Make the functions more flexible and more generic by changing the curves arguments to the curve offsets. This way, theoretically they could become normal utility functions in the future. Also do a consistency pass over the algorithms that generate new curves geometry for naming and code ordering, and use of utility functions. The functions are really quite similar, and it's much easier to tell this way.
1101 lines
47 KiB
C++
1101 lines
47 KiB
C++
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
/** \file
|
|
* \ingroup bke
|
|
*/
|
|
|
|
#include "BLI_array_utils.hh"
|
|
#include "BLI_length_parameterize.hh"
|
|
|
|
#include "BKE_attribute.hh"
|
|
#include "BKE_attribute_math.hh"
|
|
#include "BKE_curves.hh"
|
|
#include "BKE_curves_utils.hh"
|
|
#include "BKE_geometry_set.hh"
|
|
|
|
#include "GEO_trim_curves.hh"
|
|
|
|
namespace blender::geometry {
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Lookup Curve Points
|
|
* \{ */
|
|
|
|
/**
|
|
* Find the point on the curve defined by the distance along the curve. Assumes curve resolution is
|
|
* constant for all curve segments and evaluated curve points are uniformly spaced between the
|
|
* segment endpoints in relation to the curve parameter.
|
|
*
|
|
* \param lengths: Accumulated length for the evaluated curve.
|
|
* \param sample_length: Distance along the curve to determine the #CurvePoint for.
|
|
* \param cyclic: If curve is cyclic.
|
|
* \param resolution: Curve resolution (number of evaluated points per segment).
|
|
* \param num_curve_points: Total number of control points in the curve.
|
|
* \return: Point on the piecewise segment matching the given distance.
|
|
*/
|
|
static bke::curves::CurvePoint lookup_point_uniform_spacing(const Span<float> lengths,
|
|
const float sample_length,
|
|
const bool cyclic,
|
|
const int resolution,
|
|
const int num_curve_points)
|
|
{
|
|
BLI_assert(!cyclic || lengths.size() / resolution >= 2);
|
|
const int last_index = num_curve_points - 1;
|
|
if (sample_length <= 0.0f) {
|
|
return {{0, 1}, 0.0f};
|
|
}
|
|
if (sample_length >= lengths.last()) {
|
|
return cyclic ? bke::curves::CurvePoint{{last_index, 0}, 1.0} :
|
|
bke::curves::CurvePoint{{last_index - 1, last_index}, 1.0};
|
|
}
|
|
int eval_index;
|
|
float eval_factor;
|
|
length_parameterize::sample_at_length(lengths, sample_length, eval_index, eval_factor);
|
|
|
|
const int index = eval_index / resolution;
|
|
const int next_index = (index == last_index) ? 0 : index + 1;
|
|
const float parameter = (eval_factor + eval_index) / resolution - index;
|
|
|
|
return bke::curves::CurvePoint{{index, next_index}, parameter};
|
|
}
|
|
|
|
/**
|
|
* Find the point on the 'evaluated' polygonal curve.
|
|
*/
|
|
static bke::curves::CurvePoint lookup_point_polygonal(const Span<float> lengths,
|
|
const float sample_length,
|
|
const bool cyclic,
|
|
const int evaluated_size)
|
|
{
|
|
const int last_index = evaluated_size - 1;
|
|
if (sample_length <= 0.0f) {
|
|
return {{0, 1}, 0.0f};
|
|
}
|
|
if (sample_length >= lengths.last()) {
|
|
return cyclic ? bke::curves::CurvePoint{{last_index, 0}, 1.0} :
|
|
bke::curves::CurvePoint{{last_index - 1, last_index}, 1.0};
|
|
}
|
|
|
|
int eval_index;
|
|
float eval_factor;
|
|
length_parameterize::sample_at_length(lengths, sample_length, eval_index, eval_factor);
|
|
|
|
const int next_eval_index = (eval_index == last_index) ? 0 : eval_index + 1;
|
|
return bke::curves::CurvePoint{{eval_index, next_eval_index}, eval_factor};
|
|
}
|
|
|
|
/**
|
|
* Find the point on a Bezier curve using the 'bezier_offsets' cache.
|
|
*/
|
|
static bke::curves::CurvePoint lookup_point_bezier(const Span<int> bezier_offsets,
|
|
const Span<float> lengths,
|
|
const float sample_length,
|
|
const bool cyclic,
|
|
const int num_curve_points)
|
|
{
|
|
const int last_index = num_curve_points - 1;
|
|
if (sample_length <= 0.0f) {
|
|
return {{0, 1}, 0.0f};
|
|
}
|
|
if (sample_length >= lengths.last()) {
|
|
return cyclic ? bke::curves::CurvePoint{{last_index, 0}, 1.0} :
|
|
bke::curves::CurvePoint{{last_index - 1, last_index}, 1.0};
|
|
}
|
|
int eval_index;
|
|
float eval_factor;
|
|
length_parameterize::sample_at_length(lengths, sample_length, eval_index, eval_factor);
|
|
|
|
/* Find the segment index from the offset mapping. */
|
|
const int *offset = std::upper_bound(bezier_offsets.begin(), bezier_offsets.end(), eval_index);
|
|
const int left = offset - bezier_offsets.begin() - 1;
|
|
const int right = left == last_index ? 0 : left + 1;
|
|
|
|
const int prev_offset = bezier_offsets[left];
|
|
const float offset_in_segment = eval_factor + (eval_index - prev_offset);
|
|
const int segment_resolution = bezier_offsets[left + 1] - prev_offset;
|
|
const float parameter = std::clamp(offset_in_segment / segment_resolution, 0.0f, 1.0f);
|
|
|
|
return {{left, right}, parameter};
|
|
}
|
|
|
|
static bke::curves::CurvePoint lookup_point_bezier(
|
|
const bke::CurvesGeometry &src_curves,
|
|
const OffsetIndices<int> evaluated_points_by_curve,
|
|
const int64_t curve_index,
|
|
const Span<float> accumulated_lengths,
|
|
const float sample_length,
|
|
const bool cyclic,
|
|
const int resolution,
|
|
const int num_curve_points)
|
|
{
|
|
if (bke::curves::bezier::has_vector_handles(
|
|
num_curve_points, evaluated_points_by_curve.size(curve_index), cyclic, resolution)) {
|
|
const Span<int> bezier_offsets = src_curves.bezier_evaluated_offsets_for_curve(curve_index);
|
|
return lookup_point_bezier(
|
|
