)+stride);
q0+= q1;
q1+= q2;
q2+= q3;
}
}
static void forward_diff_bezier_cotangent(float *p0, float *p1, float *p2, float *p3, float *p, int it, int stride)
{
/* note that these are not purpendicular to the curve
* they need to be rotated for this,
*
* This could also be optimized like forward_diff_bezier */
int a;
for(a=0; a<=it; a++) {
float t = (float)a / (float)it;
int i;
for(i=0; i<3; i++) {
p[i]= (-6*t + 6)*p0[i] + (18*t - 12)*p1[i] + (-18*t + 6)*p2[i] + (6*t)*p3[i];
}
normalize_v3(p);
p = (float *)(((char *)p)+stride);
}
}
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
float *make_orco_surf(Object *ob)
{
/* Note: this function is used in convertblender only atm, so
* suppose nonzero curve's render resolution should always be used */
Curve *cu= ob->data;
Nurb *nu;
int a, b, tot=0;
int sizeu, sizev;
int resolu, resolv;
float *fp, *coord_array;
/* first calculate the size of the datablock */
nu= cu->nurb.first;
while(nu) {
/* as we want to avoid the seam in a cyclic nurbs
texture wrapping, reserve extra orco data space to save these extra needed
vertex based UV coordinates for the meridian vertices.
Vertices on the 0/2pi boundary are not duplicated inside the displist but later in
the renderface/vert construction.
See also convertblender.c: init_render_surf()
*/
resolu= cu->resolu_ren ? cu->resolu_ren : nu->resolu;
resolv= cu->resolv_ren ? cu->resolv_ren : nu->resolv;
sizeu = nu->pntsu*resolu;
sizev = nu->pntsv*resolv;
if (nu->flagu & CU_NURB_CYCLIC) sizeu++;
if (nu->flagv & CU_NURB_CYCLIC) sizev++;
if(nu->pntsv>1) tot+= sizeu * sizev;
nu= nu->next;
}
/* makeNurbfaces wants zeros */
fp= coord_array= MEM_callocN(3*sizeof(float)*tot, "make_orco");
nu= cu->nurb.first;
while(nu) {
resolu= cu->resolu_ren ? cu->resolu_ren : nu->resolu;
resolv= cu->resolv_ren ? cu->resolv_ren : nu->resolv;
if(nu->pntsv>1) {
sizeu = nu->pntsu*resolu;
sizev = nu->pntsv*resolv;
if (nu->flagu & CU_NURB_CYCLIC) sizeu++;
if (nu->flagv & CU_NURB_CYCLIC) sizev++;
if(cu->flag & CU_UV_ORCO) {
for(b=0; b< sizeu; b++) {
for(a=0; a< sizev; a++) {
if(sizev <2) fp[0]= 0.0f;
else fp[0]= -1.0f + 2.0f*((float)a)/(sizev - 1);
if(sizeu <2) fp[1]= 0.0f;
else fp[1]= -1.0f + 2.0f*((float)b)/(sizeu - 1);
fp[2]= 0.0;
fp+= 3;
}
}
}
else {
float *_tdata= MEM_callocN((nu->pntsu*resolu) * (nu->pntsv*resolv) *3*sizeof(float), "temp data");
float *tdata= _tdata;
makeNurbfaces(nu, tdata, 0, resolu, resolv);
for(b=0; b<sizeu; b++) {
int use_b= b;
if (b==sizeu-1 && (nu->flagu & CU_NURB_CYCLIC))
use_b= 0;
for(a=0; a<sizev; a++) {
int use_a= a;
if (a==sizev-1 && (nu->flagv & CU_NURB_CYCLIC))
use_a= 0;
tdata = _tdata + 3 * (use_b * (nu->pntsv*resolv) + use_a);
fp[0]= (tdata[0]-cu->loc[0])/cu->size[0];
fp[1]= (tdata[1]-cu->loc[1])/cu->size[1];
fp[2]= (tdata[2]-cu->loc[2])/cu->size[2];
fp+= 3;
}
}
MEM_freeN(_tdata);
}
}
nu= nu->next;
}
return coord_array;
}
/* NOTE: This routine is tied to the order of vertex
* built by displist and as passed to the renderer.
*/
float *make_orco_curve(Scene *scene, Object *ob)
{
Curve *cu = ob->data;
DispList *dl;
int u, v, numVerts;
float *fp, *coord_array;
ListBase disp = {NULL, NULL};
makeDispListCurveTypes_forOrco(scene, ob, &disp);
numVerts = 0;
for (dl=disp.first; dl; dl=dl->next) {
if (dl->type==DL_INDEX3) {
numVerts += dl->nr;
} else if (dl->type==DL_SURF) {
/* convertblender.c uses the Surface code for creating renderfaces when cyclic U only (closed circle beveling) */
if (dl->flag & DL_CYCL_U) {
if (dl->flag & DL_CYCL_V)
numVerts += (dl->parts+1)*(dl->nr+1);
else
numVerts += dl->parts*(dl->nr+1);
}
else
numVerts += dl->parts*dl->nr;
}
}
fp= coord_array= MEM_mallocN(3*sizeof(float)*numVerts, "cu_orco");
for (dl=disp.first; dl; dl=dl->next) {
if (dl->type==DL_INDEX3) {
for (u=0; u<dl->nr; u++, fp+=3) {
if (cu->flag & CU_UV_ORCO) {
fp[0]= 2.0f*u/(dl->nr-1) - 1.0f;
fp[1]= 0.0;
fp[2]= 0.0;
} else {
VECCOPY(fp, &dl->verts[u*3]);
fp[0]= (fp[0]-cu->loc[0])/cu->size[0];
fp[1]= (fp[1]-cu->loc[1])/cu->size[1];
fp[2]= (fp[2]-cu->loc[2])/cu->size[2];
}
}
} else if (dl->type==DL_SURF) {
int sizeu= dl->nr, sizev= dl->parts;
/* exception as handled in convertblender.c too */
if (dl->flag & DL_CYCL_U) {
sizeu++;
if (dl->flag & DL_CYCL_V)
sizev++;
}
for (u=0; u<sizev; u++) {
for (v=0; v<sizeu; v++,fp+=3) {
if (cu->flag & CU_UV_ORCO) {
fp[0]= 2.0f*u/(sizev - 1) - 1.0f;
fp[1]= 2.0f*v/(sizeu - 1) - 1.0f;
fp[2]= 0.0;
} else {
float *vert;
int realv= v % dl->nr;
int realu= u % dl->parts;
vert= dl->verts + 3*(dl->nr*realu + realv);
VECCOPY(fp, vert);
fp[0]= (fp[0]-cu->loc[0])/cu->size[0];
fp[1]= (fp[1]-cu->loc[1])/cu->size[1];
fp[2]= (fp[2]-cu->loc[2])/cu->size[2];
}
}
}
}
}
freedisplist(&disp);
return coord_array;
}
/* ***************** BEVEL ****************** */
void makebevelcurve(Scene *scene, Object *ob, ListBase *disp, int forRender)
{
DispList *dl, *dlnew;
Curve *bevcu, *cu;
float *fp, facx, facy, angle, dangle;
int nr, a;
cu= ob->data;
disp->first = disp->last = NULL;
/* if a font object is being edited, then do nothing */
// XXX if( ob == obedit && ob->type == OB_FONT ) return;
if(cu->bevobj) {
if (cu->bevobj->type!=OB_CURVE) return;
bevcu= cu->bevobj->data;
if(bevcu->ext1==0.0 && bevcu->ext2==0.0) {
ListBase bevdisp= {NULL, NULL};
facx= cu->bevobj->size[0];
facy= cu->bevobj->size[1];
if (forRender) {
makeDispListCurveTypes_forRender(scene, cu->bevobj, &bevdisp, NULL, 0);
dl= bevdisp.first;
} else {
dl= cu->bevobj->disp.first;
if(dl==0) {
makeDispListCurveTypes(scene, cu->bevobj, 0);
dl= cu->bevobj->disp.first;
}
}
while(dl) {
if ELEM(dl->type, DL_POLY, DL_SEGM) {
dlnew= MEM_mallocN(sizeof(DispList), "makebevelcurve1");
*dlnew= *dl;
dlnew->verts= MEM_mallocN(3*sizeof(float)*dl->parts*dl->nr, "makebevelcurve1");
memcpy(dlnew->verts, dl->verts, 3*sizeof(float)*dl->parts*dl->nr);
if(dlnew->type==DL_SEGM) dlnew->flag |= (DL_FRONT_CURVE|DL_BACK_CURVE);
