This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/editderivedmesh.c

1789 lines
52 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/editderivedmesh.c
* \ingroup bke
*/
#include <string.h>
#include <limits.h>
#include <math.h>
#include "GL/glew.h"
#include "BLI_utildefines.h"
#include "BLI_blenlib.h"
#include "BLI_edgehash.h"
#include "BLI_math.h"
#include "BKE_pbvh.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_paint.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "MEM_guardedalloc.h"
#include "GPU_buffers.h"
#include "GPU_draw.h"
#include "GPU_extensions.h"
#include "GPU_material.h"
/* bmesh */
#include "BKE_tessmesh.h"
#include "BLI_array.h"
#include "BLI_scanfill.h"
#include "bmesh.h"
/* end bmesh */
extern GLubyte stipple_quarttone[128]; /* glutil.c, bad level data */
BMEditMesh *BMEdit_Create(BMesh *bm, const bool do_tessellate)
{
BMEditMesh *em = MEM_callocN(sizeof(BMEditMesh), __func__);
em->bm = bm;
if (do_tessellate) {
BMEdit_RecalcTessellation(em);
}
return em;
}
BMEditMesh *BMEdit_Copy(BMEditMesh *em)
{
BMEditMesh *em_copy = MEM_callocN(sizeof(BMEditMesh), __func__);
*em_copy = *em;
em_copy->derivedCage = em_copy->derivedFinal = NULL;
em_copy->bm = BM_mesh_copy(em->bm);
/* The tessellation is NOT calculated on the copy here,
* because currently all the callers of this function use
* it to make a backup copy of the BMEditMesh to restore
* it in the case of errors in an operation. For perf
* reasons, in that case it makes more sense to do the
* tessellation only when/if that copy ends up getting
* used.*/
em_copy->looptris = NULL;
em_copy->vert_index = NULL;
em_copy->edge_index = NULL;
em_copy->face_index = NULL;
return em_copy;
}
static void BMEdit_RecalcTessellation_intern(BMEditMesh *em)
{
/* use this to avoid locking pthread for _every_ polygon
* and calling the fill function */
#define USE_TESSFACE_SPEEDUP
BMesh *bm = em->bm;
/* this assumes all faces can be scan-filled, which isn't always true,
* worst case we over alloc a little which is acceptable */
const int looptris_tot = poly_to_tri_count(bm->totface, bm->totloop);
const int looptris_tot_prev_alloc = em->looptris ? (MEM_allocN_len(em->looptris) / sizeof(*em->looptris)) : 0;
BMLoop *(*looptris)[3];
BMIter iter;
BMFace *efa;
BMLoop *l;
int i = 0;
ScanFillContext sf_ctx;
#if 0
/* note, we could be clever and re-use this array but would need to ensure
* its realloced at some point, for now just free it */
if (em->looptris) MEM_freeN(em->looptris);
/* Use em->tottri when set, this means no reallocs while transforming,
* (unless scanfill fails), otherwise... */
/* allocate the length of totfaces, avoid many small reallocs,
* if all faces are tri's it will be correct, quads == 2x allocs */
BLI_array_reserve(looptris, (em->tottri && em->tottri < bm->totface * 3) ? em->tottri : bm->totface);
#else
/* this means no reallocs for quad dominant models, for */
if ((em->looptris != NULL) &&
/* (em->tottri >= looptris_tot)) */
/* check against alloc'd size incase we over alloc'd a little */
((looptris_tot_prev_alloc >= looptris_tot) && (looptris_tot_prev_alloc <= looptris_tot * 2)))
{
looptris = em->looptris;
}
else {
if (em->looptris) MEM_freeN(em->looptris);
looptris = MEM_mallocN(sizeof(*looptris) * looptris_tot, __func__);
}
#endif
BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
/* don't consider two-edged faces */
if (UNLIKELY(efa->len < 3)) {
/* do nothing */
}
#ifdef USE_TESSFACE_SPEEDUP
/* no need to ensure the loop order, we know its ok */
else if (efa->len == 3) {
#if 0
int j;
BM_ITER_ELEM_INDEX (l, &liter, efa, BM_LOOPS_OF_FACE, j) {
looptris[i][j] = l;
}
i += 1;
#else
/* more cryptic but faster */
BMLoop **l_ptr = looptris[i++];
l_ptr[0] = l = BM_FACE_FIRST_LOOP(efa);
l_ptr[1] = l = l->next;
l_ptr[2] = l->next;
#endif
}
else if (efa->len == 4) {
#if 0
BMLoop *ltmp[4];
int j;
BLI_array_grow_items(looptris, 2);
BM_ITER_ELEM_INDEX (l, &liter, efa, BM_LOOPS_OF_FACE, j) {
ltmp[j] = l;
}
looptris[i][0] = ltmp[0];
looptris[i][1] = ltmp[1];
looptris[i][2] = ltmp[2];
i += 1;
looptris[i][0] = ltmp[0];
looptris[i][1] = ltmp[2];
looptris[i][2] = ltmp[3];
i += 1;
#else
/* more cryptic but faster */
BMLoop **l_ptr_a = looptris[i++];
BMLoop **l_ptr_b = looptris[i++];
(l_ptr_a[0] = l_ptr_b[0] = l = BM_FACE_FIRST_LOOP(efa));
(l_ptr_a[1] = l = l->next);
(l_ptr_a[2] = l_ptr_b[1] = l = l->next);
( l_ptr_b[2] = l->next);
#endif
}
#endif /* USE_TESSFACE_SPEEDUP */
else {
int j;
BMLoop *l_iter;
BMLoop *l_first;
ScanFillVert *sf_vert, *sf_vert_last = NULL, *sf_vert_first = NULL;
/* ScanFillEdge *e; */ /* UNUSED */
ScanFillFace *sf_tri;
int totfilltri;
BLI_scanfill_begin(&sf_ctx);
/* scanfill time */
j = 0;
l_iter = l_first = BM_FACE_FIRST_LOOP(efa);
do {
sf_vert = BLI_scanfill_vert_add(&sf_ctx, l_iter->v->co);
sf_vert->tmp.p = l_iter;
if (sf_vert_last) {
/* e = */ BLI_scanfill_edge_add(&sf_ctx, sf_vert_last, sf_vert);
}
sf_vert_last = sf_vert;
if (sf_vert_first == NULL) {
sf_vert_first = sf_vert;
}
/*mark order */
BM_elem_index_set(l_iter, j++); /* set_loop */
} while ((l_iter = l_iter->next) != l_first);
/* complete the loop */
BLI_scanfill_edge_add(&sf_ctx, sf_vert_first, sf_vert);
totfilltri = BLI_scanfill_calc_ex(&sf_ctx, 0, efa->no);
BLI_assert(totfilltri <= efa->len - 2);
for (sf_tri = sf_ctx.fillfacebase.first; sf_tri; sf_tri = sf_tri->next) {
BMLoop **l_ptr = looptris[i++];
BMLoop *l1 = sf_tri->v1->tmp.p;
BMLoop *l2 = sf_tri->v2->tmp.p;
BMLoop *l3 = sf_tri->v3->tmp.p;
if (BM_elem_index_get(l1) > BM_elem_index_get(l2)) { SWAP(BMLoop *, l1, l2); }
if (BM_elem_index_get(l2) > BM_elem_index_get(l3)) { SWAP(BMLoop *, l2, l3); }
if (BM_elem_index_get(l1) > BM_elem_index_get(l2)) { SWAP(BMLoop *, l1, l2); }
l_ptr[0] = l1;
l_ptr[1] = l2;