bezier_offsets, accumulated_lengths, sample_length, cyclic, num_curve_points);
|
|
}
|
|
else {
|
|
return lookup_point_uniform_spacing(
|
|
accumulated_lengths, sample_length, cyclic, resolution, num_curve_points);
|
|
}
|
|
}
|
|
|
|
static bke::curves::CurvePoint lookup_curve_point(
|
|
const bke::CurvesGeometry &src_curves,
|
|
const OffsetIndices<int> evaluated_points_by_curve,
|
|
const CurveType curve_type,
|
|
const int64_t curve_index,
|
|
const Span<float> accumulated_lengths,
|
|
const float sample_length,
|
|
const bool cyclic,
|
|
const int resolution,
|
|
const int num_curve_points)
|
|
{
|
|
if (num_curve_points == 1) {
|
|
return {{0, 0}, 0.0f};
|
|
}
|
|
|
|
if (curve_type == CURVE_TYPE_CATMULL_ROM) {
|
|
return lookup_point_uniform_spacing(
|
|
accumulated_lengths, sample_length, cyclic, resolution, num_curve_points);
|
|
}
|
|
else if (curve_type == CURVE_TYPE_BEZIER) {
|
|
return lookup_point_bezier(src_curves,
|
|
evaluated_points_by_curve,
|
|
curve_index,
|
|
accumulated_lengths,
|
|
sample_length,
|
|
cyclic,
|
|
resolution,
|
|
num_curve_points);
|
|
}
|
|
else if (curve_type == CURVE_TYPE_POLY) {
|
|
return lookup_point_polygonal(accumulated_lengths, sample_length, cyclic, num_curve_points);
|
|
}
|
|
else {
|
|
/* Handle evaluated curve. */
|
|
BLI_assert(resolution > 0);
|
|
return lookup_point_polygonal(
|
|
accumulated_lengths, sample_length, cyclic, evaluated_points_by_curve.size(curve_index));
|
|
}
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Utility Functions
|
|
* \{ */
|
|
|
|
static void fill_bezier_data(bke::CurvesGeometry &dst_curves, const IndexMask selection)
|
|
{
|
|
if (!dst_curves.has_curve_with_type(CURVE_TYPE_BEZIER)) {
|
|
return;
|
|
}
|
|
const OffsetIndices dst_points_by_curve = dst_curves.points_by_curve();
|
|
MutableSpan<float3> handle_positions_left = dst_curves.handle_positions_left_for_write();
|
|
MutableSpan<float3> handle_positions_right = dst_curves.handle_positions_right_for_write();
|
|
MutableSpan<int8_t> handle_types_left = dst_curves.handle_types_left_for_write();
|
|
MutableSpan<int8_t> handle_types_right = dst_curves.handle_types_right_for_write();
|
|
|
|
threading::parallel_for(selection.index_range(), 4096, [&](const IndexRange range) {
|
|
for (const int64_t curve_i : selection.slice(range)) {
|
|
const IndexRange points = dst_points_by_curve[curve_i];
|
|
handle_types_right.slice(points).fill(int8_t(BEZIER_HANDLE_FREE));
|
|
handle_types_left.slice(points).fill(int8_t(BEZIER_HANDLE_FREE));
|
|
handle_positions_left.slice(points).fill({0.0f, 0.0f, 0.0f});
|
|
handle_positions_right.slice(points).fill({0.0f, 0.0f, 0.0f});
|
|
}
|
|
});
|
|
}
|
|
static void fill_nurbs_data(bke::CurvesGeometry &dst_curves, const IndexMask selection)
|
|
{
|
|
if (!dst_curves.has_curve_with_type(CURVE_TYPE_NURBS)) {
|
|
return;
|
|
}
|
|
bke::curves::fill_points(
|
|
dst_curves.points_by_curve(), selection, 0.0f, dst_curves.nurbs_weights_for_write());
|
|
}
|
|
|
|
template<typename T>
|
|
static int64_t copy_point_data_between_endpoints(const Span<T> src_data,
|
|
MutableSpan<T> dst_data,
|
|
const bke::curves::IndexRangeCyclic src_range,
|
|
int64_t dst_index)
|
|
{
|
|
int64_t increment;
|
|
if (src_range.cycles()) {
|
|
increment = src_range.size_before_loop();
|
|
dst_data.slice(dst_index, increment).copy_from(src_data.slice(src_range.first(), increment));
|
|
dst_index += increment;
|
|
|
|
increment = src_range.size_after_loop();
|
|
dst_data.slice(dst_index, increment)
|
|
.copy_from(src_data.slice(src_range.curve_range().first(), increment));
|
|
dst_index += increment;
|
|
}
|
|
else {
|
|
increment = src_range.one_after_last() - int64_t(src_range.first());
|
|
dst_data.slice(dst_index, increment).copy_from(src_data.slice(src_range.first(), increment));
|
|
dst_index += increment;
|
|
}
|
|
return dst_index;
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Sampling Utilities
|
|
* \{ */
|
|
|
|
template<typename T>
|
|
static T interpolate_catmull_rom(const Span<T> src_data,
|
|
const bke::curves::CurvePoint insertion_point,
|
|
const bool src_cyclic)
|
|
{
|
|
BLI_assert(insertion_point.index >= 0 && insertion_point.next_index < src_data.size());
|
|
int i0;
|
|
if (insertion_point.index == 0) {
|
|
i0 = src_cyclic ? src_data.size() - 1 : insertion_point.index;
|
|
}
|
|
else {
|
|
i0 = insertion_point.index - 1;
|
|
}
|
|
int i3 = insertion_point.next_index + 1;
|
|
if (i3 == src_data.size()) {
|
|
i3 = src_cyclic ? 0 : insertion_point.next_index;
|
|
}
|
|
return bke::curves::catmull_rom::interpolate<T>(src_data[i0],
|
|
src_data[insertion_point.index],
|
|
src_data[insertion_point.next_index],
|
|
src_data[i3],
|
|
insertion_point.parameter);
|
|
}
|
|
|
|
static bke::curves::bezier::Insertion knot_insert_bezier(
|
|
const Span<float3> positions,
|
|
const Span<float3> handles_left,
|
|
const Span<float3> handles_right,
|
|
const bke::curves::CurvePoint insertion_point)
|
|
{
|
|
BLI_assert(
|
|
insertion_point.index + 1 == insertion_point.next_index ||
|
|
(insertion_point.next_index >= 0 && insertion_point.next_index < insertion_point.index));
|
|
return bke::curves::bezier::insert(positions[insertion_point.index],
|
|
handles_right[insertion_point.index],
|
|
handles_left[insertion_point.next_index],
|
|
positions[insertion_point.next_index],
|
|
insertion_point.parameter);
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Sample Curve Interval (Trim)
|
|
* \{ */
|
|
|
|
/**
|
|
* Sample source curve data in the interval defined by the points [start_point, end_point].