BLI_addtail(disp, dlnew);
fp= dlnew->verts;
nr= dlnew->parts*dlnew->nr;
while(nr--) {
fp[2]= fp[1]*facy;
fp[1]= -fp[0]*facx;
fp[0]= 0.0;
fp+= 3;
}
}
dl= dl->next;
}
freedisplist(&bevdisp);
}
}
else if(cu->ext1==0.0 && cu->ext2==0.0) {
;
}
else if(cu->ext2==0.0) {
dl= MEM_callocN(sizeof(DispList), "makebevelcurve2");
dl->verts= MEM_mallocN(2*3*sizeof(float), "makebevelcurve2");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->parts= 1;
dl->flag= DL_FRONT_CURVE|DL_BACK_CURVE;
dl->nr= 2;
fp= dl->verts;
fp[0]= fp[1]= 0.0;
fp[2]= -cu->ext1;
fp[3]= fp[4]= 0.0;
fp[5]= cu->ext1;
}
else if( (cu->flag & (CU_FRONT|CU_BACK))==0 && cu->ext1==0.0f) { // we make a full round bevel in that case
nr= 4+ 2*cu->bevresol;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
BLI_addtail(disp, dl);
dl->type= DL_POLY;
dl->parts= 1;
dl->flag= DL_BACK_CURVE;
dl->nr= nr;
/* a circle */
fp= dl->verts;
dangle= (2.0f*M_PI/(nr));
angle= -(nr-1)*dangle;
for(a=0; a<nr; a++) {
fp[0]= 0.0;
fp[1]= (float)(cos(angle)*(cu->ext2));
fp[2]= (float)(sin(angle)*(cu->ext2)) - cu->ext1;
angle+= dangle;
fp+= 3;
}
}
else {
short dnr;
/* bevel now in three parts, for proper vertex normals */
/* part 1, back */
if((cu->flag & CU_BACK) || !(cu->flag & CU_FRONT)) {
dnr= nr= 2+ cu->bevresol;
if( (cu->flag & (CU_FRONT|CU_BACK))==0)
nr= 3+ 2*cu->bevresol;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->parts= 1;
dl->flag= DL_BACK_CURVE;
dl->nr= nr;
/* half a circle */
fp= dl->verts;
dangle= (0.5*M_PI/(dnr-1));
angle= -(nr-1)*dangle;
for(a=0; a<nr; a++) {
fp[0]= 0.0;
fp[1]= (float)(cos(angle)*(cu->ext2));
fp[2]= (float)(sin(angle)*(cu->ext2)) - cu->ext1;
angle+= dangle;
fp+= 3;
}
}
/* part 2, sidefaces */
if(cu->ext1!=0.0) {
nr= 2;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p2");
dl->verts= MEM_callocN(nr*3*sizeof(float), "makebevelcurve p2");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->parts= 1;
dl->nr= nr;
fp= dl->verts;
fp[1]= cu->ext2;
fp[2]= -cu->ext1;
fp[4]= cu->ext2;
fp[5]= cu->ext1;
if( (cu->flag & (CU_FRONT|CU_BACK))==0) {
dl= MEM_dupallocN(dl);
dl->verts= MEM_dupallocN(dl->verts);
BLI_addtail(disp, dl);
fp= dl->verts;
fp[1]= -fp[1];
fp[2]= -fp[2];
fp[4]= -fp[4];
fp[5]= -fp[5];
}
}
/* part 3, front */
if((cu->flag & CU_FRONT) || !(cu->flag & CU_BACK)) {
dnr= nr= 2+ cu->bevresol;
if( (cu->flag & (CU_FRONT|CU_BACK))==0)
nr= 3+ 2*cu->bevresol;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p3");
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p3");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->flag= DL_FRONT_CURVE;
dl->parts= 1;
dl->nr= nr;
/* half a circle */
fp= dl->verts;
angle= 0.0;
dangle= (0.5*M_PI/(dnr-1));
for(a=0; a<nr; a++) {
fp[0]= 0.0;
fp[1]= (float)(cos(angle)*(cu->ext2));
fp[2]= (float)(sin(angle)*(cu->ext2)) + cu->ext1;
angle+= dangle;
fp+= 3;
}
}
}
}
static int cu_isectLL(float *v1, float *v2, float *v3, float *v4, short cox, short coy, float *labda, float *mu, float *vec)
{
/* return:
-1: colliniar
0: no intersection of segments
1: exact intersection of segments
2: cross-intersection of segments
*/
float deler;
deler= (v1[cox]-v2[cox])*(v3[coy]-v4[coy])-(v3[cox]-v4[cox])*(v1[coy]-v2[coy]);
if(deler==0.0) return -1;
*labda= (v1[coy]-v3[coy])*(v3[cox]-v4[cox])-(v1[cox]-v3[cox])*(v3[coy]-v4[coy]);
*labda= -(*labda/deler);
deler= v3[coy]-v4[coy];
if(deler==0) {
deler=v3[cox]-v4[cox];
*mu= -(*labda*(v2[cox]-v1[cox])+v1[cox]-v3[cox])/deler;
} else {
*mu= -(*labda*(v2[coy]-v1[coy])+v1[coy]-v3[coy])/deler;
}
vec[cox]= *labda*(v2[cox]-v1[cox])+v1[cox];
vec[coy]= *labda*(v2[coy]-v1[coy])+v1[coy];
if(*labda>=0.0 && *labda<=1.0 && *mu>=0.0 && *mu<=1.0) {
if(*labda==0.0 || *labda==1.0 || *mu==0.0 || *mu==1.0) return 1;
return 2;
}
return 0;
}
static short bevelinside(BevList *bl1,BevList *bl2)
{
/* is bl2 INSIDE bl1 ? with left-right method and "labda's" */
/* returns '1' if correct hole */
BevPoint *bevp, *prevbevp;
float min,max,vec[3],hvec1[3],hvec2[3],lab,mu;
int nr, links=0,rechts=0,mode;
/* take first vertex of possible hole */
bevp= (BevPoint *)(bl2+1);
hvec1[0]= bevp->vec[0];
hvec1[1]= bevp->vec[1];
hvec1[2]= 0.0;
VECCOPY(hvec2,hvec1);
hvec2[0]+=1000;
/* test it with all edges of potential surounding poly */
/* count number of transitions left-right */
bevp= (BevPoint *)(bl1+1);
nr= bl1->nr;
prevbevp= bevp+(nr-1);
while(nr--) {
min= prevbevp->vec[1];
max= bevp->vec[1];
if(max<min) {
min= max;
max= prevbevp->vec[1];
}
if(min!=max) {
if(min<=hvec1[1] && max>=hvec1[1]) {
/* there's a transition, calc intersection point */
mode= cu_isectLL(prevbevp->vec, bevp->vec, hvec1, hvec2, 0, 1, &lab, &mu, vec);
/* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition
only allow for one situation: we choose lab= 1.0
*/
if(mode>=0 && lab!=0.0) {
if(vec[0]<hvec1[0]) links++;
else rechts++;
}
}
}
prevbevp= bevp;
bevp++;
}
if( (links & 1) && (rechts & 1) ) return 1;
return 0;
}
struct bevelsort {
float left;
BevList *bl;
int dir;
};
static int vergxcobev(const void *a1, const void *a2)
{
const struct bevelsort *x1=a1,*x2=a2;
if( x1->left > x2->left ) return 1;
else if( x1->left < x2->left) return -1;
return 0;
}
/* this function cannot be replaced with atan2, but why? */
static void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa)
{
float t01, t02, x3, y3;
t01= (float)sqrt(x1*x1+y1*y1);
t02= (float)sqrt(x2*x2+y2*y2);
if(t01==0.0) t01= 1.0;
if(t02==0.0) t02= 1.0;
x1/=t01;
y1/=t01;
x2/=t02;
y2/=t02;
t02= x1*x2+y1*y2;
if(fabs(t02)>=1.0) t02= .5*M_PI;
else t02= (saacos(t02))/2.0f;
t02= (float)sin(t02);
if(t02==0.0) t02= 1.0;
x3= x1-x2;
y3= y1-y2;
if(x3==0 && y3==0) {
x3= y1;
y3= -x1;
} else {
t01= (float)sqrt(x3*x3+y3*y3);
x3/=t01;
y3/=t01;
}
*sina= -y3/t02;
*cosa= x3/t02;
}
static void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *tilt_array, float *radius_array, float *weight_array, int resolu, int stride)