l_ptr[2] = l3;
}
BLI_scanfill_end(&sf_ctx);
}
}
em->tottri = i;
em->looptris = looptris;
BLI_assert(em->tottri <= looptris_tot);
#undef USE_TESSFACE_SPEEDUP
}
void BMEdit_RecalcTessellation(BMEditMesh *em)
{
BMEdit_RecalcTessellation_intern(em);
/* commented because editbmesh_build_data() ensures we get tessfaces */
#if 0
if (em->derivedFinal && em->derivedFinal == em->derivedCage) {
if (em->derivedFinal->recalcTessellation)
em->derivedFinal->recalcTessellation(em->derivedFinal);
}
else if (em->derivedFinal) {
if (em->derivedCage->recalcTessellation)
em->derivedCage->recalcTessellation(em->derivedCage);
if (em->derivedFinal->recalcTessellation)
em->derivedFinal->recalcTessellation(em->derivedFinal);
}
#endif
}
void BMEdit_UpdateLinkedCustomData(BMEditMesh *em)
{
BMesh *bm = em->bm;
int act;
if (CustomData_has_layer(&bm->pdata, CD_MTEXPOLY)) {
act = CustomData_get_active_layer(&bm->pdata, CD_MTEXPOLY);
CustomData_set_layer_active(&bm->ldata, CD_MLOOPUV, act);
act = CustomData_get_render_layer(&bm->pdata, CD_MTEXPOLY);
CustomData_set_layer_render(&bm->ldata, CD_MLOOPUV, act);
act = CustomData_get_clone_layer(&bm->pdata, CD_MTEXPOLY);
CustomData_set_layer_clone(&bm->ldata, CD_MLOOPUV, act);
act = CustomData_get_stencil_layer(&bm->pdata, CD_MTEXPOLY);
CustomData_set_layer_stencil(&bm->ldata, CD_MLOOPUV, act);
}
}
/*does not free the BMEditMesh struct itself*/
void BMEdit_Free(BMEditMesh *em)
{
if (em->derivedFinal) {
if (em->derivedFinal != em->derivedCage) {
em->derivedFinal->needsFree = 1;
em->derivedFinal->release(em->derivedFinal);
}
em->derivedFinal = NULL;
}
if (em->derivedCage) {
em->derivedCage->needsFree = 1;
em->derivedCage->release(em->derivedCage);
em->derivedCage = NULL;
}
if (em->looptris) MEM_freeN(em->looptris);
if (em->vert_index) MEM_freeN(em->vert_index);
if (em->edge_index) MEM_freeN(em->edge_index);
if (em->face_index) MEM_freeN(em->face_index);
if (em->bm)
BM_mesh_free(em->bm);
}
/*
* ok, basic design:
*
* the bmesh derivedmesh exposes the mesh as triangles. it stores pointers
* to three loops per triangle. the derivedmesh stores a cache of tessellations
* for each face. this cache will smartly update as needed (though at first
* it'll simply be more brute force). keeping track of face/edge counts may
* be a small problbm.
*
* this won't be the most efficient thing, considering that internal edges and
* faces of tessellations are exposed. looking up an edge by index in particular
* is likely to be a little slow.
*/
typedef struct EditDerivedBMesh {
DerivedMesh dm;
Object *ob;
BMEditMesh *tc;
float (*vertexCos)[3];
float (*vertexNos)[3];
float (*polyNos)[3];
/* private variables, for number of verts/edges/faces
* within the above hash/table members */
int tv, te, tf;
} EditDerivedBMesh;
static void emDM_calcNormals(DerivedMesh *UNUSED(dm))
{
/* Nothing to do: normals are already calculated and stored on the
* BMVerts and BMFaces */
}
static void emDM_recalcTessellation(DerivedMesh *UNUSED(dm))
{
/* do nothing */
}
static void emDM_foreachMappedVert(DerivedMesh *dm,
void (*func)(void *userData, int index, const float co[3], const float no_f[3], const short no_s[3]),
void *userData)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMVert *eve;
BMIter iter;
int i;
if (bmdm->vertexCos) {
BM_ITER_MESH_INDEX (eve, &iter, bmdm->tc->bm, BM_VERTS_OF_MESH, i) {
func(userData, i, bmdm->vertexCos[i], bmdm->vertexNos[i], NULL);
}
}
else {
BM_ITER_MESH_INDEX (eve, &iter, bmdm->tc->bm, BM_VERTS_OF_MESH, i) {
func(userData, i, eve->co, eve->no, NULL);
}
}
}
static void emDM_foreachMappedEdge(DerivedMesh *dm,
void (*func)(void *userData, int index, const float v0co[3], const float v1co[3]),
void *userData)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMEdge *eed;
BMIter iter;
int i;
if (bmdm->vertexCos) {
BM_mesh_elem_index_ensure(bmdm->tc->bm, BM_VERT);
BM_ITER_MESH_INDEX (eed, &iter, bmdm->tc->bm, BM_EDGES_OF_MESH, i) {
func(userData, i,
bmdm->vertexCos[BM_elem_index_get(eed->v1)],
bmdm->vertexCos[BM_elem_index_get(eed->v2)]);
}
}
else {
BM_ITER_MESH_INDEX (eed, &iter, bmdm->tc->bm, BM_EDGES_OF_MESH, i) {
func(userData, i, eed->v1->co, eed->v2->co);
}
}
}
static void emDM_drawMappedEdges(DerivedMesh *dm,
DMSetDrawOptions setDrawOptions,
void *userData)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMEdge *eed;
BMIter iter;
int i;
if (bmdm->vertexCos) {
BM_mesh_elem_index_ensure(bmdm->tc->bm, BM_VERT);
glBegin(GL_LINES);
BM_ITER_MESH_INDEX (eed, &iter, bmdm->tc->bm, BM_EDGES_OF_MESH, i) {
if (!setDrawOptions || (setDrawOptions(userData, i) != DM_DRAW_OPTION_SKIP)) {
glVertex3fv(bmdm->vertexCos[BM_elem_index_get(eed->v1)]);
glVertex3fv(bmdm->vertexCos[BM_elem_index_get(eed->v2)]);
}
}
glEnd();
}
else {
glBegin(GL_LINES);
BM_ITER_MESH_INDEX (eed, &iter, bmdm->tc->bm, BM_EDGES_OF_MESH, i) {
if (!setDrawOptions || (setDrawOptions(userData, i) != DM_DRAW_OPTION_SKIP)) {
glVertex3fv(eed->v1->co);
glVertex3fv(eed->v2->co);
}
}
glEnd();
}
}
static void emDM_drawEdges(DerivedMesh *dm,
int UNUSED(drawLooseEdges),
int UNUSED(drawAllEdges))
{
emDM_drawMappedEdges(dm, NULL, NULL);
}
static void emDM_drawMappedEdgesInterp(DerivedMesh *dm,
DMSetDrawOptions setDrawOptions,
DMSetDrawInterpOptions setDrawInterpOptions,
void *userData)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMEdge *eed;
BMIter iter;
int i;
if (bmdm->vertexCos) {
BM_mesh_elem_index_ensure(bmdm->tc->bm, BM_VERT);
glBegin(GL_LINES);
BM_ITER_MESH_INDEX (eed, &iter, bmdm->tc->bm, BM_EDGES_OF_MESH, i) {
if (!setDrawOptions || (setDrawOptions(userData, i) != DM_DRAW_OPTION_SKIP)) {
setDrawInterpOptions(userData, i, 0.0);
glVertex3fv(bmdm->vertexCos[BM_elem_index_get(eed->v1)]);
setDrawInterpOptions(userData, i, 1.0);
glVertex3fv(bmdm->vertexCos[BM_elem_index_get(eed->v2)]);