|
|
* Uses linear interpolation to compute the endpoints.
|
|
*
|
|
* \tparam include_start_point: If False, the 'start_point' point sample will not be copied
|
|
* and not accounted for in the destination range.
|
|
* \param src_data: Source to sample from.
|
|
* \param dst_data: Destination to write samples to.
|
|
* \param src_range: Interval within [start_point, end_point] to copy from the source point domain.
|
|
* \param dst_range: Interval to copy point data to in the destination buffer.
|
|
* \param start_point: Point on the source curve to start sampling from.
|
|
* \param end_point: Last point to sample in the source curve.
|
|
*/
|
|
template<typename T, bool include_start_point = true>
|
|
static void sample_interval_linear(const Span<T> src_data,
|
|
MutableSpan<T> dst_data,
|
|
bke::curves::IndexRangeCyclic src_range,
|
|
const IndexRange dst_range,
|
|
const bke::curves::CurvePoint start_point,
|
|
const bke::curves::CurvePoint end_point)
|
|
{
|
|
int64_t dst_index = dst_range.first();
|
|
|
|
if (start_point.is_controlpoint()) {
|
|
/* 'start_point' is included in the copy iteration. */
|
|
if constexpr (!include_start_point) {
|
|
/* Skip first. */
|
|
src_range = src_range.drop_front();
|
|
}
|
|
}
|
|
else if constexpr (!include_start_point) {
|
|
/* Do nothing (excluded). */
|
|
}
|
|
else {
|
|
/* General case, sample 'start_point' */
|
|
dst_data[dst_index] = attribute_math::mix2(
|
|
start_point.parameter, src_data[start_point.index], src_data[start_point.next_index]);
|
|
++dst_index;
|
|
}
|
|
|
|
dst_index = copy_point_data_between_endpoints(src_data, dst_data, src_range, dst_index);
|
|
if (dst_range.size() == 1) {
|
|
BLI_assert(dst_index == dst_range.one_after_last());
|
|
return;
|
|
}
|
|
|
|
/* Handle last case */
|
|
if (end_point.is_controlpoint()) {
|
|
/* 'end_point' is included in the copy iteration. */
|
|
}
|
|
else {
|
|
dst_data[dst_index] = attribute_math::mix2(
|
|
end_point.parameter, src_data[end_point.index], src_data[end_point.next_index]);
|
|
#ifdef DEBUG
|
|
++dst_index;
|
|
#endif
|
|
}
|
|
BLI_assert(dst_index == dst_range.one_after_last());
|
|
}
|
|
|
|
template<typename T>
|
|
static void sample_interval_catmull_rom(const Span<T> src_data,
|
|
MutableSpan<T> dst_data,
|
|
bke::curves::IndexRangeCyclic src_range,
|
|
const IndexRange dst_range,
|
|
const bke::curves::CurvePoint start_point,
|
|
const bke::curves::CurvePoint end_point,
|
|
const bool src_cyclic)
|
|
{
|
|
int64_t dst_index = dst_range.first();
|
|
|
|
if (start_point.is_controlpoint()) {
|
|
}
|
|
else {
|
|
/* General case, sample 'start_point' */
|
|
dst_data[dst_index] = interpolate_catmull_rom(src_data, start_point, src_cyclic);
|
|
++dst_index;
|
|
}
|
|
|
|
dst_index = copy_point_data_between_endpoints(src_data, dst_data, src_range, dst_index);
|
|
if (dst_range.size() == 1) {
|
|
BLI_assert(dst_index == dst_range.one_after_last());
|
|
return;
|
|
}
|
|
|
|
/* Handle last case */
|
|
if (end_point.is_controlpoint()) {
|
|
/* 'end_point' is included in the copy iteration. */
|
|
}
|
|
else {
|
|
dst_data[dst_index] = interpolate_catmull_rom(src_data, end_point, src_cyclic);
|
|
#ifdef DEBUG
|
|
++dst_index;
|
|
#endif
|
|
}
|
|
BLI_assert(dst_index == dst_range.one_after_last());
|
|
}
|
|
|
|
template<bool include_start_point = true>
|
|
static void sample_interval_bezier(const Span<float3> src_positions,
|
|
const Span<float3> src_handles_l,
|
|
const Span<float3> src_handles_r,
|
|
const Span<int8_t> src_types_l,
|
|
const Span<int8_t> src_types_r,
|
|
MutableSpan<float3> dst_positions,
|
|
MutableSpan<float3> dst_handles_l,
|
|
MutableSpan<float3> dst_handles_r,
|
|
MutableSpan<int8_t> dst_types_l,
|
|
MutableSpan<int8_t> dst_types_r,
|
|
bke::curves::IndexRangeCyclic src_range,
|
|
const IndexRange dst_range,
|
|
const bke::curves::CurvePoint start_point,
|
|
const bke::curves::CurvePoint end_point)
|
|
{
|
|
bke::curves::bezier::Insertion start_point_insert;
|
|
int64_t dst_index = dst_range.first();
|
|
|
|
bool start_point_trimmed = false;
|
|
if (start_point.is_controlpoint()) {
|
|
/* The 'start_point' control point is included in the copy iteration. */
|
|
if constexpr (!include_start_point) {
|
|
src_range = src_range.drop_front();
|
|
}
|
|
}
|
|
else if constexpr (!include_start_point) {
|
|
/* Do nothing, 'start_point' is excluded. */
|
|
}
|
|
else {
|
|
/* General case, sample 'start_point'. */
|
|
start_point_insert = knot_insert_bezier(
|
|
src_positions, src_handles_l, src_handles_r, start_point);
|
|
dst_positions[dst_range.first()] = start_point_insert.position;
|
|
dst_handles_l[dst_range.first()] = start_point_insert.left_handle;
|
|
dst_handles_r[dst_range.first()] = start_point_insert.right_handle;
|
|
dst_types_l[dst_range.first()] = src_types_l[start_point.index];
|
|