{
BezTriple *pprev, *next, *last;
float fac, dfac, t[4];
int a;
if(tilt_array==NULL && radius_array==NULL)
return;
last= nu->bezt+(nu->pntsu-1);
/* returns a point */
if(prevbezt==nu->bezt) {
if(nu->flagu & CU_NURB_CYCLIC) pprev= last;
else pprev= prevbezt;
}
else pprev= prevbezt-1;
/* next point */
if(bezt==last) {
if(nu->flagu & CU_NURB_CYCLIC) next= nu->bezt;
else next= bezt;
}
else next= bezt+1;
fac= 0.0;
dfac= 1.0f/(float)resolu;
for(a=0; a<resolu; a++, fac+= dfac) {
if (tilt_array) {
if (nu->tilt_interp==KEY_CU_EASE) { /* May as well support for tilt also 2.47 ease interp */
*tilt_array = prevbezt->alfa + (bezt->alfa - prevbezt->alfa)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
} else {
key_curve_position_weights(fac, t, nu->tilt_interp);
*tilt_array= t[0]*pprev->alfa + t[1]*prevbezt->alfa + t[2]*bezt->alfa + t[3]*next->alfa;
}
tilt_array = (float *)(((char *)tilt_array) + stride);
}
if (radius_array) {
if (nu->radius_interp==KEY_CU_EASE) {
/* Support 2.47 ease interp
* Note! - this only takes the 2 points into account,
* giving much more localized results to changes in radius, sometimes you want that */
*radius_array = prevbezt->radius + (bezt->radius - prevbezt->radius)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
} else {
/* reuse interpolation from tilt if we can */
if (tilt_array==NULL || nu->tilt_interp != nu->radius_interp) {
key_curve_position_weights(fac, t, nu->radius_interp);
}
*radius_array= t[0]*pprev->radius + t[1]*prevbezt->radius + t[2]*bezt->radius + t[3]*next->radius;
}
radius_array = (float *)(((char *)radius_array) + stride);
}
if(weight_array) {
/* basic interpolation for now, could copy tilt interp too */
*weight_array = prevbezt->weight + (bezt->weight - prevbezt->weight)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
weight_array = (float *)(((char *)weight_array) + stride);
}
}
}
/* make_bevel_list_3D_* funcs, at a minimum these must
* fill in the bezp->quat and bezp->dir values */
/* correct non-cyclic cases by copying direction and rotation
* values onto the first & last end-points */
static void bevel_list_cyclic_fix_3D(BevList *bl)
{
BevPoint *bevp, *bevp1;
bevp= (BevPoint *)(bl+1);
bevp1= bevp+1;
QUATCOPY(bevp->quat, bevp1->quat);
VECCOPY(bevp->dir, bevp1->dir);
VECCOPY(bevp->tan, bevp1->tan);
bevp= (BevPoint *)(bl+1);
bevp+= (bl->nr-1);
bevp1= bevp-1;
QUATCOPY(bevp->quat, bevp1->quat);
VECCOPY(bevp->dir, bevp1->dir);
VECCOPY(bevp->tan, bevp1->tan);
}
/* utility for make_bevel_list_3D_* funcs */
static void bevel_list_calc_bisect(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0;
int nr;
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
/* totally simple */
bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
}
static void bevel_list_flip_tangents(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0;
int nr;
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
if(RAD2DEG(angle_v2v2(bevp0->tan, bevp1->tan)) > 90)
negate_v3(bevp1->tan);
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
}
/* apply user tilt */
static void bevel_list_apply_tilt(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0;
int nr;
float q[4];
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
axis_angle_to_quat(q, bevp1->dir, bevp1->alfa);
mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
normalize_qt(bevp1->quat);
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
}
/* smooth quats, this function should be optimized, it can get slow with many iterations. */
static void bevel_list_smooth(BevList *bl, int smooth_iter)
{
BevPoint *bevp2, *bevp1, *bevp0;
int nr;
float q[4];
float bevp0_quat[4];
int a;
for(a=0; a < smooth_iter; a++) {
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
if(bl->poly== -1) { /* check its not cyclic */
/* skip the first point */
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
nr--;
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
nr--;
}
QUATCOPY(bevp0_quat, bevp0->quat);
while(nr--) {
/* interpolate quats */
float zaxis[3] = {0,0,1}, cross[3], q2[4];
interp_qt_qtqt(q, bevp0_quat, bevp2->quat, 0.5);
normalize_qt(q);
mul_qt_v3(q, zaxis);
cross_v3_v3v3(cross, zaxis, bevp1->dir);
axis_angle_to_quat(q2, cross, angle_normalized_v3v3(zaxis, bevp1->dir));
normalize_qt(q2);
QUATCOPY(bevp0_quat, bevp1->quat);
mul_qt_qtqt(q, q2, q);
interp_qt_qtqt(bevp1->quat, bevp1->quat, q, 0.5);
normalize_qt(bevp1->quat);
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
}
}
static void make_bevel_list_3D_zup(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
int nr;
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
/* totally simple */
bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
vec_to_quat( bevp1->quat,bevp1->dir, 5, 1);
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
}
static void make_bevel_list_3D_minimum_twist(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
int nr;
float q[4];
float cross_tmp[3];
bevel_list_calc_bisect(bl);
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
if(nr+4 > bl->nr) { /* first time and second time, otherwise first point adjusts last */
vec_to_quat( bevp1->quat,bevp1->dir, 5, 1);
}
else {
float angle= angle_normalized_v3v3(bevp0->dir, bevp1->dir);
if(angle > 0.0f) { /* otherwise we can keep as is */
cross_v3_v3v3(cross_tmp, bevp0->dir, bevp1->dir);
axis_angle_to_quat(q, cross_tmp, angle);
mul_qt_qtqt(bevp1->quat, q, bevp0->quat);
}
else {
QUATCOPY(bevp1->quat, bevp0->quat);
}
}
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
if(bl->poly != -1) { /* check for cyclic */
/* Need to correct for the start/end points not matching
* do this by calculating the tilt angle difference, then apply
* the rotation gradually over the entire curve
*
* note that the split is between last and second last, rather then first/last as youd expect.