}
}
glEnd();
}
else {
glBegin(GL_LINES);
BM_ITER_MESH_INDEX (eed, &iter, bmdm->tc->bm, BM_EDGES_OF_MESH, i) {
if (!setDrawOptions || (setDrawOptions(userData, i) != DM_DRAW_OPTION_SKIP)) {
setDrawInterpOptions(userData, i, 0.0);
glVertex3fv(eed->v1->co);
setDrawInterpOptions(userData, i, 1.0);
glVertex3fv(eed->v2->co);
}
}
glEnd();
}
}
static void emDM_drawUVEdges(DerivedMesh *dm)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMEditMesh *em = bmdm->tc;
BMFace *efa;
BMIter iter;
glBegin(GL_LINES);
BM_ITER_MESH (efa, &iter, em->bm, BM_FACES_OF_MESH) {
BMIter liter;
BMLoop *l;
MLoopUV *lastluv = NULL, *firstluv = NULL;
if (BM_elem_flag_test(efa, BM_ELEM_HIDDEN))
continue;
BM_ITER_ELEM (l, &liter, efa, BM_LOOPS_OF_FACE) {
MLoopUV *luv = CustomData_bmesh_get(&em->bm->ldata, l->head.data, CD_MLOOPUV);
if (luv) {
if (lastluv)
glVertex2fv(luv->uv);
glVertex2fv(luv->uv);
lastluv = luv;
if (!firstluv)
firstluv = luv;
}
}
if (lastluv) {
glVertex2fv(lastluv->uv);
glVertex2fv(firstluv->uv);
}
}
glEnd();
}
static void emDM__calcFaceCent(BMFace *efa, float cent[3], float (*vertexCos)[3])
{
BMIter liter;
BMLoop *l;
int tot = 0;
zero_v3(cent);
/*simple (and stupid) median (average) based method :/ */
if (vertexCos) {
BM_ITER_ELEM (l, &liter, efa, BM_LOOPS_OF_FACE) {
add_v3_v3(cent, vertexCos[BM_elem_index_get(l->v)]);
tot++;
}
}
else {
BM_ITER_ELEM (l, &liter, efa, BM_LOOPS_OF_FACE) {
add_v3_v3(cent, l->v->co);
tot++;
}
}
if (tot == 0) return;
mul_v3_fl(cent, 1.0f / (float)tot);
}
static void emDM_foreachMappedFaceCenter(DerivedMesh *dm,
void (*func)(void *userData, int index, const float co[3], const float no[3]),
void *userData)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
float (*polyNos)[3] = NULL;
BMFace *efa;
BMIter iter;
float cent[3];
int i;
/* ensure for face center calculation */
if (bmdm->vertexCos) {
BM_mesh_elem_index_ensure(bmdm->tc->bm, BM_VERT);
polyNos = bmdm->polyNos;
BLI_assert(polyNos != NULL);
}
BM_ITER_MESH_INDEX (efa, &iter, bmdm->tc->bm, BM_FACES_OF_MESH, i) {
emDM__calcFaceCent(efa, cent, bmdm->vertexCos);
func(userData, i, cent, polyNos ? polyNos[i] : efa->no);
}
}
static void emDM_drawMappedFaces(DerivedMesh *dm,
DMSetDrawOptions setDrawOptions,
DMSetMaterial setMaterial,
DMCompareDrawOptions compareDrawOptions,
void *userData,
DMDrawFlag flag)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMFace *efa;
struct BMLoop *(*looptris)[3] = bmdm->tc->looptris;
const int tottri = bmdm->tc->tottri;
const int lasttri = tottri - 1; /* compare agasint this a lot */
DMDrawOption draw_option;
int i, flush;
const int skip_normals = !glIsEnabled(GL_LIGHTING); /* could be passed as an arg */
/* GL_ZERO is used to detect if drawing has started or not */
GLenum poly_prev = GL_ZERO;
GLenum shade_prev = GL_ZERO;
(void)setMaterial; /* UNUSED */
/* currently unused -- each original face is handled separately */
(void)compareDrawOptions;
if (bmdm->vertexCos) {
/* add direct access */
float (*vertexCos)[3] = bmdm->vertexCos;
float (*vertexNos)[3] = bmdm->vertexNos;
float (*polyNos)[3] = bmdm->polyNos;
// int *triPolyMap = bmdm->triPolyMap;
BM_mesh_elem_index_ensure(bmdm->tc->bm, BM_VERT | BM_FACE);
for (i = 0; i < tottri; i++) {
BMLoop **l = looptris[i];
int drawSmooth;
efa = l[0]->f;
drawSmooth = (flag & DM_DRAW_ALWAYS_SMOOTH) ? 1 : BM_elem_flag_test(efa, BM_ELEM_SMOOTH);
draw_option = (!setDrawOptions ?
DM_DRAW_OPTION_NORMAL :
setDrawOptions(userData, BM_elem_index_get(efa)));
if (draw_option != DM_DRAW_OPTION_SKIP) {
const GLenum poly_type = GL_TRIANGLES; /* BMESH NOTE, this is odd but keep it for now to match trunk */
if (draw_option == DM_DRAW_OPTION_STIPPLE) { /* enabled with stipple */
if (poly_prev != GL_ZERO) glEnd();
poly_prev = GL_ZERO; /* force glBegin */
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple(stipple_quarttone);
}
if (skip_normals) {
if (poly_type != poly_prev) {
if (poly_prev != GL_ZERO) glEnd();
glBegin((poly_prev = poly_type)); /* BMesh: will always be GL_TRIANGLES */
}
glVertex3fv(vertexCos[BM_elem_index_get(l[0]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(l[1]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(l[2]->v)]);
}
else {
const GLenum shade_type = drawSmooth ? GL_SMOOTH : GL_FLAT;
if (shade_type != shade_prev) {
if (poly_prev != GL_ZERO) glEnd();
glShadeModel((shade_prev = shade_type)); /* same as below but switch shading */
glBegin((poly_prev = poly_type)); /* BMesh: will always be GL_TRIANGLES */
}
if (poly_type != poly_prev) {
if (poly_prev != GL_ZERO) glEnd();
glBegin((poly_prev = poly_type)); /* BMesh: will always be GL_TRIANGLES */
}
if (!drawSmooth) {
glNormal3fv(polyNos[BM_elem_index_get(efa)]);
glVertex3fv(vertexCos[BM_elem_index_get(l[0]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(l[1]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(l[2]->v)]);
}
else {
glNormal3fv(vertexNos[BM_elem_index_get(l[0]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(l[0]->v)]);
glNormal3fv(vertexNos[BM_elem_index_get(l[1]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(l[1]->v)]);
glNormal3fv(vertexNos[BM_elem_index_get(l[2]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(l[2]->v)]);
}
}
flush = (draw_option == DM_DRAW_OPTION_STIPPLE);
if (!skip_normals && !flush && (i != lasttri))
flush |= efa->mat_nr != looptris[i + 1][0]->f->mat_nr; /* TODO, make this neater */
if (flush) {
glEnd();
poly_prev = GL_ZERO; /* force glBegin */
glDisable(GL_POLYGON_STIPPLE);
}
}
}
}
else {
BM_mesh_elem_index_ensure(bmdm->tc->bm, BM_FACE);
for (i = 0; i < tottri; i++) {
BMLoop **l = looptris[i];
int drawSmooth;
efa = l[0]->f;
drawSmooth = (flag & DM_DRAW_ALWAYS_SMOOTH) ? 1 : BM_elem_flag_test(efa, BM_ELEM_SMOOTH);
draw_option = (!setDrawOptions ?
