This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/device/cuda/device_impl.cpp
Hallam Roberts a501a2dbff Images: add mirror extension type
This adds a new mirror image extension type for shaders and
geometry nodes (next to the existing repeat, extend and clip
options).

See D16432 for a more detailed explanation of `wrap_mirror`.

This also adds a new sampler flag `GPU_SAMPLER_MIRROR_REPEAT`.
It acts as a modifier to `GPU_SAMPLER_REPEAT`, so any `REPEAT`
flag must be set for the `MIRROR` flag to have an effect.

Differential Revision: https://developer.blender.org/D16432
2022-12-14 19:27:29 +01:00

1249 lines
36 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#ifdef WITH_CUDA
# include <climits>
# include <limits.h>
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# include "device/cuda/device_impl.h"
# include "util/debug.h"
# include "util/foreach.h"
# include "util/log.h"
# include "util/map.h"
# include "util/md5.h"
# include "util/path.h"
# include "util/string.h"
# include "util/system.h"
# include "util/time.h"
# include "util/types.h"
# include "util/windows.h"
# include "kernel/device/cuda/globals.h"
CCL_NAMESPACE_BEGIN
class CUDADevice;
bool CUDADevice::have_precompiled_kernels()
{
string cubins_path = path_get("lib");
return path_exists(cubins_path);
}
BVHLayoutMask CUDADevice::get_bvh_layout_mask() const
{
return BVH_LAYOUT_BVH2;
}
void CUDADevice::set_error(const string &error)
{
Device::set_error(error);
if (first_error) {
fprintf(stderr, "\nRefer to the Cycles GPU rendering documentation for possible solutions:\n");
fprintf(stderr,
"https://docs.blender.org/manual/en/latest/render/cycles/gpu_rendering.html\n\n");
first_error = false;
}
}
CUDADevice::CUDADevice(const DeviceInfo &info, Stats &stats, Profiler &profiler)
: Device(info, stats, profiler), texture_info(this, "texture_info", MEM_GLOBAL)
{
first_error = true;
cuDevId = info.num;
cuDevice = 0;
cuContext = 0;
cuModule = 0;
need_texture_info = false;
device_texture_headroom = 0;
device_working_headroom = 0;
move_texture_to_host = false;
map_host_limit = 0;
map_host_used = 0;
can_map_host = 0;
pitch_alignment = 0;
/* Initialize CUDA. */
CUresult result = cuInit(0);
if (result != CUDA_SUCCESS) {
set_error(string_printf("Failed to initialize CUDA runtime (%s)", cuewErrorString(result)));
return;
}
/* Setup device and context. */
result = cuDeviceGet(&cuDevice, cuDevId);
if (result != CUDA_SUCCESS) {
set_error(string_printf("Failed to get CUDA device handle from ordinal (%s)",
cuewErrorString(result)));
return;
}
/* CU_CTX_MAP_HOST for mapping host memory when out of device memory.
* CU_CTX_LMEM_RESIZE_TO_MAX for reserving local memory ahead of render,
* so we can predict which memory to map to host. */
cuda_assert(
cuDeviceGetAttribute(&can_map_host, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, cuDevice));
cuda_assert(cuDeviceGetAttribute(
&pitch_alignment, CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT, cuDevice));
unsigned int ctx_flags = CU_CTX_LMEM_RESIZE_TO_MAX;
if (can_map_host) {
ctx_flags |= CU_CTX_MAP_HOST;
init_host_memory();
}
/* Create context. */
result = cuCtxCreate(&cuContext, ctx_flags, cuDevice);
if (result != CUDA_SUCCESS) {
set_error(string_printf("Failed to create CUDA context (%s)", cuewErrorString(result)));
return;
}
int major, minor;
cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevId);
cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevId);
cuDevArchitecture = major * 100 + minor * 10;
/* Pop context set by cuCtxCreate. */
cuCtxPopCurrent(NULL);
}
CUDADevice::~CUDADevice()
{
texture_info.free();
cuda_assert(cuCtxDestroy(cuContext));
}
bool CUDADevice::support_device(const uint /*kernel_features*/)
{
int major, minor;
cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevId);
cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevId);