dst_types_r[dst_range.first()] = src_types_r[start_point.index];
|
|
|
|
start_point_trimmed = true;
|
|
++dst_index;
|
|
}
|
|
|
|
/* Copy point data between the 'start_point' and 'end_point'. */
|
|
int64_t increment = src_range.cycles() ? src_range.size_before_loop() :
|
|
src_range.one_after_last() - src_range.first();
|
|
|
|
const IndexRange dst_range_to_end(dst_index, increment);
|
|
const IndexRange src_range_to_end(src_range.first(), increment);
|
|
dst_positions.slice(dst_range_to_end).copy_from(src_positions.slice(src_range_to_end));
|
|
dst_handles_l.slice(dst_range_to_end).copy_from(src_handles_l.slice(src_range_to_end));
|
|
dst_handles_r.slice(dst_range_to_end).copy_from(src_handles_r.slice(src_range_to_end));
|
|
dst_types_l.slice(dst_range_to_end).copy_from(src_types_l.slice(src_range_to_end));
|
|
dst_types_r.slice(dst_range_to_end).copy_from(src_types_r.slice(src_range_to_end));
|
|
dst_index += increment;
|
|
|
|
if (dst_range.size() == 1) {
|
|
BLI_assert(dst_index == dst_range.one_after_last());
|
|
return;
|
|
}
|
|
|
|
increment = src_range.size_after_loop();
|
|
if (src_range.cycles() && increment > 0) {
|
|
const IndexRange dst_range_looped(dst_index, increment);
|
|
const IndexRange src_range_looped(src_range.curve_range().first(), increment);
|
|
dst_positions.slice(dst_range_looped).copy_from(src_positions.slice(src_range_looped));
|
|
dst_handles_l.slice(dst_range_looped).copy_from(src_handles_l.slice(src_range_looped));
|
|
dst_handles_r.slice(dst_range_looped).copy_from(src_handles_r.slice(src_range_looped));
|
|
dst_types_l.slice(dst_range_looped).copy_from(src_types_l.slice(src_range_looped));
|
|
dst_types_r.slice(dst_range_looped).copy_from(src_types_r.slice(src_range_looped));
|
|
dst_index += increment;
|
|
}
|
|
|
|
if (start_point_trimmed) {
|
|
dst_handles_l[dst_range.first() + 1] = start_point_insert.handle_next;
|
|
/* No need to change handle type (remains the same). */
|
|
}
|
|
|
|
/* Handle 'end_point' */
|
|
bke::curves::bezier::Insertion end_point_insert;
|
|
if (end_point.parameter == 0.0f) {
|
|
if (end_point.index == start_point.index) {
|
|
/* Start point is same point or in the same segment. */
|
|
if (start_point.parameter == 0.0f) {
|
|
/* Same point. */
|
|
BLI_assert(dst_range.size() == 1LL + src_range.size_range());
|
|
dst_handles_l[dst_range.first()] = dst_positions[dst_range.first()];
|
|
dst_handles_r[dst_range.last()] = dst_positions[dst_range.first()];
|
|
}
|
|
else if (start_point.parameter == 1.0f) {
|
|
/* Start is next controlpoint, do nothing. */
|
|
}
|
|
else {
|
|
/* Within the segment. */
|
|
BLI_assert(dst_range.size() == 1LL + src_range.size_range() || dst_range.size() == 2);
|
|
dst_handles_r[dst_range.last()] = start_point_insert.handle_prev;
|
|
}
|
|
}
|
|
/* Start point is considered 'before' the endpoint and ignored. */
|
|
}
|
|
else if (end_point.parameter == 1.0f) {
|
|
if (end_point.next_index == start_point.index) {
|
|
/* Start point is same or in 'next' segment. */
|
|
if (start_point.parameter == 0.0f) {
|
|
/* Same point */
|
|
BLI_assert(dst_range.size() == 1LL + src_range.size_range());
|
|
dst_handles_l[dst_range.first()] = dst_positions[dst_range.first()];
|
|
dst_handles_r[dst_range.last()] = dst_positions[dst_range.first()];
|
|
}
|
|
else if (start_point.parameter == 1.0f) {
|
|
/* Start is next controlpoint, do nothing. */
|
|
}
|
|
else {
|
|
/* In next segment. */
|
|
BLI_assert(dst_range.size() == 1LL + src_range.size_range() || dst_range.size() == 2);
|
|
dst_handles_r[dst_range.last()] = start_point_insert.handle_prev;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* Trimmed in both ends within the same (and only) segment! Ensure both end points is not a
|
|
* loop. */
|
|
if (start_point.index == end_point.index && start_point.parameter < 1.0f) {
|
|
BLI_assert(dst_range.size() == 2 || dst_range.size() == 2ll + src_range.size_range() ||
|
|
dst_range.size() == 1LL + src_range.size_range());
|
|
|
|
if (start_point.parameter > end_point.parameter && start_point.parameter < 1.0f) {
|
|
/* Start point comes after the endpoint within the segment. */
|
|
BLI_assert(end_point.parameter >= 0.0f);
|
|
|
|
const float parameter = end_point.parameter / start_point.parameter;
|
|
end_point_insert = bke::curves::bezier::insert(dst_positions[dst_index - 1],
|
|
start_point_insert.handle_prev,
|
|
start_point_insert.left_handle,
|
|
start_point_insert.position,
|
|
parameter);
|
|
|
|
/* Update start-point handle. */
|
|
dst_handles_l[dst_range.first()] = end_point_insert.handle_next;
|
|
}
|
|
else {
|
|
/* Start point lies before the endpoint within the segment. */
|
|
|
|
const float parameter = (end_point.parameter - start_point.parameter) /
|
|
(1.0f - start_point.parameter);
|
|
/* Unused only when parameter == 0.0f! */
|
|
const float3 handle_next = start_point.parameter == 0.0f ?