DM_DRAW_OPTION_NORMAL :
setDrawOptions(userData, BM_elem_index_get(efa)));
if (draw_option != DM_DRAW_OPTION_SKIP) {
const GLenum poly_type = GL_TRIANGLES; /* BMESH NOTE, this is odd but keep it for now to match trunk */
if (draw_option == DM_DRAW_OPTION_STIPPLE) { /* enabled with stipple */
if (poly_prev != GL_ZERO) glEnd();
poly_prev = GL_ZERO; /* force glBegin */
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple(stipple_quarttone);
}
if (skip_normals) {
if (poly_type != poly_prev) {
if (poly_prev != GL_ZERO) glEnd();
glBegin((poly_prev = poly_type)); /* BMesh: will always be GL_TRIANGLES */
}
glVertex3fv(l[0]->v->co);
glVertex3fv(l[1]->v->co);
glVertex3fv(l[2]->v->co);
}
else {
const GLenum shade_type = drawSmooth ? GL_SMOOTH : GL_FLAT;
if (shade_type != shade_prev) {
if (poly_prev != GL_ZERO) glEnd();
glShadeModel((shade_prev = shade_type)); /* same as below but switch shading */
glBegin((poly_prev = poly_type)); /* BMesh: will always be GL_TRIANGLES */
}
if (poly_type != poly_prev) {
if (poly_prev != GL_ZERO) glEnd();
glBegin((poly_prev = poly_type)); /* BMesh: will always be GL_TRIANGLES */
}
if (!drawSmooth) {
glNormal3fv(efa->no);
glVertex3fv(l[0]->v->co);
glVertex3fv(l[1]->v->co);
glVertex3fv(l[2]->v->co);
}
else {
glNormal3fv(l[0]->v->no);
glVertex3fv(l[0]->v->co);
glNormal3fv(l[1]->v->no);
glVertex3fv(l[1]->v->co);
glNormal3fv(l[2]->v->no);
glVertex3fv(l[2]->v->co);
}
}
flush = (draw_option == DM_DRAW_OPTION_STIPPLE);
if (!skip_normals && !flush && (i != lasttri)) {
flush |= efa->mat_nr != looptris[i + 1][0]->f->mat_nr; /* TODO, make this neater */
}
if (flush) {
glEnd();
poly_prev = GL_ZERO; /* force glBegin */
glDisable(GL_POLYGON_STIPPLE);
}
}
}
}
/* if non zero we know a face was rendered */
if (poly_prev != GL_ZERO) glEnd();
}
static void bmdm_get_tri_uv(BMLoop *ls[3], MLoopUV *luv[3], const int cd_loop_uv_offset)
{
luv[0] = BM_ELEM_CD_GET_VOID_P(ls[0], cd_loop_uv_offset);
luv[1] = BM_ELEM_CD_GET_VOID_P(ls[1], cd_loop_uv_offset);
luv[2] = BM_ELEM_CD_GET_VOID_P(ls[2], cd_loop_uv_offset);
}
static void bmdm_get_tri_col(BMLoop *ls[3], MLoopCol *lcol[3], const int cd_loop_color_offset)
{
lcol[0] = BM_ELEM_CD_GET_VOID_P(ls[0], cd_loop_color_offset);
lcol[1] = BM_ELEM_CD_GET_VOID_P(ls[1], cd_loop_color_offset);
lcol[2] = BM_ELEM_CD_GET_VOID_P(ls[2], cd_loop_color_offset);
}
static void emDM_drawFacesTex_common(DerivedMesh *dm,
DMSetDrawOptionsTex drawParams,
DMSetDrawOptions drawParamsMapped,
DMCompareDrawOptions compareDrawOptions,
void *userData)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMEditMesh *em = bmdm->tc;
BMesh *bm = bmdm->tc->bm;
float (*vertexCos)[3] = bmdm->vertexCos;
float (*vertexNos)[3] = bmdm->vertexNos;
BMFace *efa;
MLoopUV *luv[3], dummyluv = {{0}};
MLoopCol *lcol[3] = {NULL} /* , dummylcol = {0} */;
const int cd_loop_uv_offset = CustomData_get_offset(&bm->ldata, CD_MLOOPUV);
const int cd_loop_color_offset = CustomData_get_offset(&bm->ldata, CD_MLOOPCOL);
const int cd_poly_tex_offset = CustomData_get_offset(&bm->pdata, CD_MTEXPOLY);
bool has_uv = (cd_loop_uv_offset != -1);
bool has_vcol = (cd_loop_color_offset != -1);
int i;
(void) compareDrawOptions;
luv[0] = luv[1] = luv[2] = &dummyluv;
// dummylcol.r = dummylcol.g = dummylcol.b = dummylcol.a = 255; /* UNUSED */
/* always use smooth shading even for flat faces, else vertex colors wont interpolate */
glShadeModel(GL_SMOOTH);
BM_mesh_elem_index_ensure(bm, BM_FACE);
if (vertexCos) {
BM_mesh_elem_index_ensure(bm, BM_VERT);
for (i = 0; i < em->tottri; i++) {
BMLoop **ls = em->looptris[i];
MTexPoly *tp = (cd_poly_tex_offset != -1) ? BM_ELEM_CD_GET_VOID_P(ls[0]->f, cd_poly_tex_offset) : NULL;
MTFace mtf = {{{0}}};
/*unsigned char *cp = NULL;*/ /*UNUSED*/
int drawSmooth = BM_elem_flag_test(ls[0]->f, BM_ELEM_SMOOTH);
DMDrawOption draw_option;
efa = ls[0]->f;
if (cd_poly_tex_offset != -1) {
ME_MTEXFACE_CPY(&mtf, tp);
}
if (drawParams)
draw_option = drawParams(&mtf, has_vcol, efa->mat_nr);
else if (drawParamsMapped)
draw_option = drawParamsMapped(userData, BM_elem_index_get(efa));
else
draw_option = DM_DRAW_OPTION_NORMAL;
if (draw_option != DM_DRAW_OPTION_SKIP) {
glBegin(GL_TRIANGLES);
if (!drawSmooth) {
glNormal3fv(bmdm->polyNos[BM_elem_index_get(efa)]);
if (has_uv) bmdm_get_tri_uv(ls, luv, cd_loop_uv_offset);
if (has_vcol) bmdm_get_tri_col(ls, lcol, cd_loop_color_offset);
glTexCoord2fv(luv[0]->uv);
if (has_vcol)
glColor3ubv((const GLubyte *)&(lcol[0]->r));
glVertex3fv(vertexCos[BM_elem_index_get(ls[0]->v)]);
glTexCoord2fv(luv[1]->uv);
if (has_vcol)
glColor3ubv((const GLubyte *)&(lcol[1]->r));
glVertex3fv(vertexCos[BM_elem_index_get(ls[1]->v)]);
glTexCoord2fv(luv[2]->uv);
if (has_vcol)
glColor3ubv((const GLubyte *)&(lcol[2]->r));
glVertex3fv(vertexCos[BM_elem_index_get(ls[2]->v)]);
}
else {
if (has_uv) bmdm_get_tri_uv(ls, luv, cd_loop_uv_offset);
if (has_vcol) bmdm_get_tri_col(ls, lcol, cd_loop_color_offset);
glTexCoord2fv(luv[0]->uv);
if (lcol[0])
glColor3ubv((const GLubyte *)&(lcol[0]->r));
glNormal3fv(vertexNos[BM_elem_index_get(ls[0]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(ls[0]->v)]);
glTexCoord2fv(luv[1]->uv);
if (lcol[1])
glColor3ubv((const GLubyte *)&(lcol[1]->r));
glNormal3fv(vertexNos[BM_elem_index_get(ls[1]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(ls[1]->v)]);
glTexCoord2fv(luv[2]->uv);
if (lcol[2])
glColor3ubv((const GLubyte *)&(lcol[2]->r));
glNormal3fv(vertexNos[BM_elem_index_get(ls[2]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(ls[2]->v)]);
}
glEnd();
}
}
}
else {
BM_mesh_elem_index_ensure(bm, BM_VERT);
for (i = 0; i < em->tottri; i++) {
BMLoop **ls = em->looptris[i];