/* We only support sm_30 and above */
if (major < 3) {
set_error(string_printf(
"CUDA backend requires compute capability 3.0 or up, but found %d.%d.", major, minor));
return false;
}
return true;
}
bool CUDADevice::check_peer_access(Device *peer_device)
{
if (peer_device == this) {
return false;
}
if (peer_device->info.type != DEVICE_CUDA && peer_device->info.type != DEVICE_OPTIX) {
return false;
}
CUDADevice *const peer_device_cuda = static_cast<CUDADevice *>(peer_device);
int can_access = 0;
cuda_assert(cuDeviceCanAccessPeer(&can_access, cuDevice, peer_device_cuda->cuDevice));
if (can_access == 0) {
return false;
}
// Ensure array access over the link is possible as well (for 3D textures)
cuda_assert(cuDeviceGetP2PAttribute(&can_access,
CU_DEVICE_P2P_ATTRIBUTE_CUDA_ARRAY_ACCESS_SUPPORTED,
cuDevice,
peer_device_cuda->cuDevice));
if (can_access == 0) {
return false;
}
// Enable peer access in both directions
{
const CUDAContextScope scope(this);
CUresult result = cuCtxEnablePeerAccess(peer_device_cuda->cuContext, 0);
if (result != CUDA_SUCCESS) {
set_error(string_printf("Failed to enable peer access on CUDA context (%s)",
cuewErrorString(result)));
return false;
}
}
{
const CUDAContextScope scope(peer_device_cuda);
CUresult result = cuCtxEnablePeerAccess(cuContext, 0);
if (result != CUDA_SUCCESS) {
set_error(string_printf("Failed to enable peer access on CUDA context (%s)",
cuewErrorString(result)));
return false;
}
}
return true;
}
bool CUDADevice::use_adaptive_compilation()
{
return DebugFlags().cuda.adaptive_compile;
}
/* Common NVCC flags which stays the same regardless of shading model,
* kernel sources md5 and only depends on compiler or compilation settings.
*/
string CUDADevice::compile_kernel_get_common_cflags(const uint kernel_features)
{
const int machine = system_cpu_bits();
const string source_path = path_get("source");
const string include_path = source_path;
string cflags = string_printf(
"-m%d "
"--ptxas-options=\"-v\" "
"--use_fast_math "
"-DNVCC "
"-I\"%s\"",
machine,
include_path.c_str());
if (use_adaptive_compilation()) {
cflags += " -D__KERNEL_FEATURES__=" + to_string(kernel_features);
}
const char *extra_cflags = getenv("CYCLES_CUDA_EXTRA_CFLAGS");
if (extra_cflags) {
cflags += string(" ") + string(extra_cflags);
}
# ifdef WITH_NANOVDB
cflags += " -DWITH_NANOVDB";
# endif
# ifdef WITH_CYCLES_DEBUG
cflags += " -DWITH_CYCLES_DEBUG";
# endif
return cflags;
}
string CUDADevice::compile_kernel(const string &common_cflags,
const char *name,
const char *base,
bool force_ptx)
{
/* Compute kernel name. */
int major, minor;
cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevId);
cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevId);
/* Attempt to use kernel provided with Blender. */
if (!use_adaptive_compilation()) {
if (!force_ptx) {
const string cubin = path_get(string_printf("lib/%s_sm_%d%d.cubin", name, major, minor));
VLOG_INFO << "Testing for pre-compiled kernel " << cubin << ".";
if (path_exists(cubin)) {
VLOG_INFO << "Using precompiled kernel.";
return cubin;
}
}
/* The driver can JIT-compile PTX generated for older generations, so find the closest one. */
int ptx_major = major, ptx_minor = minor;
while (ptx_major >= 3) {
const string ptx = path_get(
string_printf("lib/%s_compute_%d%d.ptx", name, ptx_major, ptx_minor));
VLOG_INFO << "Testing for pre-compiled kernel " << ptx << ".";
if (path_exists(ptx)) {
VLOG_INFO << "Using precompiled kernel.";
return ptx;
}
if (ptx_minor > 0) {
ptx_minor--;
}
else {
ptx_major--;
ptx_minor = 9;
}
}
}
/* Try to use locally compiled kernel. */
string source_path = path_get("source");
const string source_md5 = path_files_md5_hash(source_path);
/* We include cflags into md5 so changing cuda toolkit or changing other
* compiler command line arguments makes sure cubin gets re-built.