|
|
src_handles_l[end_point.next_index] :
|
|
start_point_insert.handle_next;
|
|
end_point_insert = bke::curves::bezier::insert(dst_positions[dst_index - 1],
|
|
dst_handles_r[dst_index - 1],
|
|
handle_next,
|
|
src_positions[end_point.next_index],
|
|
parameter);
|
|
}
|
|
}
|
|
else {
|
|
/* General case, compute the insertion point. */
|
|
end_point_insert = knot_insert_bezier(
|
|
src_positions, src_handles_l, src_handles_r, end_point);
|
|
|
|
if ((start_point.parameter >= end_point.parameter && end_point.index == start_point.index) ||
|
|
(start_point.parameter == 0.0f && end_point.next_index == start_point.index)) {
|
|
/* Start point is next controlpoint. */
|
|
dst_handles_l[dst_range.first()] = end_point_insert.handle_next;
|
|
/* No need to change handle type (remains the same). */
|
|
}
|
|
}
|
|
|
|
dst_handles_r[dst_index - 1] = end_point_insert.handle_prev;
|
|
dst_types_r[dst_index - 1] = src_types_l[end_point.index];
|
|
|
|
dst_handles_l[dst_index] = end_point_insert.left_handle;
|
|
dst_handles_r[dst_index] = end_point_insert.right_handle;
|
|
dst_positions[dst_index] = end_point_insert.position;
|
|
dst_types_l[dst_index] = src_types_l[end_point.next_index];
|
|
dst_types_r[dst_index] = src_types_r[end_point.next_index];
|
|
#ifdef DEBUG
|
|
++dst_index;
|
|
#endif // DEBUG
|
|
}
|
|
BLI_assert(dst_index == dst_range.one_after_last());
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Trim Curves
|
|
* \{ */
|
|
|
|
static void trim_attribute_linear(const bke::CurvesGeometry &src_curves,
|
|
bke::CurvesGeometry &dst_curves,
|
|
const IndexMask selection,
|
|
const Span<bke::curves::CurvePoint> start_points,
|
|
const Span<bke::curves::CurvePoint> end_points,
|
|
const Span<bke::curves::IndexRangeCyclic> src_ranges,
|
|
MutableSpan<bke::AttributeTransferData> transfer_attributes)
|
|
{
|
|
const OffsetIndices src_points_by_curve = src_curves.points_by_curve();
|
|
const OffsetIndices dst_points_by_curve = dst_curves.points_by_curve();
|
|
for (bke::AttributeTransferData &attribute : transfer_attributes) {
|
|
attribute_math::convert_to_static_type(attribute.meta_data.data_type, [&](auto dummy) {
|
|
using T = decltype(dummy);
|
|
|
|
threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
|
|
for (const int64_t curve_i : selection.slice(range)) {
|
|
const IndexRange src_points = src_points_by_curve[curve_i];
|
|
|
|
sample_interval_linear<T>(attribute.src.template typed<T>().slice(src_points),
|
|
attribute.dst.span.typed<T>(),
|
|
src_ranges[curve_i],
|
|
dst_points_by_curve[curve_i],
|
|
start_points[curve_i],
|
|
end_points[curve_i]);
|
|
}
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
static void trim_polygonal_curves(const bke::CurvesGeometry &src_curves,
|
|
bke::CurvesGeometry &dst_curves,
|
|
const IndexMask selection,
|
|
const Span<bke::curves::CurvePoint> start_points,
|
|
const Span<bke::curves::CurvePoint> end_points,
|
|
const Span<bke::curves::IndexRangeCyclic> src_ranges,
|
|
MutableSpan<bke::AttributeTransferData> transfer_attributes)
|
|
{
|
|
const OffsetIndices src_points_by_curve = src_curves.points_by_curve();
|
|
const OffsetIndices dst_points_by_curve = dst_curves.points_by_curve();
|
|
const Span<float3> src_positions = src_curves.positions();
|
|
MutableSpan<float3> dst_positions = dst_curves.positions_for_write();
|
|
|
|
threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
|
|
for (const int64_t curve_i : selection.slice(range)) {
|
|
const IndexRange src_points = src_points_by_curve[curve_i];
|
|
const IndexRange dst_points = dst_points_by_curve[curve_i];
|
|
|
|
sample_interval_linear<float3>(src_positions.slice(src_points),
|
|
dst_positions,
|
|
src_ranges[curve_i],
|
|
dst_points,
|
|
start_points[curve_i],
|
|
end_points[curve_i]);
|
|
}
|
|
});
|
|
fill_bezier_data(dst_curves, selection);
|
|
fill_nurbs_data(dst_curves, selection);
|
|
trim_attribute_linear(src_curves,
|
|
dst_curves,
|
|
selection,
|
|
start_points,
|
|
end_points,
|
|
src_ranges,
|
|
transfer_attributes);
|
|
}
|
|
|
|
static void trim_catmull_rom_curves(const bke::CurvesGeometry &src_curves,
|
|
bke::CurvesGeometry &dst_curves,
|
|
const IndexMask selection,
|
|
const Span<bke::curves::CurvePoint> start_points,
|
|
const Span<bke::curves::CurvePoint> end_points,
|
|
const Span<bke::curves::IndexRangeCyclic> src_ranges,
|
|
MutableSpan<bke::AttributeTransferData> transfer_attributes)
|
|
{
|
|
const OffsetIndices src_points_by_curve = src_curves.points_by_curve();
|
|
const OffsetIndices dst_points_by_curve = dst_curves.points_by_curve();
|
|
const Span<float3> src_positions = src_curves.positions();
|
|
const VArray<bool> src_cyclic = src_curves.cyclic();
|
|
MutableSpan<float3> dst_positions = dst_curves.positions_for_write();
|
|
|
|
threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
|
|
for (const int64_t curve_i : selection.slice(range)) {
|
|
const IndexRange src_points = src_points_by_curve[curve_i];
|
|
const IndexRange dst_points = dst_points_by_curve[curve_i];
|
|
|
|
sample_interval_catmull_rom<float3>(src_positions.slice(src_points),
|
|
dst_positions,
|
|
src_ranges[curve_i],
|
|
dst_points,
|
|
start_points[curve_i],
|
|
end_points[curve_i],
|
|
src_cyclic[curve_i]);
|
|
}
|
|
});
|
|
fill_bezier_data(dst_curves, selection);
|
|
fill_nurbs_data(dst_curves, selection);
|
|
|
|
for (bke::AttributeTransferData &attribute : transfer_attributes) {
|
|