MTexPoly *tp = (cd_poly_tex_offset != -1) ? BM_ELEM_CD_GET_VOID_P(ls[0]->f, cd_poly_tex_offset) : NULL;
MTFace mtf = {{{0}}};
/*unsigned char *cp = NULL;*/ /*UNUSED*/
int drawSmooth = BM_elem_flag_test(ls[0]->f, BM_ELEM_SMOOTH);
DMDrawOption draw_option;
efa = ls[0]->f;
if (cd_poly_tex_offset != -1) {
ME_MTEXFACE_CPY(&mtf, tp);
}
if (drawParams)
draw_option = drawParams(&mtf, (has_vcol), efa->mat_nr);
else if (drawParamsMapped)
draw_option = drawParamsMapped(userData, BM_elem_index_get(efa));
else
draw_option = DM_DRAW_OPTION_NORMAL;
if (draw_option != DM_DRAW_OPTION_SKIP) {
glBegin(GL_TRIANGLES);
if (!drawSmooth) {
glNormal3fv(efa->no);
if (has_uv) bmdm_get_tri_uv(ls, luv, cd_loop_uv_offset);
if (has_vcol) bmdm_get_tri_col(ls, lcol, cd_loop_color_offset);
glTexCoord2fv(luv[0]->uv);
if (has_vcol)
glColor3ubv((const GLubyte *)&(lcol[0]->r));
glVertex3fv(ls[0]->v->co);
glTexCoord2fv(luv[1]->uv);
if (has_vcol)
glColor3ubv((const GLubyte *)&(lcol[1]->r));
glVertex3fv(ls[1]->v->co);
glTexCoord2fv(luv[2]->uv);
if (has_vcol)
glColor3ubv((const GLubyte *)&(lcol[2]->r));
glVertex3fv(ls[2]->v->co);
}
else {
if (has_uv) bmdm_get_tri_uv(ls, luv, cd_loop_uv_offset);
if (has_vcol) bmdm_get_tri_col(ls, lcol, cd_loop_color_offset);
glTexCoord2fv(luv[0]->uv);
if (has_vcol)
glColor3ubv((const GLubyte *)&(lcol[0]->r));
glNormal3fv(ls[0]->v->no);
glVertex3fv(ls[0]->v->co);
glTexCoord2fv(luv[1]->uv);
if (has_vcol)
glColor3ubv((const GLubyte *)&(lcol[1]->r));
glNormal3fv(ls[1]->v->no);
glVertex3fv(ls[1]->v->co);
glTexCoord2fv(luv[2]->uv);
if (has_vcol)
glColor3ubv((const GLubyte *)&(lcol[2]->r));
glNormal3fv(ls[2]->v->no);
glVertex3fv(ls[2]->v->co);
}
glEnd();
}
}
}
glShadeModel(GL_FLAT);
}
static void emDM_drawFacesTex(DerivedMesh *dm,
DMSetDrawOptionsTex setDrawOptions,
DMCompareDrawOptions compareDrawOptions,
void *userData)
{
emDM_drawFacesTex_common(dm, setDrawOptions, NULL, compareDrawOptions, userData);
}
static void emDM_drawMappedFacesTex(DerivedMesh *dm,
DMSetDrawOptions setDrawOptions,
DMCompareDrawOptions compareDrawOptions,
void *userData)
{
emDM_drawFacesTex_common(dm, NULL, setDrawOptions, compareDrawOptions, userData);
}
static void emDM_drawMappedFacesGLSL(DerivedMesh *dm,
DMSetMaterial setMaterial,
DMSetDrawOptions setDrawOptions,
void *userData)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMesh *bm = bmdm->tc->bm;
BMEditMesh *em = bmdm->tc;
float (*vertexCos)[3] = bmdm->vertexCos;
float (*vertexNos)[3] = bmdm->vertexNos;
BMFace *efa;
BMLoop **ltri;
DMVertexAttribs attribs;
GPUVertexAttribs gattribs;
int i, b, matnr, new_matnr, do_draw;
do_draw = FALSE;
matnr = -1;
memset(&attribs, 0, sizeof(attribs));
/* always use smooth shading even for flat faces, else vertex colors wont interpolate */
glShadeModel(GL_SMOOTH);
BM_mesh_elem_index_ensure(bm, BM_VERT | BM_FACE);
#define PASSATTRIB(loop, eve, vert) { \
if (attribs.totorco) { \
float *orco = attribs.orco.array[BM_elem_index_get(eve)]; \
glVertexAttrib3fvARB(attribs.orco.gl_index, orco); \
} \
for (b = 0; b < attribs.tottface; b++) { \
MLoopUV *_luv = CustomData_bmesh_get_n(&bm->ldata, loop->head.data, \
CD_MLOOPUV, b); \
glVertexAttrib2fvARB(attribs.tface[b].gl_index, _luv->uv); \
} \
for (b = 0; b < attribs.totmcol; b++) { \
MLoopCol *_cp = CustomData_bmesh_get_n(&bm->ldata, loop->head.data, \
CD_MLOOPCOL, b); \
GLubyte _col[4]; \
_col[0] = _cp->b; _col[1] = _cp->g; _col[2] = _cp->r; _col[3] = _cp->a; \
glVertexAttrib4ubvARB(attribs.mcol[b].gl_index, _col); \
} \
if (attribs.tottang) { \
float *tang = attribs.tang.array[i * 4 + vert]; \
glVertexAttrib3fvARB(attribs.tang.gl_index, tang); \
} \
} (void)0
for (i = 0, ltri = em->looptris[0]; i < em->tottri; i++, ltri += 3) {
int drawSmooth;
efa = ltri[0]->f;
drawSmooth = BM_elem_flag_test(efa, BM_ELEM_SMOOTH);
if (setDrawOptions && (setDrawOptions(userData, BM_elem_index_get(efa)) == DM_DRAW_OPTION_SKIP))
continue;
new_matnr = efa->mat_nr + 1;
if (new_matnr != matnr) {
do_draw = setMaterial(matnr = new_matnr, &gattribs);
if (do_draw)
DM_vertex_attributes_from_gpu(dm, &gattribs, &attribs);
}
if (do_draw) {
glBegin(GL_TRIANGLES);
if (!drawSmooth) {
if (vertexCos) glNormal3fv(bmdm->polyNos[BM_elem_index_get(efa)]);
else glNormal3fv(efa->no);
PASSATTRIB(ltri[0], ltri[0]->v, 0);
if (vertexCos) glVertex3fv(vertexCos[BM_elem_index_get(ltri[0]->v)]);
else glVertex3fv(ltri[0]->v->co);
PASSATTRIB(ltri[1], ltri[1]->v, 1);
if (vertexCos) glVertex3fv(vertexCos[BM_elem_index_get(ltri[1]->v)]);
else glVertex3fv(ltri[1]->v->co);
PASSATTRIB(ltri[2], ltri[2]->v, 2);
if (vertexCos) glVertex3fv(vertexCos[BM_elem_index_get(ltri[2]->v)]);
else glVertex3fv(ltri[2]->v->co);
}
else {
PASSATTRIB(ltri[0], ltri[0]->v, 0);
if (vertexCos) {
glNormal3fv(vertexNos[BM_elem_index_get(ltri[0]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(ltri[0]->v)]);
}
else {
glNormal3fv(ltri[0]->v->no);
glVertex3fv(ltri[0]->v->co);
}
PASSATTRIB(ltri[1], ltri[1]->v, 1);
if (vertexCos) {
glNormal3fv(vertexNos[BM_elem_index_get(ltri[1]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(ltri[1]->v)]);
}
else {
glNormal3fv(ltri[1]->v->no);
glVertex3fv(ltri[1]->v->co);
}
PASSATTRIB(ltri[2], ltri[2]->v, 2);
if (vertexCos) {
glNormal3fv(vertexNos[BM_elem_index_get(ltri[2]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(ltri[2]->v)]);
}
else {
glNormal3fv(ltri[2]->v->no);
glVertex3fv(ltri[2]->v->co);
}
}
glEnd();
}
}
#undef PASSATTRIB
}
static void emDM_drawFacesGLSL(DerivedMesh *dm,
int (*setMaterial)(int, void *attribs))
{
dm->drawMappedFacesGLSL(dm, setMaterial, NULL, NULL);
}
static void emDM_drawMappedFacesMat(DerivedMesh *dm,
void (*setMaterial)(void *userData, int, void *attribs),