*/
const string kernel_md5 = util_md5_string(source_md5 + common_cflags);
const char *const kernel_ext = force_ptx ? "ptx" : "cubin";
const char *const kernel_arch = force_ptx ? "compute" : "sm";
const string cubin_file = string_printf(
"cycles_%s_%s_%d%d_%s.%s", name, kernel_arch, major, minor, kernel_md5.c_str(), kernel_ext);
const string cubin = path_cache_get(path_join("kernels", cubin_file));
VLOG_INFO << "Testing for locally compiled kernel " << cubin << ".";
if (path_exists(cubin)) {
VLOG_INFO << "Using locally compiled kernel.";
return cubin;
}
# ifdef _WIN32
if (!use_adaptive_compilation() && have_precompiled_kernels()) {
if (major < 3) {
set_error(
string_printf("CUDA backend requires compute capability 3.0 or up, but found %d.%d. "
"Your GPU is not supported.",
major,
minor));
}
else {
set_error(
string_printf("CUDA binary kernel for this graphics card compute "
"capability (%d.%d) not found.",
major,
minor));
}
return string();
}
# endif
/* Compile. */
const char *const nvcc = cuewCompilerPath();
if (nvcc == NULL) {
set_error(
"CUDA nvcc compiler not found. "
"Install CUDA toolkit in default location.");
return string();
}
const int nvcc_cuda_version = cuewCompilerVersion();
VLOG_INFO << "Found nvcc " << nvcc << ", CUDA version " << nvcc_cuda_version << ".";
if (nvcc_cuda_version < 101) {
printf(
"Unsupported CUDA version %d.%d detected, "
"you need CUDA 10.1 or newer.\n",
nvcc_cuda_version / 10,
nvcc_cuda_version % 10);
return string();
}
else if (!(nvcc_cuda_version == 101 || nvcc_cuda_version == 102 || nvcc_cuda_version == 111 ||
nvcc_cuda_version == 112 || nvcc_cuda_version == 113 || nvcc_cuda_version == 114)) {
printf(
"CUDA version %d.%d detected, build may succeed but only "
"CUDA 10.1 to 11.4 are officially supported.\n",
nvcc_cuda_version / 10,
nvcc_cuda_version % 10);
}
double starttime = time_dt();
path_create_directories(cubin);
source_path = path_join(path_join(source_path, "kernel"),
path_join("device", path_join(base, string_printf("%s.cu", name))));
string command = string_printf(
"\"%s\" "
"-arch=%s_%d%d "
"--%s \"%s\" "
"-o \"%s\" "
"%s",
nvcc,
kernel_arch,
major,
minor,
kernel_ext,
source_path.c_str(),
cubin.c_str(),
common_cflags.c_str());
printf("Compiling %sCUDA kernel ...\n%s\n",
(use_adaptive_compilation()) ? "adaptive " : "",
command.c_str());
# ifdef _WIN32
command = "call " + command;
# endif
if (system(command.c_str()) != 0) {
set_error(
"Failed to execute compilation command, "
"see console for details.");
return string();
}
/* Verify if compilation succeeded */
if (!path_exists(cubin)) {
set_error(
"CUDA kernel compilation failed, "
"see console for details.");
return string();
}
printf("Kernel compilation finished in %.2lfs.\n", time_dt() - starttime);
return cubin;
}
bool CUDADevice::load_kernels(const uint kernel_features)
{
/* TODO(sergey): Support kernels re-load for CUDA devices adaptive compile.
*
* Currently re-loading kernel will invalidate memory pointers,
* causing problems in cuCtxSynchronize.
*/
if (cuModule) {
if (use_adaptive_compilation()) {
VLOG_INFO
<< "Skipping CUDA kernel reload for adaptive compilation, not currently supported.";
}
return true;
}
/* check if cuda init succeeded */
if (cuContext == 0)
return false;
/* check if GPU is supported */
if (!support_device(kernel_features))
return false;
/* get kernel */
const char *kernel_name = "kernel";
string cflags = compile_kernel_get_common_cflags(kernel_features);
string cubin = compile_kernel(cflags, kernel_name);
if (cubin.empty())
return false;
/* open module */
CUDAContextScope scope(this);
string cubin_data;
CUresult result;
if (path_read_text(cubin, cubin_data))
result = cuModuleLoadData(&cuModule, cubin_data.c_str());
else
result = CUDA_ERROR_FILE_NOT_FOUND;
if (result != CUDA_SUCCESS)
set_error(string_printf(
"Failed to load CUDA kernel from '%s' (%s)", cubin.c_str(), cuewErrorString(result)));
if (result == CUDA_SUCCESS) {
kernels.load(this);
reserve_local_memory(kernel_features);
}
return (result == CUDA_SUCCESS);
}
void CUDADevice::reserve_local_memory(const uint kernel_features)
{
/* Together with CU_CTX_LMEM_RESIZE_TO_MAX, this reserves local memory
* needed for kernel launches, so that we can reliably figure out when
* to allocate scene data in mapped host memory. */
size_t total = 0, free_before = 0, free_after = 0;
{
CUDAContextScope scope(this);
cuMemGetInfo(&free_before, &total);
}
{
/* Use the biggest kernel for estimation. */
const DeviceKernel test_kernel = (kernel_features & KERNEL_FEATURE_NODE_RAYTRACE) ?