*
* real order is like this
* 0,1,2,3,4 --> 1,2,3,4,0
*
* this is why we compare last with second last
* */
float vec_1[3]= {0,1,0}, vec_2[3]= {0,1,0}, angle, ang_fac, cross_tmp[3];
BevPoint *bevp_first;
BevPoint *bevp_last;
bevp_first= (BevPoint *)(bl+1);
bevp_first+= bl->nr-1;
bevp_last = bevp_first;
bevp_last--;
/* quats and vec's are normalized, should not need to re-normalize */
mul_qt_v3(bevp_first->quat, vec_1);
mul_qt_v3(bevp_last->quat, vec_2);
normalize_v3(vec_1);
normalize_v3(vec_2);
/* align the vector, can avoid this and it looks 98% OK but
* better to align the angle quat roll's before comparing */
{
cross_v3_v3v3(cross_tmp, bevp_last->dir, bevp_first->dir);
angle = angle_normalized_v3v3(bevp_first->dir, bevp_last->dir);
axis_angle_to_quat(q, cross_tmp, angle);
mul_qt_v3(q, vec_2);
}
angle= angle_normalized_v3v3(vec_1, vec_2);
/* flip rotation if needs be */
cross_v3_v3v3(cross_tmp, vec_1, vec_2);
normalize_v3(cross_tmp);
if(angle_normalized_v3v3(bevp_first->dir, cross_tmp) < 90/(180.0/M_PI))
angle = -angle;
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
ang_fac= angle * (1.0f-((float)nr/bl->nr)); /* also works */
axis_angle_to_quat(q, bevp1->dir, ang_fac);
mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
}
}
static void make_bevel_list_3D_tangent(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
int nr;
float bevp0_tan[3], cross_tmp[3];
bevel_list_calc_bisect(bl);
if(bl->poly== -1) /* check its not cyclic */
bevel_list_cyclic_fix_3D(bl); // XXX - run this now so tangents will be right before doing the flipping
bevel_list_flip_tangents(bl);
/* correct the tangents */
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir);
cross_v3_v3v3(bevp1->tan, cross_tmp, bevp1->dir);
normalize_v3(bevp1->tan);
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
/* now for the real twist calc */
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
VECCOPY(bevp0_tan, bevp0->tan);
nr= bl->nr;
while(nr--) {
/* make perpendicular, modify tan in place, is ok */
float cross_tmp[3];
float zero[3] = {0,0,0};
cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir);
normalize_v3(cross_tmp);
tri_to_quat( bevp1->quat,zero, cross_tmp, bevp1->tan); /* XXX - could be faster */
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
}
static void make_bevel_list_3D(BevList *bl, int smooth_iter, int twist_mode)
{
switch(twist_mode) {
case CU_TWIST_TANGENT:
make_bevel_list_3D_tangent(bl);
break;
case CU_TWIST_MINIMUM:
make_bevel_list_3D_minimum_twist(bl);
break;
default: /* CU_TWIST_Z_UP default, pre 2.49c */
make_bevel_list_3D_zup(bl);
}
if(bl->poly== -1) /* check its not cyclic */
bevel_list_cyclic_fix_3D(bl);
if(smooth_iter)
bevel_list_smooth(bl, smooth_iter);
bevel_list_apply_tilt(bl);
}
/* only for 2 points */
static void make_bevel_list_segment_3D(BevList *bl)
{
float q[4];
BevPoint *bevp2= (BevPoint *)(bl+1);
BevPoint *bevp1= bevp2+1;
/* simple quat/dir */
sub_v3_v3v3(bevp1->dir, bevp1->vec, bevp2->vec);
normalize_v3(bevp1->dir);
vec_to_quat( bevp1->quat,bevp1->dir, 5, 1);
axis_angle_to_quat(q, bevp1->dir, bevp1->alfa);
mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
normalize_qt(bevp1->quat);
VECCOPY(bevp2->dir, bevp1->dir);
QUATCOPY(bevp2->quat, bevp1->quat);
}
void makeBevelList(Object *ob)
{
/*
- convert all curves to polys, with indication of resol and flags for double-vertices
- possibly; do a smart vertice removal (in case Nurb)
- separate in individual blicks with BoundBox
- AutoHole detection
*/
Curve *cu;
Nurb *nu;
BezTriple *bezt, *prevbezt;
BPoint *bp;
BevList *bl, *blnew, *blnext;
BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0;
float min, inp, x1, x2, y1, y2;
struct bevelsort *sortdata, *sd, *sd1;
int a, b, nr, poly, resolu = 0, len = 0;
int do_tilt, do_radius, do_weight;
/* this function needs an object, because of tflag and upflag */
cu= ob->data;
/* do we need to calculate the radius for each point? */
/* do_radius = (cu->bevobj || cu->taperobj || (cu->flag & CU_FRONT) || (cu->flag & CU_BACK)) ? 0 : 1; */
/* STEP 1: MAKE POLYS */
BLI_freelistN(&(cu->bev));
if(cu->editnurb && ob->type!=OB_FONT) {
ListBase *nurbs= ED_curve_editnurbs(cu);
nu= nurbs->first;
} else nu= cu->nurb.first;
while(nu) {
/* check if we will calculate tilt data */
do_tilt = CU_DO_TILT(cu, nu);
do_radius = CU_DO_RADIUS(cu, nu); /* normal display uses the radius, better just to calculate them */
do_weight = 1;
/* check we are a single point? also check we are not a surface and that the orderu is sane,
* enforced in the UI but can go wrong possibly */
if(!check_valid_nurb_u(nu)) {
bl= MEM_callocN(sizeof(BevList)+1*sizeof(BevPoint), "makeBevelList1");
BLI_addtail(&(cu->bev), bl);
bl->nr= 0;
} else {
if(G.rendering && cu->resolu_ren!=0)
resolu= cu->resolu_ren;
else
resolu= nu->resolu;
if(nu->type == CU_POLY) {
len= nu->pntsu;
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList2");
BLI_addtail(&(cu->bev), bl);
if(nu->flagu & CU_NURB_CYCLIC) bl->poly= 0;
else bl->poly= -1;
bl->nr= len;
bl->dupe_nr= 0;
bevp= (BevPoint *)(bl+1);
bp= nu->bp;
while(len--) {
VECCOPY(bevp->vec, bp->vec);
bevp->alfa= bp->alfa;
bevp->radius= bp->radius;
bevp->weight= bp->weight;
bevp->split_tag= TRUE;
bevp++;
bp++;
}
}
else if(nu->type == CU_BEZIER) {
len= resolu*(nu->pntsu+ (nu->flagu & CU_NURB_CYCLIC) -1)+1; /* in case last point is not cyclic */
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelBPoints");
BLI_addtail(&(cu->bev), bl);
if(nu->flagu & CU_NURB_CYCLIC) bl->poly= 0;
else bl->poly= -1;
bevp= (BevPoint *)(bl+1);
a= nu->pntsu-1;
bezt= nu->bezt;
if(nu->flagu & CU_NURB_CYCLIC) {
a++;
prevbezt= nu->bezt+(nu->pntsu-1);