int (*setFace)(void *userData, int index), void *userData)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMesh *bm = bmdm->tc->bm;
BMEditMesh *em = bmdm->tc;
float (*vertexCos)[3] = bmdm->vertexCos;
float (*vertexNos)[3] = bmdm->vertexNos;
BMFace *efa;
BMLoop **ltri;
DMVertexAttribs attribs = {{{0}}};
GPUVertexAttribs gattribs;
int i, b, matnr, new_matnr;
matnr = -1;
/* always use smooth shading even for flat faces, else vertex colors wont interpolate */
glShadeModel(GL_SMOOTH);
BM_mesh_elem_index_ensure(bm, BM_VERT | BM_FACE);
#define PASSATTRIB(loop, eve, vert) { \
if (attribs.totorco) { \
float *orco = attribs.orco.array[BM_elem_index_get(eve)]; \
if (attribs.orco.gl_texco) \
glTexCoord3fv(orco); \
else \
glVertexAttrib3fvARB(attribs.orco.gl_index, orco); \
} \
for (b = 0; b < attribs.tottface; b++) { \
MLoopUV *_luv = CustomData_bmesh_get_n(&bm->ldata, loop->head.data, \
CD_MLOOPUV, b); \
if (attribs.tface[b].gl_texco) \
glTexCoord2fv(_luv->uv); \
else \
glVertexAttrib2fvARB(attribs.tface[b].gl_index, _luv->uv); \
} \
for (b = 0; b < attribs.totmcol; b++) { \
MLoopCol *_cp = CustomData_bmesh_get_n(&bm->ldata, loop->head.data, \
CD_MLOOPCOL, b); \
GLubyte _col[4]; \
_col[0] = _cp->b; _col[1] = _cp->g; _col[2] = _cp->r; _col[3] = _cp->a; \
glVertexAttrib4ubvARB(attribs.mcol[b].gl_index, _col); \
} \
if (attribs.tottang) { \
float *tang = attribs.tang.array[i * 4 + vert]; \
glVertexAttrib4fvARB(attribs.tang.gl_index, tang); \
} \
} (void)0
for (i = 0, ltri = em->looptris[0]; i < em->tottri; i++, ltri += 3) {
int drawSmooth;
efa = ltri[0]->f;
drawSmooth = BM_elem_flag_test(efa, BM_ELEM_SMOOTH);
/* face hiding */
if (setFace && !setFace(userData, BM_elem_index_get(efa)))
continue;
/* material */
new_matnr = efa->mat_nr + 1;
if (new_matnr != matnr) {
setMaterial(userData, matnr = new_matnr, &gattribs);
DM_vertex_attributes_from_gpu(dm, &gattribs, &attribs);
}
/* face */
glBegin(GL_TRIANGLES);
if (!drawSmooth) {
if (vertexCos) glNormal3fv(bmdm->polyNos[BM_elem_index_get(efa)]);
else glNormal3fv(efa->no);
PASSATTRIB(ltri[0], ltri[0]->v, 0);
if (vertexCos) glVertex3fv(vertexCos[BM_elem_index_get(ltri[0]->v)]);
else glVertex3fv(ltri[0]->v->co);
PASSATTRIB(ltri[1], ltri[1]->v, 1);
if (vertexCos) glVertex3fv(vertexCos[BM_elem_index_get(ltri[1]->v)]);
else glVertex3fv(ltri[1]->v->co);
PASSATTRIB(ltri[2], ltri[2]->v, 2);
if (vertexCos) glVertex3fv(vertexCos[BM_elem_index_get(ltri[2]->v)]);
else glVertex3fv(ltri[2]->v->co);
}
else {
PASSATTRIB(ltri[0], ltri[0]->v, 0);
if (vertexCos) {
glNormal3fv(vertexNos[BM_elem_index_get(ltri[0]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(ltri[0]->v)]);
}
else {
glNormal3fv(ltri[0]->v->no);
glVertex3fv(ltri[0]->v->co);
}
PASSATTRIB(ltri[1], ltri[1]->v, 1);
if (vertexCos) {
glNormal3fv(vertexNos[BM_elem_index_get(ltri[1]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(ltri[1]->v)]);
}
else {
glNormal3fv(ltri[1]->v->no);
glVertex3fv(ltri[1]->v->co);
}
PASSATTRIB(ltri[2], ltri[2]->v, 2);
if (vertexCos) {
glNormal3fv(vertexNos[BM_elem_index_get(ltri[2]->v)]);
glVertex3fv(vertexCos[BM_elem_index_get(ltri[2]->v)]);
}
else {
glNormal3fv(ltri[2]->v->no);
glVertex3fv(ltri[2]->v->co);
}
}
glEnd();
}
#undef PASSATTRIB
}
static void emDM_getMinMax(DerivedMesh *dm, float min_r[3], float max_r[3])
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMVert *eve;
BMIter iter;
int i;
if (bmdm->tc->bm->totvert) {
if (bmdm->vertexCos) {
BM_ITER_MESH_INDEX (eve, &iter, bmdm->tc->bm, BM_VERTS_OF_MESH, i) {
minmax_v3v3_v3(min_r, max_r, bmdm->vertexCos[i]);
}
}
else {
BM_ITER_MESH (eve, &iter, bmdm->tc->bm, BM_VERTS_OF_MESH) {
minmax_v3v3_v3(min_r, max_r, eve->co);
}
}
}
else {
zero_v3(min_r);
zero_v3(max_r);
}
}
static int emDM_getNumVerts(DerivedMesh *dm)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
return bmdm->tc->bm->totvert;
}
static int emDM_getNumEdges(DerivedMesh *dm)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
return bmdm->tc->bm->totedge;
}
static int emDM_getNumTessFaces(DerivedMesh *dm)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
return bmdm->tc->tottri;
}
static int emDM_getNumLoops(DerivedMesh *dm)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
return bmdm->tc->bm->totloop;
}
static int emDM_getNumPolys(DerivedMesh *dm)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
return bmdm->tc->bm->totface;
}
static int bmvert_to_mvert(BMesh *bm, BMVert *ev, MVert *vert_r)
{
float *f;
copy_v3_v3(vert_r->co, ev->co);
normal_float_to_short_v3(vert_r->no, ev->no);
vert_r->flag = BM_vert_flag_to_mflag(ev);
if ((f = CustomData_bmesh_get(&bm->vdata, ev->head.data, CD_BWEIGHT))) {
vert_r->bweight = (unsigned char)((*f) * 255.0f);
}
return 1;
}
static void emDM_getVert(DerivedMesh *dm, int index, MVert *vert_r)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMVert *ev;
if (index < 0 || index >= bmdm->tv) {
printf("error in emDM_getVert.\n");
return;
}
ev = bmdm->tc->vert_index[index]; /* should be EDBM_vert_at_index() */
// ev = BM_vert_at_index(bmdm->tc->bm, index); /* warning, does list loop, _not_ ideal */
bmvert_to_mvert(bmdm->tc->bm, ev, vert_r);
if (bmdm->vertexCos)
copy_v3_v3(vert_r->co, bmdm->vertexCos[index]);
}
static void emDM_getEdge(DerivedMesh *dm, int index, MEdge *edge_r)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMesh *bm = bmdm->tc->bm;
BMEdge *e;
float *f;
if (index < 0 || index >= bmdm->te) {
printf("error in emDM_getEdge.\n");
return;
}
e = bmdm->tc->edge_index[index]; /* should be EDBM_edge_at_index() */
// e = BM_edge_at_index(bmdm->tc->bm, index); /* warning, does list loop, _not_ ideal */
edge_r->flag = BM_edge_flag_to_mflag(e);