attribute_math::convert_to_static_type(attribute.meta_data.data_type, [&](auto dummy) {
|
|
using T = decltype(dummy);
|
|
|
|
threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
|
|
for (const int64_t curve_i : selection.slice(range)) {
|
|
const IndexRange src_points = src_points_by_curve[curve_i];
|
|
const IndexRange dst_points = dst_points_by_curve[curve_i];
|
|
|
|
sample_interval_catmull_rom<T>(attribute.src.template typed<T>().slice(src_points),
|
|
attribute.dst.span.typed<T>(),
|
|
src_ranges[curve_i],
|
|
dst_points,
|
|
start_points[curve_i],
|
|
end_points[curve_i],
|
|
src_cyclic[curve_i]);
|
|
}
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
static void trim_bezier_curves(const bke::CurvesGeometry &src_curves,
|
|
bke::CurvesGeometry &dst_curves,
|
|
const IndexMask selection,
|
|
const Span<bke::curves::CurvePoint> start_points,
|
|
const Span<bke::curves::CurvePoint> end_points,
|
|
const Span<bke::curves::IndexRangeCyclic> src_ranges,
|
|
MutableSpan<bke::AttributeTransferData> transfer_attributes)
|
|
{
|
|
const OffsetIndices src_points_by_curve = src_curves.points_by_curve();
|
|
const Span<float3> src_positions = src_curves.positions();
|
|
const VArraySpan<int8_t> src_types_l{src_curves.handle_types_left()};
|
|
const VArraySpan<int8_t> src_types_r{src_curves.handle_types_right()};
|
|
const Span<float3> src_handles_l = src_curves.handle_positions_left();
|
|
const Span<float3> src_handles_r = src_curves.handle_positions_right();
|
|
|
|
const OffsetIndices dst_points_by_curve = dst_curves.points_by_curve();
|
|
MutableSpan<float3> dst_positions = dst_curves.positions_for_write();
|
|
MutableSpan<int8_t> dst_types_l = dst_curves.handle_types_left_for_write();
|
|
MutableSpan<int8_t> dst_types_r = dst_curves.handle_types_right_for_write();
|
|
MutableSpan<float3> dst_handles_l = dst_curves.handle_positions_left_for_write();
|
|
MutableSpan<float3> dst_handles_r = dst_curves.handle_positions_right_for_write();
|
|
|
|
threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
|
|
for (const int64_t curve_i : selection.slice(range)) {
|
|
const IndexRange src_points = src_points_by_curve[curve_i];
|
|
const IndexRange dst_points = dst_points_by_curve[curve_i];
|
|
|
|
sample_interval_bezier(src_positions.slice(src_points),
|
|
src_handles_l.slice(src_points),
|
|
src_handles_r.slice(src_points),
|
|
src_types_l.slice(src_points),
|
|
src_types_r.slice(src_points),
|
|
dst_positions,
|
|
dst_handles_l,
|
|
dst_handles_r,
|
|
dst_types_l,
|
|
dst_types_r,
|
|
src_ranges[curve_i],
|
|
dst_points,
|
|
start_points[curve_i],
|
|
end_points[curve_i]);
|
|
}
|
|
});
|
|
fill_nurbs_data(dst_curves, selection);
|
|
trim_attribute_linear(src_curves,
|
|
dst_curves,
|
|
selection,
|
|
start_points,
|
|
end_points,
|
|
src_ranges,
|
|
transfer_attributes);
|
|
}
|
|
|
|
static void trim_evaluated_curves(const bke::CurvesGeometry &src_curves,
|
|
bke::CurvesGeometry &dst_curves,
|
|
const IndexMask selection,
|
|
const Span<bke::curves::CurvePoint> start_points,
|
|
const Span<bke::curves::CurvePoint> end_points,
|
|
const Span<bke::curves::IndexRangeCyclic> src_ranges,
|
|
MutableSpan<bke::AttributeTransferData> transfer_attributes)
|
|
{
|
|
const OffsetIndices src_points_by_curve = src_curves.points_by_curve();
|
|
const OffsetIndices src_evaluated_points_by_curve = src_curves.evaluated_points_by_curve();
|
|
const OffsetIndices dst_points_by_curve = dst_curves.points_by_curve();
|
|
const Span<float3> src_eval_positions = src_curves.evaluated_positions();
|
|
MutableSpan<float3> dst_positions = dst_curves.positions_for_write();
|
|
|
|
threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
|
|
for (const int64_t curve_i : selection.slice(range)) {
|
|
const IndexRange src_evaluated_points = src_evaluated_points_by_curve[curve_i];
|
|
const IndexRange dst_points = dst_points_by_curve[curve_i];
|
|
sample_interval_linear<float3>(src_eval_positions.slice(src_evaluated_points),
|
|
dst_positions,
|
|
src_ranges[curve_i],
|
|
dst_points,
|
|
start_points[curve_i],
|
|
end_points[curve_i]);
|
|
}
|
|
});
|
|
fill_bezier_data(dst_curves, selection);
|
|
fill_nurbs_data(dst_curves, selection);
|
|
|
|
for (bke::AttributeTransferData &attribute : transfer_attributes) {
|
|
attribute_math::convert_to_static_type(attribute.meta_data.data_type, [&](auto dummy) {
|
|
using T = decltype(dummy);
|
|
|
|
threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
|
|
Vector<std::byte> evaluated_buffer;
|
|
for (const int64_t curve_i : selection.slice(range)) {
|
|
const IndexRange src_points = src_points_by_curve[curve_i];
|
|
|
|
/* Interpolate onto the evaluated point domain and sample the evaluated domain. */
|
|
evaluated_buffer.reinitialize(sizeof(T) * src_evaluated_points_by_curve.size(curve_i));
|
|
MutableSpan<T> evaluated = evaluated_buffer.as_mutable_span().cast<T>();
|
|
src_curves.interpolate_to_evaluated(curve_i, attribute.src.slice(src_points), evaluated);
|
|
sample_interval_linear<T>(evaluated,
|
|
attribute.dst.span.typed<T>(),
|
|
src_ranges[curve_i],
|
|
dst_points_by_curve[curve_i],
|
|
start_points[curve_i],
|
|
end_points[curve_i]);
|
|
}
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Compute trim parameters
|
|
* \{ */
|
|
|
|
static float trim_sample_length(const Span<float> accumulated_lengths,
|
|
const float sample_length,
|
|
const GeometryNodeCurveSampleMode mode)
|
|
{
|
|
float length = mode == GEO_NODE_CURVE_SAMPLE_FACTOR ?