}
else {
prevbezt= bezt;
bezt++;
}
while(a--) {
if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) {
VECCOPY(bevp->vec, prevbezt->vec[1]);
bevp->alfa= prevbezt->alfa;
bevp->radius= prevbezt->radius;
bevp->weight= prevbezt->weight;
bevp->split_tag= TRUE;
bevp->dupe_tag= FALSE;
bevp++;
bl->nr++;
bl->dupe_nr= 1;
}
else {
/* always do all three, to prevent data hanging around */
int j;
/* BevPoint must stay aligned to 4 so sizeof(BevPoint)/sizeof(float) works */
for(j=0; j<3; j++) {
forward_diff_bezier( prevbezt->vec[1][j], prevbezt->vec[2][j],
bezt->vec[0][j], bezt->vec[1][j],
&(bevp->vec[j]), resolu, sizeof(BevPoint));
}
/* if both arrays are NULL do nothiong */
alfa_bezpart( prevbezt, bezt, nu,
do_tilt ? &bevp->alfa : NULL,
do_radius ? &bevp->radius : NULL,
do_weight ? &bevp->weight : NULL,
resolu, sizeof(BevPoint));
if(cu->twist_mode==CU_TWIST_TANGENT) {
forward_diff_bezier_cotangent(
prevbezt->vec[1], prevbezt->vec[2],
bezt->vec[0], bezt->vec[1],
bevp->tan, resolu, sizeof(BevPoint));
}
/* indicate with handlecodes double points */
if(prevbezt->h1==prevbezt->h2) {
if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->split_tag= TRUE;
}
else {
if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->split_tag= TRUE;
else if(prevbezt->h2==0 || prevbezt->h2==HD_VECT) bevp->split_tag= TRUE;
}
bl->nr+= resolu;
bevp+= resolu;
}
prevbezt= bezt;
bezt++;
}
if((nu->flagu & CU_NURB_CYCLIC)==0) { /* not cyclic: endpoint */
VECCOPY(bevp->vec, prevbezt->vec[1]);
bevp->alfa= prevbezt->alfa;
bevp->radius= prevbezt->radius;
bevp->weight= prevbezt->weight;
bl->nr++;
}
}
else if(nu->type == CU_NURBS) {
if(nu->pntsv==1) {
len= (resolu*SEGMENTSU(nu));
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList3");
BLI_addtail(&(cu->bev), bl);
bl->nr= len;
bl->dupe_nr= 0;
if(nu->flagu & CU_NURB_CYCLIC) bl->poly= 0;
else bl->poly= -1;
bevp= (BevPoint *)(bl+1);
makeNurbcurve( nu, &bevp->vec[0],
do_tilt ? &bevp->alfa : NULL,
do_radius ? &bevp->radius : NULL,
do_weight ? &bevp->weight : NULL,
resolu, sizeof(BevPoint));
}
}
}
nu= nu->next;
}
/* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */
bl= cu->bev.first;
while(bl) {
if (bl->nr) { /* null bevel items come from single points */
nr= bl->nr;
bevp1= (BevPoint *)(bl+1);
bevp0= bevp1+(nr-1);
nr--;
while(nr--) {
if( fabs(bevp0->vec[0]-bevp1->vec[0])<0.00001 ) {
if( fabs(bevp0->vec[1]-bevp1->vec[1])<0.00001 ) {
if( fabs(bevp0->vec[2]-bevp1->vec[2])<0.00001 ) {
bevp0->dupe_tag= TRUE;
bl->dupe_nr++;
}
}
}
bevp0= bevp1;
bevp1++;
}
}
bl= bl->next;
}
bl= cu->bev.first;
while(bl) {
blnext= bl->next;
if(bl->nr && bl->dupe_nr) {
nr= bl->nr- bl->dupe_nr+1; /* +1 because vectorbezier sets flag too */
blnew= MEM_mallocN(sizeof(BevList)+nr*sizeof(BevPoint), "makeBevelList4");
memcpy(blnew, bl, sizeof(BevList));
blnew->nr= 0;
BLI_remlink(&(cu->bev), bl);
BLI_insertlinkbefore(&(cu->bev),blnext,blnew); /* to make sure bevlijst is tuned with nurblist */
bevp0= (BevPoint *)(bl+1);
bevp1= (BevPoint *)(blnew+1);
nr= bl->nr;
while(nr--) {
if(bevp0->dupe_tag==0) {
memcpy(bevp1, bevp0, sizeof(BevPoint));
bevp1++;
blnew->nr++;
}
bevp0++;
}
MEM_freeN(bl);
blnew->dupe_nr= 0;
}
bl= blnext;
}
/* STEP 3: POLYS COUNT AND AUTOHOLE */
bl= cu->bev.first;
poly= 0;
while(bl) {
if(bl->nr && bl->poly>=0) {
poly++;
bl->poly= poly;
bl->hole= 0;
}
bl= bl->next;
}
/* find extreme left points, also test (turning) direction */
if(poly>0) {
sd= sortdata= MEM_mallocN(sizeof(struct bevelsort)*poly, "makeBevelList5");
bl= cu->bev.first;
while(bl) {
if(bl->poly>0) {
min= 300000.0;
bevp= (BevPoint *)(bl+1);
nr= bl->nr;
while(nr--) {
if(min>bevp->vec[0]) {
min= bevp->vec[0];
bevp1= bevp;
}
bevp++;
}
sd->bl= bl;
sd->left= min;
bevp= (BevPoint *)(bl+1);
if(bevp1== bevp) bevp0= bevp+ (bl->nr-1);
else bevp0= bevp1-1;
bevp= bevp+ (bl->nr-1);
if(bevp1== bevp) bevp2= (BevPoint *)(bl+1);
else bevp2= bevp1+1;
inp= (bevp1->vec[0]- bevp0->vec[0]) * (bevp0->vec[1]- bevp2->vec[1]) + (bevp0->vec[1]- bevp1->vec[1]) * (bevp0->vec[0]- bevp2->vec[0]);
if(inp>0.0) sd->dir= 1;
else sd->dir= 0;
sd++;
}
bl= bl->next;
}
qsort(sortdata,poly,sizeof(struct bevelsort), vergxcobev);
sd= sortdata+1;
for(a=1; a<poly; a++, sd++) {
bl= sd->bl; /* is bl a hole? */
sd1= sortdata+ (a-1);
for(b=a-1; b>=0; b--, sd1--) { /* all polys to the left */
if(bevelinside(sd1->bl, bl)) {
bl->hole= 1- sd1->bl->hole;
break;
}
}
}
/* turning direction */
if((cu->flag & CU_3D)==0) {
sd= sortdata;
for(a=0; a<poly; a++, sd++) {
if(sd->bl->hole==sd->dir) {
bl= sd->bl;
bevp1= (BevPoint *)(bl+1);
bevp2= bevp1+ (bl->nr-1);
nr= bl->nr/2;
while(nr--) {
SWAP(BevPoint, *bevp1, *bevp2);
bevp1++;
bevp2--;
}
}
}
}
MEM_freeN(sortdata);
}
/* STEP 4: 2D-COSINES or 3D ORIENTATION */
if((cu->flag & CU_3D)==0) {
/* note: bevp->dir and bevp->quat are not needed for beveling but are
* used when making a path from a 2D curve, therefor they need to be set - Campbell */
bl= cu->bev.first;
while(bl) {
if(bl->nr < 2) {
/* do nothing */
}
else if(bl->nr==2) { /* 2 pnt, treat separate */
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+1;
x1= bevp1->vec[0]- bevp2->vec[0];
y1= bevp1->vec[1]- bevp2->vec[1];
calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa));
bevp2->sina= bevp1->sina;
bevp2->cosa= bevp1->cosa;
/* fill in dir & quat */
make_bevel_list_segment_3D(bl);
}
else {
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
x1= bevp1->vec[0]- bevp0->vec[0];
x2= bevp1->vec[0]- bevp2->vec[0];
y1= bevp1->vec[1]- bevp0->vec[1];
y2= bevp1->vec[1]- bevp2->vec[1];
calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
/* from: make_bevel_list_3D_zup, could call but avoid a second loop.