edge_r->v1 = BM_elem_index_get(e->v1);
edge_r->v2 = BM_elem_index_get(e->v2);
if ((f = CustomData_bmesh_get(&bm->edata, e->head.data, CD_BWEIGHT))) {
edge_r->bweight = (unsigned char)((*f) * 255.0f);
}
if ((f = CustomData_bmesh_get(&bm->edata, e->head.data, CD_CREASE))) {
edge_r->crease = (unsigned char)((*f) * 255.0f);
}
}
static void emDM_getTessFace(DerivedMesh *dm, int index, MFace *face_r)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMFace *ef;
BMLoop **l;
if (index < 0 || index >= bmdm->tf) {
printf("error in emDM_getTessFace.\n");
return;
}
l = bmdm->tc->looptris[index];
ef = l[0]->f;
face_r->mat_nr = (unsigned char) ef->mat_nr;
face_r->flag = BM_face_flag_to_mflag(ef);
face_r->v1 = BM_elem_index_get(l[0]->v);
face_r->v2 = BM_elem_index_get(l[1]->v);
face_r->v3 = BM_elem_index_get(l[2]->v);
face_r->v4 = 0;
test_index_face(face_r, NULL, 0, 3);
}
static void emDM_copyVertArray(DerivedMesh *dm, MVert *vert_r)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMesh *bm = bmdm->tc->bm;
BMVert *eve;
BMIter iter;
const int cd_vert_bweight_offset = CustomData_get_offset(&bm->vdata, CD_BWEIGHT);
if (bmdm->vertexCos) {
int i;
BM_ITER_MESH_INDEX (eve, &iter, bm, BM_VERTS_OF_MESH, i) {
copy_v3_v3(vert_r->co, bmdm->vertexCos[i]);
normal_float_to_short_v3(vert_r->no, eve->no);
vert_r->flag = BM_vert_flag_to_mflag(eve);
vert_r->bweight = (cd_vert_bweight_offset != -1) ? BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eve, cd_vert_bweight_offset) : 0;
vert_r++;
}
}
else {
BM_ITER_MESH (eve, &iter, bm, BM_VERTS_OF_MESH) {
copy_v3_v3(vert_r->co, eve->co);
normal_float_to_short_v3(vert_r->no, eve->no);
vert_r->flag = BM_vert_flag_to_mflag(eve);
vert_r->bweight = (cd_vert_bweight_offset != -1) ? BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eve, cd_vert_bweight_offset) : 0;
vert_r++;
}
}
}
static void emDM_copyEdgeArray(DerivedMesh *dm, MEdge *edge_r)
{
BMesh *bm = ((EditDerivedBMesh *)dm)->tc->bm;
BMEdge *eed;
BMIter iter;
const int cd_edge_bweight_offset = CustomData_get_offset(&bm->edata, CD_BWEIGHT);
const int cd_edge_crease_offset = CustomData_get_offset(&bm->edata, CD_CREASE);
BM_mesh_elem_index_ensure(bm, BM_VERT);
BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) {
edge_r->v1 = BM_elem_index_get(eed->v1);
edge_r->v2 = BM_elem_index_get(eed->v2);
edge_r->flag = BM_edge_flag_to_mflag(eed);
edge_r->crease = (cd_edge_crease_offset != -1) ? BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eed, cd_edge_crease_offset) : 0;
edge_r->bweight = (cd_edge_bweight_offset != -1) ? BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eed, cd_edge_bweight_offset) : 0;
edge_r++;
}
}
static void emDM_copyTessFaceArray(DerivedMesh *dm, MFace *face_r)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMesh *bm = bmdm->tc->bm;
BMFace *ef;
BMLoop **l;
int i;
BM_mesh_elem_index_ensure(bm, BM_VERT);
for (i = 0; i < bmdm->tc->tottri; i++, face_r++) {
l = bmdm->tc->looptris[i];
ef = l[0]->f;
face_r->mat_nr = (unsigned char) ef->mat_nr;
face_r->flag = BM_face_flag_to_mflag(ef);
face_r->edcode = 0;
face_r->v1 = BM_elem_index_get(l[0]->v);
face_r->v2 = BM_elem_index_get(l[1]->v);
face_r->v3 = BM_elem_index_get(l[2]->v);
face_r->v4 = 0;
test_index_face(face_r, NULL, 0, 3);
}
}
static void emDM_copyLoopArray(DerivedMesh *dm, MLoop *loop_r)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMesh *bm = bmdm->tc->bm;
BMIter iter, liter;
BMFace *efa;
BMLoop *l;
BM_mesh_elem_index_ensure(bm, BM_VERT | BM_EDGE);
BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, efa, BM_LOOPS_OF_FACE) {
loop_r->v = BM_elem_index_get(l->v);
loop_r->e = BM_elem_index_get(l->e);
loop_r++;
}
}
}
static void emDM_copyPolyArray(DerivedMesh *dm, MPoly *poly_r)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMesh *bm = bmdm->tc->bm;
BMIter iter;
BMFace *efa;
int i;
i = 0;
BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
poly_r->flag = BM_face_flag_to_mflag(efa);
poly_r->loopstart = i;
poly_r->totloop = efa->len;
poly_r->mat_nr = efa->mat_nr;
poly_r++;
i += efa->len;
}
}
static void *emDM_getTessFaceDataArray(DerivedMesh *dm, int type)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
BMesh *bm = bmdm->tc->bm;
void *datalayer;
datalayer = DM_get_tessface_data_layer(dm, type);
if (datalayer)
return datalayer;
/* layers are store per face for editmesh, we convert to a temporary
* data layer array in the derivedmesh when these are requested */
if (type == CD_MTFACE || type == CD_MCOL) {
const int type_from = (type == CD_MTFACE) ? CD_MTEXPOLY : CD_MLOOPCOL;
int index;
char *data, *bmdata;
index = CustomData_get_layer_index(&bm->pdata, type_from);
if (index != -1) {
/* offset = bm->pdata.layers[index].offset; */ /* UNUSED */
const int size = CustomData_sizeof(type);
int i, j;
DM_add_tessface_layer(dm, type, CD_CALLOC, NULL);
index = CustomData_get_layer_index(&dm->faceData, type);
dm->faceData.layers[index].flag |= CD_FLAG_TEMPORARY;
data = datalayer = DM_get_tessface_data_layer(dm, type);
if (type == CD_MTFACE) {
for (i = 0; i < bmdm->tc->tottri; i++, data += size) {
BMFace *efa = bmdm->tc->looptris[i][0]->f;
bmdata = CustomData_bmesh_get(&bm->pdata, efa->head.data, CD_MTEXPOLY);
ME_MTEXFACE_CPY(((MTFace *)data), ((MTexPoly *)bmdata));
for (j = 0; j < 3; j++) {
bmdata = CustomData_bmesh_get(&bm->ldata, bmdm->tc->looptris[i][j]->head.data, CD_MLOOPUV);
copy_v2_v2(((MTFace *)data)->uv[j], ((MLoopUV *)bmdata)->uv);
}
}
}
else {
for (i = 0; i < bmdm->tc->tottri; i++, data += size) {
for (j = 0; j < 3; j++) {
bmdata = CustomData_bmesh_get(&bm->ldata, bmdm->tc->looptris[i][j]->head.data, CD_MLOOPCOL);
MESH_MLOOPCOL_TO_MCOL(((MLoopCol *)bmdata), (((MCol *)data) + j));