|
|
sample_length * accumulated_lengths.last() :
|
|
sample_length;
|
|
return std::clamp(length, 0.0f, accumulated_lengths.last());
|
|
}
|
|
|
|
/**
|
|
* Compute the selected range of points for every selected curve.
|
|
*/
|
|
static void compute_curve_trim_parameters(const bke::CurvesGeometry &curves,
|
|
const IndexMask selection,
|
|
const VArray<float> &starts,
|
|
const VArray<float> &ends,
|
|
const GeometryNodeCurveSampleMode mode,
|
|
MutableSpan<int> dst_curve_size,
|
|
MutableSpan<bke::curves::CurvePoint> start_points,
|
|
MutableSpan<bke::curves::CurvePoint> end_points,
|
|
MutableSpan<bke::curves::IndexRangeCyclic> src_ranges)
|
|
{
|
|
const OffsetIndices points_by_curve = curves.points_by_curve();
|
|
const OffsetIndices evaluated_points_by_curve = curves.evaluated_points_by_curve();
|
|
const VArray<bool> src_cyclic = curves.cyclic();
|
|
const VArray<int> resolution = curves.resolution();
|
|
const VArray<int8_t> curve_types = curves.curve_types();
|
|
curves.ensure_can_interpolate_to_evaluated();
|
|
|
|
threading::parallel_for(selection.index_range(), 128, [&](const IndexRange selection_range) {
|
|
for (const int64_t curve_i : selection.slice(selection_range)) {
|
|
CurveType curve_type = CurveType(curve_types[curve_i]);
|
|
|
|
int point_count;
|
|
if (curve_type == CURVE_TYPE_NURBS) {
|
|
/* The result curve is a poly curve. */
|
|
point_count = evaluated_points_by_curve.size(curve_i);
|
|
}
|
|
else {
|
|
point_count = points_by_curve.size(curve_i);
|
|
}
|
|
if (point_count == 1) {
|
|
/* Single point. */
|
|
dst_curve_size[curve_i] = 1;
|
|
src_ranges[curve_i] = bke::curves::IndexRangeCyclic(0, 0, 1, 1);
|
|
start_points[curve_i] = {{0, 0}, 0.0f};
|
|
end_points[curve_i] = {{0, 0}, 0.0f};
|
|
continue;
|
|
}
|
|
|
|
const bool cyclic = src_cyclic[curve_i];
|
|
const Span<float> lengths = curves.evaluated_lengths_for_curve(curve_i, cyclic);
|
|
BLI_assert(lengths.size() > 0);
|
|
|
|
const float start_length = trim_sample_length(lengths, starts[curve_i], mode);
|
|
float end_length;
|
|
|
|
bool equal_sample_point;
|
|
if (cyclic) {
|
|
end_length = trim_sample_length(lengths, ends[curve_i], mode);
|
|
const float cyclic_start = start_length == lengths.last() ? 0.0f : start_length;
|
|
const float cyclic_end = end_length == lengths.last() ? 0.0f : end_length;
|
|
equal_sample_point = cyclic_start == cyclic_end;
|
|
}
|
|
else {
|
|
end_length = ends[curve_i] <= starts[curve_i] ?
|
|
start_length :
|
|
trim_sample_length(lengths, ends[curve_i], mode);
|
|
equal_sample_point = start_length == end_length;
|
|
}
|
|
|
|
start_points[curve_i] = lookup_curve_point(curves,
|
|
evaluated_points_by_curve,
|
|
curve_type,
|
|
curve_i,
|
|
lengths,
|
|
start_length,
|
|
cyclic,
|
|
resolution[curve_i],
|
|
point_count);
|
|
if (equal_sample_point) {
|
|
end_points[curve_i] = start_points[curve_i];
|
|
if (end_length <= start_length) {
|
|
/* Single point. */
|
|
dst_curve_size[curve_i] = 1;
|
|
if (start_points[curve_i].is_controlpoint()) {
|
|
/* Only iterate if control point. */
|
|
const int single_point_index = start_points[curve_i].parameter == 1.0f ?
|
|
start_points[curve_i].next_index :
|
|
start_points[curve_i].index;
|
|
src_ranges[curve_i] = bke::curves::IndexRangeCyclic::get_range_from_size(
|
|
single_point_index, 1, point_count);
|
|
}
|
|
/* else: leave empty range */
|
|
}
|
|
else {
|
|
/* Split. */
|
|
src_ranges[curve_i] = bke::curves::IndexRangeCyclic::get_range_between_endpoints(
|
|
start_points[curve_i], end_points[curve_i], point_count)
|
|
.push_loop();
|
|
const int count = 1 + !start_points[curve_i].is_controlpoint() + point_count;
|
|
BLI_assert(count > 1);
|
|
dst_curve_size[curve_i] = count;
|
|
}
|
|
}
|
|
else {
|
|
/* General case. */
|
|
end_points[curve_i] = lookup_curve_point(curves,
|
|
evaluated_points_by_curve,
|
|
curve_type,
|
|
curve_i,
|
|
lengths,
|
|
end_length,
|
|
cyclic,
|
|
resolution[curve_i],
|
|
point_count);
|
|
|
|
src_ranges[curve_i] = bke::curves::IndexRangeCyclic::get_range_between_endpoints(
|
|
start_points[curve_i], end_points[curve_i], point_count);
|
|
const int count = src_ranges[curve_i].size() + !start_points[curve_i].is_controlpoint() +
|
|
!end_points[curve_i].is_controlpoint();
|
|
BLI_assert(count > 1);
|
|
dst_curve_size[curve_i] = count;
|
|
}
|
|
BLI_assert(dst_curve_size[curve_i] > 0);
|
|
}
|
|
});
|
|
}
|
|
|
|
/** \} */
|
|
|
|
bke::CurvesGeometry trim_curves(const bke::CurvesGeometry &src_curves,
|
|
const IndexMask selection,
|
|
const VArray<float> &starts,
|
|
const VArray<float> &ends,
|
|
const GeometryNodeCurveSampleMode mode,
|
|
const bke::AnonymousAttributePropagationInfo &propagation_info)
|
|
{
|
|
const OffsetIndices src_points_by_curve = src_curves.points_by_curve();