* no need for tricky tilt calculation as with 3D curves */
bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
vec_to_quat( bevp1->quat,bevp1->dir, 5, 1);
/* done with inline make_bevel_list_3D_zup */
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
/* correct non-cyclic cases */
if(bl->poly== -1) {
bevp= (BevPoint *)(bl+1);
bevp1= bevp+1;
bevp->sina= bevp1->sina;
bevp->cosa= bevp1->cosa;
bevp= (BevPoint *)(bl+1);
bevp+= (bl->nr-1);
bevp1= bevp-1;
bevp->sina= bevp1->sina;
bevp->cosa= bevp1->cosa;
/* correct for the dir/quat, see above why its needed */
bevel_list_cyclic_fix_3D(bl);
}
}
bl= bl->next;
}
}
else { /* 3D Curves */
bl= cu->bev.first;
while(bl) {
if(bl->nr < 2) {
/* do nothing */
}
else if(bl->nr==2) { /* 2 pnt, treat separate */
make_bevel_list_segment_3D(bl);
}
else {
make_bevel_list_3D(bl, (int)(resolu*cu->twist_smooth), cu->twist_mode);
}
bl= bl->next;
}
}
}
/* ****************** HANDLES ************** */
/*
* handlecodes:
* 0: nothing, 1:auto, 2:vector, 3:aligned
*/
/* mode: is not zero when FCurve, is 2 when forced horizontal for autohandles */
void calchandleNurb(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode)
{
float *p1,*p2,*p3, pt[3];
float dx1,dy1,dz1,dx,dy,dz,vx,vy,vz,len,len1,len2;
if(bezt->h1==0 && bezt->h2==0) return;
p2= bezt->vec[1];
if(prev==0) {
p3= next->vec[1];
pt[0]= 2*p2[0]- p3[0];
pt[1]= 2*p2[1]- p3[1];
pt[2]= 2*p2[2]- p3[2];
p1= pt;
}
else p1= prev->vec[1];
if(next==0) {
pt[0]= 2*p2[0]- p1[0];
pt[1]= 2*p2[1]- p1[1];
pt[2]= 2*p2[2]- p1[2];
p3= pt;
}
else p3= next->vec[1];
dx= p2[0]- p1[0];
dy= p2[1]- p1[1];
dz= p2[2]- p1[2];
if(mode) len1= dx;
else len1= (float)sqrt(dx*dx+dy*dy+dz*dz);
dx1= p3[0]- p2[0];
dy1= p3[1]- p2[1];
dz1= p3[2]- p2[2];
if(mode) len2= dx1;
else len2= (float)sqrt(dx1*dx1+dy1*dy1+dz1*dz1);
if(len1==0.0f) len1=1.0f;
if(len2==0.0f) len2=1.0f;
if(bezt->h1==HD_AUTO || bezt->h2==HD_AUTO) { /* auto */
vx= dx1/len2 + dx/len1;
vy= dy1/len2 + dy/len1;
vz= dz1/len2 + dz/len1;
len= 2.5614f*(float)sqrt(vx*vx + vy*vy + vz*vz);
if(len!=0.0f) {
int leftviolate=0, rightviolate=0; /* for mode==2 */
if(len1>5.0f*len2) len1= 5.0f*len2;
if(len2>5.0f*len1) len2= 5.0f*len1;
if(bezt->h1==HD_AUTO) {
len1/=len;
*(p2-3)= *p2-vx*len1;
*(p2-2)= *(p2+1)-vy*len1;
*(p2-1)= *(p2+2)-vz*len1;
if(mode==2 && next && prev) { // keep horizontal if extrema
float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
float ydiff2= next->vec[1][1] - bezt->vec[1][1];
if( (ydiff1<=0.0 && ydiff2<=0.0) || (ydiff1>=0.0 && ydiff2>=0.0) ) {
bezt->vec[0][1]= bezt->vec[1][1];
}
else { // handles should not be beyond y coord of two others
if(ydiff1<=0.0) {
if(prev->vec[1][1] > bezt->vec[0][1]) {
bezt->vec[0][1]= prev->vec[1][1];
leftviolate= 1;
}
}
else {
if(prev->vec[1][1] < bezt->vec[0][1]) {
bezt->vec[0][1]= prev->vec[1][1];
leftviolate= 1;
}
}
}
}
}
if(bezt->h2==HD_AUTO) {
len2/=len;
*(p2+3)= *p2+vx*len2;
*(p2+4)= *(p2+1)+vy*len2;
*(p2+5)= *(p2+2)+vz*len2;
if(mode==2 && next && prev) { // keep horizontal if extrema
float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
float ydiff2= next->vec[1][1] - bezt->vec[1][1];
if( (ydiff1<=0.0 && ydiff2<=0.0) || (ydiff1>=0.0 && ydiff2>=0.0) ) {
bezt->vec[2][1]= bezt->vec[1][1];
}
else { // handles should not be beyond y coord of two others
if(ydiff1<=0.0) {
if(next->vec[1][1] < bezt->vec[2][1]) {
bezt->vec[2][1]= next->vec[1][1];
rightviolate= 1;
}
}
else {
if(next->vec[1][1] > bezt->vec[2][1]) {
bezt->vec[2][1]= next->vec[1][1];
rightviolate= 1;
}
}
}
}
}
if(leftviolate || rightviolate) { /* align left handle */
float h1[3], h2[3];
sub_v3_v3v3(h1, p2-3, p2);
sub_v3_v3v3(h2, p2, p2+3);
len1= normalize_v3(h1);
len2= normalize_v3(h2);
vz= INPR(h1, h2);
if(leftviolate) {
*(p2+3)= *(p2) - vz*len2*h1[0];
*(p2+4)= *(p2+1) - vz*len2*h1[1];
*(p2+5)= *(p2+2) - vz*len2*h1[2];
}
else {
*(p2-3)= *(p2) + vz*len1*h2[0];
*(p2-2)= *(p2+1) + vz*len1*h2[1];
*(p2-1)= *(p2+2) + vz*len1*h2[2];
}
}
}
}
if(bezt->h1==HD_VECT) { /* vector */
dx/=3.0;
dy/=3.0;
dz/=3.0;
*(p2-3)= *p2-dx;
*(p2-2)= *(p2+1)-dy;
*(p2-1)= *(p2+2)-dz;
}
if(bezt->h2==HD_VECT) {
dx1/=3.0;
dy1/=3.0;
dz1/=3.0;
*(p2+3)= *p2+dx1;
*(p2+4)= *(p2+1)+dy1;
*(p2+5)= *(p2+2)+dz1;
}
len2= len_v3v3(p2, p2+3);
len1= len_v3v3(p2, p2-3);
if(len1==0.0) len1=1.0;
if(len2==0.0) len2=1.0;
if(bezt->f1 & SELECT) { /* order of calculation */
if(bezt->h2==HD_ALIGN) { /* aligned */
len= len2/len1;
p2[3]= p2[0]+len*(p2[0]-p2[-3]);
p2[4]= p2[1]+len*(p2[1]-p2[-2]);
p2[5]= p2[2]+len*(p2[2]-p2[-1]);
}
if(bezt->h1==HD_ALIGN) {
len= len1/len2;
p2[-3]= p2[0]+len*(p2[0]-p2[3]);
p2[-2]= p2[1]+len*(p2[1]-p2[4]);
p2[-1]= p2[2]+len*(p2[2]-p2[5]);
}
}
else {
if(bezt->h1==HD_ALIGN) {
len= len1/len2;
p2[-3]= p2[0]+len*(p2[0]-p2[3]);
p2[-2]= p2[1]+len*(p2[1]-p2[4]);
p2[-1]= p2[2]+len*(p2[2]-p2[5]);
}
if(bezt->h2==HD_ALIGN) { /* aligned */
len= len2/len1;
p2[3]= p2[0]+len*(p2[0]-p2[-3]);
p2[4]= p2[1]+len*(p2[1]-p2[-2]);
p2[5]= p2[2]+len*(p2[2]-p2[-1]);
}
}
}
void calchandlesNurb(Nurb *nu) /* first, if needed, set handle flags */
{
BezTriple *bezt, *prev, *next;
short a;
if(nu->type != CU_BEZIER) return;
if(nu->pntsu<2) return;
a= nu->pntsu;
bezt= nu->bezt;
if(nu->flagu & CU_NURB_CYCLIC) prev= bezt+(a-1);
else prev= 0;
next= bezt+1;
while(a--) {
calchandleNurb(bezt, prev, next, 0);
prev= bezt;
if(a==1) {
if(nu->flagu & CU_NURB_CYCLIC) next= nu->bezt;
else next= 0;
}
else next++;
bezt++;
}
}
void testhandlesNurb(Nurb *nu)
{
/* use when something has changed with handles.
it treats all BezTriples with the following rules:
PHASE 1: do types have to be altered?