}
}
}
}
}
return datalayer;
}
static void emDM_getVertCos(DerivedMesh *dm, float (*cos_r)[3])
{
EditDerivedBMesh *emdm = (EditDerivedBMesh *)dm;
BMVert *eve;
BMIter iter;
int i;
if (emdm->vertexCos) {
BM_ITER_MESH_INDEX (eve, &iter, emdm->tc->bm, BM_VERTS_OF_MESH, i) {
copy_v3_v3(cos_r[i], emdm->vertexCos[i]);
}
}
else {
BM_ITER_MESH_INDEX (eve, &iter, emdm->tc->bm, BM_VERTS_OF_MESH, i) {
copy_v3_v3(cos_r[i], eve->co);
}
}
}
static void emDM_release(DerivedMesh *dm)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
if (DM_release(dm)) {
if (bmdm->vertexCos) {
MEM_freeN(bmdm->vertexCos);
MEM_freeN(bmdm->vertexNos);
MEM_freeN(bmdm->polyNos);
}
MEM_freeN(bmdm);
}
}
static CustomData *bmDm_getVertDataLayout(DerivedMesh *dm)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
return &bmdm->tc->bm->vdata;
}
static CustomData *bmDm_getEdgeDataLayout(DerivedMesh *dm)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
return &bmdm->tc->bm->edata;
}
static CustomData *bmDm_getTessFaceDataLayout(DerivedMesh *dm)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
return &bmdm->dm.faceData;
}
static CustomData *bmDm_getLoopDataLayout(DerivedMesh *dm)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
return &bmdm->tc->bm->ldata;
}
static CustomData *bmDm_getPolyDataLayout(DerivedMesh *dm)
{
EditDerivedBMesh *bmdm = (EditDerivedBMesh *)dm;
return &bmdm->tc->bm->pdata;
}
DerivedMesh *getEditDerivedBMesh(BMEditMesh *em,
Object *UNUSED(ob),
float (*vertexCos)[3])
{
EditDerivedBMesh *bmdm = MEM_callocN(sizeof(*bmdm), __func__);
BMesh *bm = em->bm;
bmdm->tc = em;
DM_init((DerivedMesh *)bmdm, DM_TYPE_EDITBMESH, em->bm->totvert,
em->bm->totedge, em->tottri, em->bm->totloop, em->bm->totface);
/* could also get from the objects mesh directly */
bmdm->dm.cd_flag = BM_mesh_cd_flag_from_bmesh(bm);
bmdm->dm.getVertCos = emDM_getVertCos;
bmdm->dm.getMinMax = emDM_getMinMax;
bmdm->dm.getVertDataLayout = bmDm_getVertDataLayout;
bmdm->dm.getEdgeDataLayout = bmDm_getEdgeDataLayout;
bmdm->dm.getTessFaceDataLayout = bmDm_getTessFaceDataLayout;
bmdm->dm.getLoopDataLayout = bmDm_getLoopDataLayout;
bmdm->dm.getPolyDataLayout = bmDm_getPolyDataLayout;
bmdm->dm.getNumVerts = emDM_getNumVerts;
bmdm->dm.getNumEdges = emDM_getNumEdges;
bmdm->dm.getNumTessFaces = emDM_getNumTessFaces;
bmdm->dm.getNumLoops = emDM_getNumLoops;
bmdm->dm.getNumPolys = emDM_getNumPolys;
bmdm->dm.getVert = emDM_getVert;
bmdm->dm.getEdge = emDM_getEdge;
bmdm->dm.getTessFace = emDM_getTessFace;
bmdm->dm.copyVertArray = emDM_copyVertArray;
bmdm->dm.copyEdgeArray = emDM_copyEdgeArray;
bmdm->dm.copyTessFaceArray = emDM_copyTessFaceArray;
bmdm->dm.copyLoopArray = emDM_copyLoopArray;
bmdm->dm.copyPolyArray = emDM_copyPolyArray;
bmdm->dm.getTessFaceDataArray = emDM_getTessFaceDataArray;
bmdm->dm.calcNormals = emDM_calcNormals;
bmdm->dm.recalcTessellation = emDM_recalcTessellation;
bmdm->dm.foreachMappedVert = emDM_foreachMappedVert;
bmdm->dm.foreachMappedEdge = emDM_foreachMappedEdge;
bmdm->dm.foreachMappedFaceCenter = emDM_foreachMappedFaceCenter;
bmdm->dm.drawEdges = emDM_drawEdges;
bmdm->dm.drawMappedEdges = emDM_drawMappedEdges;
bmdm->dm.drawMappedEdgesInterp = emDM_drawMappedEdgesInterp;
bmdm->dm.drawMappedFaces = emDM_drawMappedFaces;
bmdm->dm.drawMappedFacesTex = emDM_drawMappedFacesTex;
bmdm->dm.drawMappedFacesGLSL = emDM_drawMappedFacesGLSL;
bmdm->dm.drawMappedFacesMat = emDM_drawMappedFacesMat;
bmdm->dm.drawFacesTex = emDM_drawFacesTex;
bmdm->dm.drawFacesGLSL = emDM_drawFacesGLSL;
bmdm->dm.drawUVEdges = emDM_drawUVEdges;
bmdm->dm.release = emDM_release;
bmdm->vertexCos = vertexCos;
if (CustomData_has_layer(&bm->vdata, CD_MDEFORMVERT)) {
BMIter iter;
BMVert *eve;
int i;
DM_add_vert_layer(&bmdm->dm, CD_MDEFORMVERT, CD_CALLOC, NULL);
BM_ITER_MESH_INDEX (eve, &iter, bmdm->tc->bm, BM_VERTS_OF_MESH, i) {
DM_set_vert_data(&bmdm->dm, i, CD_MDEFORMVERT,
CustomData_bmesh_get(&bm->vdata, eve->head.data, CD_MDEFORMVERT));
}
}
if (CustomData_has_layer(&bm->vdata, CD_MVERT_SKIN)) {
BMIter iter;
BMVert *eve;
int i;
DM_add_vert_layer(&bmdm->dm, CD_MVERT_SKIN, CD_CALLOC, NULL);
BM_ITER_MESH_INDEX (eve, &iter, bmdm->tc->bm, BM_VERTS_OF_MESH, i) {
DM_set_vert_data(&bmdm->dm, i, CD_MVERT_SKIN,
CustomData_bmesh_get(&bm->vdata, eve->head.data,
CD_MVERT_SKIN));
}
}
if (vertexCos) {
BMFace *efa;
BMVert *eve;
BMIter fiter;
BMIter viter;
int i;
BM_mesh_elem_index_ensure(bm, BM_VERT);
bmdm->vertexNos = MEM_callocN(sizeof(*bmdm->vertexNos) * bm->totvert, "bmdm_vno");
bmdm->polyNos = MEM_mallocN(sizeof(*bmdm->polyNos) * bm->totface, "bmdm_pno");
BM_ITER_MESH_INDEX (efa, &fiter, bm, BM_FACES_OF_MESH, i) {
BM_elem_index_set(efa, i); /* set_inline */
BM_face_normal_update_vcos(bm, efa, bmdm->polyNos[i], (float const (*)[3])vertexCos);
}
bm->elem_index_dirty &= ~BM_FACE;
BM_ITER_MESH_INDEX (eve, &viter, bm, BM_VERTS_OF_MESH, i) {
float *no = bmdm->vertexNos[i];
BM_ITER_ELEM (efa, &fiter, eve, BM_FACES_OF_VERT) {
add_v3_v3(no, bmdm->polyNos[BM_elem_index_get(efa)]);
}
/* following Mesh convention; we use vertex coordinate itself
* for normal in this case */
if (normalize_v3(no) == 0.0f) {
copy_v3_v3(no, vertexCos[i]);
normalize_v3(no);
}
}
}
return (DerivedMesh *)bmdm;
}
/**
* \brief Return the BMEditMesh for a given object
*
* \note this function assumes this is a mesh object,
* don't add NULL data check here. caller must do that
*/
BMEditMesh *BMEdit_FromObject(Object *ob)
{
BLI_assert(ob->type == OB_MESH);
/* sanity check */
#ifndef NDEBUG
if (((Mesh *)ob->data)->edit_btmesh) {
BLI_assert(((Mesh *)ob->data)->edit_btmesh->ob == ob);
}
#endif
return ((Mesh *)ob->data)->edit_btmesh;
}