|
|
const Vector<IndexRange> unselected_ranges = selection.extract_ranges_invert(
|
|
src_curves.curves_range());
|
|
|
|
BLI_assert(selection.size() > 0);
|
|
BLI_assert(selection.last() <= src_curves.curves_num());
|
|
BLI_assert(starts.size() == src_curves.curves_num());
|
|
BLI_assert(starts.size() == ends.size());
|
|
src_curves.ensure_evaluated_lengths();
|
|
|
|
bke::CurvesGeometry dst_curves = bke::curves::copy_only_curve_domain(src_curves);
|
|
MutableSpan<int> dst_curve_offsets = dst_curves.offsets_for_write();
|
|
Array<bke::curves::CurvePoint, 16> start_points(src_curves.curves_num());
|
|
Array<bke::curves::CurvePoint, 16> end_points(src_curves.curves_num());
|
|
Array<bke::curves::IndexRangeCyclic, 16> src_ranges(src_curves.curves_num());
|
|
compute_curve_trim_parameters(src_curves,
|
|
selection,
|
|
starts,
|
|
ends,
|
|
mode,
|
|
dst_curve_offsets,
|
|
start_points,
|
|
end_points,
|
|
src_ranges);
|
|
bke::curves::copy_curve_sizes(src_points_by_curve, unselected_ranges, dst_curve_offsets);
|
|
offset_indices::accumulate_counts_to_offsets(dst_curve_offsets);
|
|
const OffsetIndices dst_points_by_curve = dst_curves.points_by_curve();
|
|
dst_curves.resize(dst_curves.offsets().last(), dst_curves.curves_num());
|
|
|
|
/* Populate curve domain. */
|
|
const bke::AttributeAccessor src_attributes = src_curves.attributes();
|
|
bke::MutableAttributeAccessor dst_attributes = dst_curves.attributes_for_write();
|
|
Set<std::string> transfer_curve_skip = {"cyclic", "curve_type", "nurbs_order", "knots_mode"};
|
|
if (dst_curves.has_curve_with_type(CURVE_TYPE_NURBS)) {
|
|
/* If a NURBS curve is copied keep */
|
|
transfer_curve_skip.remove("nurbs_order");
|
|
transfer_curve_skip.remove("knots_mode");
|
|
}
|
|
|
|
/* Fetch custom point domain attributes for transfer (copy). */
|
|
Vector<bke::AttributeTransferData> transfer_attributes = bke::retrieve_attributes_for_transfer(
|
|
src_attributes,
|
|
dst_attributes,
|
|
ATTR_DOMAIN_MASK_POINT,
|
|
propagation_info,
|
|
{"position",
|
|
"handle_left",
|
|
"handle_right",
|
|
"handle_type_left",
|
|
"handle_type_right",
|
|
"nurbs_weight"});
|
|
|
|
auto trim_catmull = [&](const IndexMask selection) {
|
|
trim_catmull_rom_curves(src_curves,
|
|
dst_curves,
|
|
selection,
|
|
start_points,
|
|
end_points,
|
|
src_ranges,
|
|
transfer_attributes);
|
|
};
|
|
auto trim_poly = [&](const IndexMask selection) {
|
|
trim_polygonal_curves(src_curves,
|
|
dst_curves,
|
|
selection,
|
|
start_points,
|
|
end_points,
|
|
src_ranges,
|
|
transfer_attributes);
|
|
};
|
|
auto trim_bezier = [&](const IndexMask selection) {
|
|
trim_bezier_curves(src_curves,
|
|
dst_curves,
|
|
selection,
|
|
start_points,
|
|
end_points,
|
|
src_ranges,
|
|
transfer_attributes);
|
|
};
|
|
auto trim_evaluated = [&](const IndexMask selection) {
|
|
dst_curves.fill_curve_types(selection, CURVE_TYPE_POLY);
|
|
/* Ensure evaluated positions are available. */
|
|
src_curves.evaluated_positions();
|
|
trim_evaluated_curves(src_curves,
|
|
dst_curves,
|
|
selection,
|
|
start_points,
|
|
end_points,
|
|
src_ranges,
|
|
transfer_attributes);
|
|
};
|
|
|
|
/* Populate point domain. */
|
|
bke::curves::foreach_curve_by_type(src_curves.curve_types(),
|
|
src_curves.curve_type_counts(),
|
|
selection,
|
|
trim_catmull,
|
|
trim_poly,
|
|
trim_bezier,
|
|
trim_evaluated);
|
|
|
|
/* Cleanup/close context */
|
|
for (bke::AttributeTransferData &attribute : transfer_attributes) {
|
|
attribute.dst.finish();
|
|
}
|
|
|
|
/* Copy unselected */
|
|
if (unselected_ranges.is_empty()) {
|
|
/* Since all curves were trimmed, none of them are cyclic and the attribute can be removed. */
|
|
dst_curves.attributes_for_write().remove("cyclic");
|
|
}
|
|
else {
|
|
/* Only trimmed curves are no longer cyclic. */
|
|
if (bke::SpanAttributeWriter cyclic = dst_attributes.lookup_for_write_span<bool>("cyclic")) {
|
|
cyclic.span.fill_indices(selection, false);
|
|
cyclic.finish();
|
|
}
|
|
|
|
Set<std::string> copy_point_skip;
|
|
if (!dst_curves.has_curve_with_type(CURVE_TYPE_NURBS) &&
|
|
src_curves.has_curve_with_type(CURVE_TYPE_NURBS)) {
|
|
copy_point_skip.add("nurbs_weight");
|
|
}
|
|
|
|
/* Copy point domain. */
|
|
for (auto &attribute : bke::retrieve_attributes_for_transfer(src_attributes,
|
|
dst_attributes,
|
|
ATTR_DOMAIN_MASK_POINT,
|
|
propagation_info,
|
|
copy_point_skip)) {
|
|
bke::curves::copy_point_data(src_points_by_curve,
|
|
dst_points_by_curve,
|
|
unselected_ranges,
|
|
attribute.src,
|
|
attribute.dst.span);
|
|
attribute.dst.finish();
|
|
}
|
|
}
|
|
|
|
dst_curves.remove_attributes_based_on_types();
|
|
dst_curves.tag_topology_changed();
|
|
return dst_curves;
|
|
}
|
|
|
|
/** \} */
|
|
|
|
} // namespace blender::geometry
|