Auto handles: become aligned when selection status is NOT(000 || 111)
Vector handles: become 'nothing' when (one half selected AND other not)
PHASE 2: recalculate handles
*/
BezTriple *bezt;
short flag, a;
if(nu->type != CU_BEZIER) return;
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
flag= 0;
if(bezt->f1 & SELECT) flag++;
if(bezt->f2 & SELECT) flag += 2;
if(bezt->f3 & SELECT) flag += 4;
if( !(flag==0 || flag==7) ) {
if(bezt->h1==HD_AUTO) { /* auto */
bezt->h1= HD_ALIGN;
}
if(bezt->h2==HD_AUTO) { /* auto */
bezt->h2= HD_ALIGN;
}
if(bezt->h1==HD_VECT) { /* vector */
if(flag < 4) bezt->h1= 0;
}
if(bezt->h2==HD_VECT) { /* vector */
if( flag > 3) bezt->h2= 0;
}
}
bezt++;
}
calchandlesNurb(nu);
}
void autocalchandlesNurb(Nurb *nu, int flag)
{
/* checks handle coordinates and calculates type */
BezTriple *bezt2, *bezt1, *bezt0;
int i, align, leftsmall, rightsmall;
if(nu==0 || nu->bezt==0) return;
bezt2 = nu->bezt;
bezt1 = bezt2 + (nu->pntsu-1);
bezt0 = bezt1 - 1;
i = nu->pntsu;
while(i--) {
align= leftsmall= rightsmall= 0;
/* left handle: */
if(flag==0 || (bezt1->f1 & flag) ) {
bezt1->h1= 0;
/* distance too short: vectorhandle */
if( len_v3v3( bezt1->vec[1], bezt0->vec[1] ) < 0.0001) {
bezt1->h1= HD_VECT;
leftsmall= 1;
}
else {
/* aligned handle? */
if(dist_to_line_v2(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001) {
align= 1;
bezt1->h1= HD_ALIGN;
}
/* or vector handle? */
if(dist_to_line_v2(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001)
bezt1->h1= HD_VECT;
}
}
/* right handle: */
if(flag==0 || (bezt1->f3 & flag) ) {
bezt1->h2= 0;
/* distance too short: vectorhandle */
if( len_v3v3( bezt1->vec[1], bezt2->vec[1] ) < 0.0001) {
bezt1->h2= HD_VECT;
rightsmall= 1;
}
else {
/* aligned handle? */
if(align) bezt1->h2= HD_ALIGN;
/* or vector handle? */
if(dist_to_line_v2(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001)
bezt1->h2= HD_VECT;
}
}
if(leftsmall && bezt1->h2==HD_ALIGN) bezt1->h2= 0;
if(rightsmall && bezt1->h1==HD_ALIGN) bezt1->h1= 0;
/* undesired combination: */
if(bezt1->h1==HD_ALIGN && bezt1->h2==HD_VECT) bezt1->h1= 0;
if(bezt1->h2==HD_ALIGN && bezt1->h1==HD_VECT) bezt1->h2= 0;
bezt0= bezt1;
bezt1= bezt2;
bezt2++;
}
calchandlesNurb(nu);
}
void autocalchandlesNurb_all(ListBase *editnurb, int flag)
{
Nurb *nu;
nu= editnurb->first;
while(nu) {
autocalchandlesNurb(nu, flag);
nu= nu->next;
}
}
void sethandlesNurb(ListBase *editnurb, short code)
{
/* code==1: set autohandle */
/* code==2: set vectorhandle */
/* code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */
/* code==4: sets icu flag to become IPO_AUTO_HORIZ, horizontal extremes on auto-handles */
/* code==5: Set align, like 3 but no toggle */
/* code==6: Clear align, like 3 but no toggle */
Nurb *nu;
BezTriple *bezt;
short a, ok=0;
if(code==1 || code==2) {
nu= editnurb->first;
while(nu) {
if(nu->type == CU_BEZIER) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if((bezt->f1 & SELECT) || (bezt->f3 & SELECT)) {
if(bezt->f1 & SELECT) bezt->h1= code;
if(bezt->f3 & SELECT) bezt->h2= code;
if(bezt->h1!=bezt->h2) {
if ELEM(bezt->h1, HD_ALIGN, HD_AUTO) bezt->h1= HD_FREE;
if ELEM(bezt->h2, HD_ALIGN, HD_AUTO) bezt->h2= HD_FREE;
}
}
bezt++;
}
calchandlesNurb(nu);
}
nu= nu->next;
}
}
else {
/* there is 1 handle not FREE: FREE it all, else make ALIGNED */
nu= editnurb->first;
if (code == 5) {
ok = HD_ALIGN;
} else if (code == 6) {
ok = HD_FREE;
} else {
/* Toggle */
while(nu) {
if(nu->type == CU_BEZIER) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if((bezt->f1 & SELECT) && bezt->h1) ok= 1;
if((bezt->f3 & SELECT) && bezt->h2) ok= 1;
if(ok) break;
bezt++;
}
}
nu= nu->next;
}
if(ok) ok= HD_FREE;
else ok= HD_ALIGN;
}
nu= editnurb->first;
while(nu) {
if(nu->type == CU_BEZIER) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if(bezt->f1 & SELECT) bezt->h1= ok;
if(bezt->f3 & SELECT) bezt->h2= ok;
bezt++;
}
calchandlesNurb(nu);
}
nu= nu->next;
}
}
}
static void swapdata(void *adr1, void *adr2, int len)
{
if(len<=0) return;
if(len<65) {
char adr[64];
memcpy(adr, adr1, len);
memcpy(adr1, adr2, len);
memcpy(adr2, adr, len);
}
else {
char *adr;
adr= (char *)MEM_mallocN(len, "curve swap");
memcpy(adr, adr1, len);
memcpy(adr1, adr2, len);
memcpy(adr2, adr, len);
MEM_freeN(adr);
}
}
void switchdirectionNurb(Nurb *nu)
{
BezTriple *bezt1, *bezt2;
BPoint *bp1, *bp2;
float *fp1, *fp2, *tempf;
int a, b;
if(nu->pntsu==1 && nu->pntsv==1) return;
if(nu->type == CU_BEZIER) {
a= nu->pntsu;
bezt1= nu->bezt;
bezt2= bezt1+(a-1);
if(a & 1) a+= 1; /* if odd, also swap middle content */
a/= 2;
while(a>0) {
if(bezt1!=bezt2) SWAP(BezTriple, *bezt1, *bezt2);
swapdata(bezt1->vec[0], bezt1->vec[2], 12);
if(bezt1!=bezt2) swapdata(bezt2->vec[0], bezt2->vec[2], 12);
SWAP(char, bezt1->h1, bezt1->h2);
SWAP(short, bezt1->f1, bezt1->f3);
if(bezt1!=bezt2) {
SWAP(char, bezt2->h1, bezt2->h2);
SWAP(short, bezt2->f1, bezt2->f3);
bezt1->alfa= -bezt1->alfa;
bezt2->alfa= -bezt2->alfa;
}
a--;
bezt1++;
bezt2--;
}
}
else if(nu->pntsv==1) {
a= nu->pntsu;
bp1= nu->bp;
bp2= bp1+(a-1);
a/= 2;
while(bp1!=bp2 && a>0) {
SWAP(BPoint, *bp1, *bp2);
a--;
bp1->alfa= -bp1->alfa;
bp2->alfa= -bp2->alfa;
bp1++;
bp2--;
}
if(nu->type == CU_NURBS) {
/* no knots for too short paths */
if(nu->knotsu) {
/* inverse knots */
a= KNOTSU(nu);
fp1= nu->knotsu;
fp2= fp1+(a-1);
a/= 2;
while(fp1!=fp2 && a>0) {
SWAP(float, *fp1, *fp2);
a--;
fp1++;
fp2--;
}
/* and make in increasing order again */
a= KNOTSU(nu);
fp1= nu->knotsu;
fp2=tempf= MEM_mallocN(sizeof(float)*a, "switchdirect");
while(a--) {
fp2[0]= fabs(fp1[1]-fp1[0]);
fp1++;
fp2++;
}
a= KNOTSU(nu)-1;
fp1= nu->knotsu;
fp2= tempf;
fp1[0]= 0.0;
fp1++;
while(a--) {
fp1[0]= fp1[-1]+fp2[0];
fp1++;
fp2++;
}
MEM_freeN(tempf);
}
}
}
else {
for(b=0; b<nu->pntsv; b++) {
bp1= nu->bp+b*nu->pntsu;
a= nu->pntsu;
bp2= bp1+(a-1);
a/= 2;
while(bp1!=bp2 && a>0) {
SWAP(BPoint, *bp1, *bp2);
a--;
bp1++;
bp2--;
}
}
}
}
float (*curve_getVertexCos(Curve *UNUSED(cu), ListBase *lb, int *numVerts_r))[3]
{
int i, numVerts = *numVerts_r = count_curveverts(lb);
float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "cu_vcos");
Nurb *nu;
co = cos[0];
for (nu=lb->first; nu; nu=nu->next) {
if (nu->type == CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for (i=0; i<nu->pntsu; i++,bezt++) {
VECCOPY(co, bezt->vec[0]); co+=3;
VECCOPY(co, bezt->vec[1]); co+=3;
VECCOPY(co, bezt->vec[2]); co+=3;
}
} else {
BPoint *bp = nu->bp;
for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
VECCOPY(co, bp->vec); co+=3;
}
}
}
return cos;
}
void curve_applyVertexCos(Curve *UNUSED(cu), ListBase *lb, float (*vertexCos)[3])
{
float *co = vertexCos[0];
Nurb *nu;
int i;
for (nu=lb->first; nu; nu=nu->next) {
if (nu->type == CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for (i=0; i<nu->pntsu; i++,bezt++) {
VECCOPY(bezt->vec[0], co); co+=3;
VECCOPY(bezt->vec[1], co); co+=3;
VECCOPY(bezt->vec[2], co); co+=3;
}
} else {
BPoint *bp = nu->bp;
for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
VECCOPY(bp->vec, co); co+=3;
}
}
}
}
float (*curve_getKeyVertexCos(Curve *UNUSED(cu), ListBase *lb, float *key))[3]
{
int i, numVerts = count_curveverts(lb);
float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "cu_vcos");
Nurb *nu;
co = cos[0];
for (nu=lb->first; nu; nu=nu->next) {
if (nu->type == CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for (i=0; i<nu->pntsu; i++,bezt++) {
VECCOPY(co, key); co+=3; key+=3;
VECCOPY(co, key); co+=3; key+=3;
VECCOPY(co, key); co+=3; key+=3;
key+=3; /* skip tilt */
}
}
else {
BPoint *bp = nu->bp;
for(i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
VECCOPY(co, key); co+=3; key+=3;
key++; /* skip tilt */
}
}
}
return cos;
}
void curve_applyKeyVertexTilts(Curve *UNUSED(cu), ListBase *lb, float *key)
{
Nurb *nu;
int i;
for(nu=lb->first; nu; nu=nu->next) {
if(nu->type == CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for(i=0; i<nu->pntsu; i++,bezt++) {
key+=3*3;
bezt->alfa= *key;
key+=3;
}
}
else {
BPoint *bp = nu->bp;
for(i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
key+=3;
bp->alfa= *key;
key++;
}
}
}
}
int check_valid_nurb_u( struct Nurb *nu )
{
if (nu==NULL) return 0;
if (nu->pntsu <= 1) return 0;
if (nu->type != CU_NURBS) return 1; /* not a nurb, lets assume its valid */
if (nu->pntsu < nu->orderu) return 0;
if (((nu->flag & CU_NURB_CYCLIC)==0) && (nu->flagu & CU_NURB_BEZIER)) { /* Bezier U Endpoints */
if (nu->orderu==4) {
if (nu->pntsu < 5) return 0; /* bezier with 4 orderu needs 5 points */
} else if (nu->orderu != 3) return 0; /* order must be 3 or 4 */
}
return 1;
}
int check_valid_nurb_v( struct Nurb *nu)
{
if (nu==NULL) return 0;
if (nu->pntsv <= 1) return 0;
if (nu->type != CU_NURBS) return 1; /* not a nurb, lets assume its valid */
if (nu->pntsv < nu->orderv) return 0;
if (((nu->flag & CU_NURB_CYCLIC)==0) && (nu->flagv & CU_NURB_BEZIER)) { /* Bezier V Endpoints */
if (nu->orderv==4) {
if (nu->pntsv < 5) return 0; /* bezier with 4 orderu needs 5 points */
} else if (nu->orderv != 3) return 0; /* order must be 3 or 4 */
}
return 1;
}
int clamp_nurb_order_u( struct Nurb *nu )
{
int change = 0;
if(nu->pntsu<nu->orderu) {
nu->orderu= nu->pntsu;
change= 1;
}
if(((nu->flagu & CU_NURB_CYCLIC)==0) && (nu->flagu & CU_NURB_BEZIER)) {
CLAMP(nu->orderu, 3,4);
change= 1;
}
return change;
}
int clamp_nurb_order_v( struct Nurb *nu)
{
int change = 0;
if(nu->pntsv<nu->orderv) {
nu->orderv= nu->pntsv;
change= 1;
}
if(((nu->flagv & CU_NURB_CYCLIC)==0) && (nu->flagv & CU_NURB_BEZIER)) {
CLAMP(nu->orderv, 3,4);
change= 1;
}
return change;
}
/* Get edit nurbs or normal nurbs list */
ListBase *BKE_curve_nurbs(Curve *cu)
{
if (cu->editnurb) {
return ED_curve_editnurbs(cu);
}
return &cu->nurb;
}
/* basic vertex data functions */
int minmax_curve(Curve *cu, float min[3], float max[3])
{
ListBase *nurb_lb= BKE_curve_nurbs(cu);
Nurb *nu;
for(nu= nurb_lb->first; nu; nu= nu->next)
minmaxNurb(nu, min, max);
return (nurb_lb->first != NULL);
}
int curve_center_median(Curve *cu, float cent[3])
{
ListBase *nurb_lb= BKE_curve_nurbs(cu);
Nurb *nu;
int total= 0;
zero_v3(cent);
for(nu= nurb_lb->first; nu; nu= nu->next) {
int i;
if(nu->type == CU_BEZIER) {
BezTriple *bezt;
i= nu->pntsu;
total += i * 3;
for(bezt= nu->bezt; i--; bezt++) {
add_v3_v3(cent, bezt->vec[0]);
add_v3_v3(cent, bezt->vec[1]);
add_v3_v3(cent, bezt->vec[2]);
}
}
else {
BPoint *bp;
i= nu->pntsu*nu->pntsv;
total += i;
for(bp= nu->bp; i--; bp++) {
add_v3_v3(cent, bp->vec);
}
}
}
mul_v3_fl(cent, 1.0f/(float)total);
return (total != 0);
}
int curve_center_bounds(Curve *cu, float cent[3])
{
float min[3], max[3];
INIT_MINMAX(min, max);
if(minmax_curve(cu, min, max)) {
mid_v3_v3v3(cent, min, max);
return 1;
}
return 0;
}
void curve_translate(Curve *cu, float offset[3], int do_keys)
{
ListBase *nurb_lb= BKE_curve_nurbs(cu);
Nurb *nu;
int i;
for(nu= nurb_lb->first; nu; nu= nu->next) {
BezTriple *bezt;
BPoint *bp;
if(nu->type == CU_BEZIER) {
i= nu->pntsu;
for(bezt= nu->bezt; i--; bezt++) {
add_v3_v3(bezt->vec[0], offset);
add_v3_v3(bezt->vec[1], offset);
add_v3_v3(bezt->vec[2], offset);
}
}
else {
i= nu->pntsu*nu->pntsv;
for(bp= nu->bp; i--; bp++) {
add_v3_v3(bp->vec, offset);
}
}
}
if (do_keys && cu->key) {
KeyBlock *kb;
for (kb=cu->key->block.first; kb; kb=kb->next) {
float *fp= kb->data;
for (i= kb->totelem; i--; fp+=3) {
add_v3_v3(fp, offset);
}
}
}
}