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE :
(kernel_features & KERNEL_FEATURE_MNEE) ?
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE :
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE;
/* Launch kernel, using just 1 block appears sufficient to reserve memory for all
* multiprocessors. It would be good to do this in parallel for the multi GPU case
* still to make it faster. */
CUDADeviceQueue queue(this);
device_ptr d_path_index = 0;
device_ptr d_render_buffer = 0;
int d_work_size = 0;
DeviceKernelArguments args(&d_path_index, &d_render_buffer, &d_work_size);
queue.init_execution();
queue.enqueue(test_kernel, 1, args);
queue.synchronize();
}
{
CUDAContextScope scope(this);
cuMemGetInfo(&free_after, &total);
}
VLOG_INFO << "Local memory reserved " << string_human_readable_number(free_before - free_after)
<< " bytes. (" << string_human_readable_size(free_before - free_after) << ")";
# if 0
/* For testing mapped host memory, fill up device memory. */
const size_t keep_mb = 1024;
while (free_after > keep_mb * 1024 * 1024LL) {
CUdeviceptr tmp;
cuda_assert(cuMemAlloc(&tmp, 10 * 1024 * 1024LL));
cuMemGetInfo(&free_after, &total);
}
# endif
}
void CUDADevice::init_host_memory()
{
/* Limit amount of host mapped memory, because allocating too much can
* cause system instability. Leave at least half or 4 GB of system
* memory free, whichever is smaller. */
size_t default_limit = 4 * 1024 * 1024 * 1024LL;
size_t system_ram = system_physical_ram();
if (system_ram > 0) {
if (system_ram / 2 > default_limit) {
map_host_limit = system_ram - default_limit;
}
else {
map_host_limit = system_ram / 2;
}
}
else {
VLOG_WARNING << "Mapped host memory disabled, failed to get system RAM";
map_host_limit = 0;
}
/* Amount of device memory to keep is free after texture memory
* and working memory allocations respectively. We set the working
* memory limit headroom lower so that some space is left after all
* texture memory allocations. */
device_working_headroom = 32 * 1024 * 1024LL; // 32MB
device_texture_headroom = 128 * 1024 * 1024LL; // 128MB
VLOG_INFO << "Mapped host memory limit set to " << string_human_readable_number(map_host_limit)
<< " bytes. (" << string_human_readable_size(map_host_limit) << ")";
}
void CUDADevice::load_texture_info()
{
if (need_texture_info) {
/* Unset flag before copying, so this does not loop indefinitely if the copy below calls
* into 'move_textures_to_host' (which calls 'load_texture_info' again). */
need_texture_info = false;
texture_info.copy_to_device();
}
}
void CUDADevice::move_textures_to_host(size_t size, bool for_texture)
{
/* Break out of recursive call, which can happen when moving memory on a multi device. */
static bool any_device_moving_textures_to_host = false;
if (any_device_moving_textures_to_host) {
return;
}
/* Signal to reallocate textures in host memory only. */
move_texture_to_host = true;
while (size > 0) {
/* Find suitable memory allocation to move. */
device_memory *max_mem = NULL;
size_t max_size = 0;
bool max_is_image = false;
thread_scoped_lock lock(cuda_mem_map_mutex);
foreach (CUDAMemMap::value_type &pair, cuda_mem_map) {
device_memory &mem = *pair.first;
CUDAMem *cmem = &pair.second;
/* Can only move textures allocated on this device (and not those from peer devices).
* And need to ignore memory that is already on the host. */
if (!mem.is_resident(this) || cmem->use_mapped_host) {
continue;
}
bool is_texture = (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) &&
(&mem != &texture_info);
bool is_image = is_texture && (mem.data_height > 1);
/* Can't move this type of memory. */
if (!is_texture || cmem->array) {
continue;
}
/* For other textures, only move image textures. */
if (for_texture && !is_image) {
continue;
}
/* Try to move largest allocation, prefer moving images. */
if (is_image > max_is_image || (is_image == max_is_image && mem.device_size > max_size)) {
max_is_image = is_image;
max_size = mem.device_size;
max_mem = &mem;
}
}
lock.unlock();
/* Move to host memory. This part is mutex protected since
* multiple CUDA devices could be moving the memory. The
* first one will do it, and the rest will adopt the pointer. */
if (max_mem) {
VLOG_WORK << "Move memory from device to host: " << max_mem->name;
static thread_mutex move_mutex;
thread_scoped_lock lock(move_mutex);
any_device_moving_textures_to_host = true;
/* Potentially need to call back into multi device, so pointer mapping
* and peer devices are updated. This is also necessary since the device
* pointer may just be a key here, so cannot be accessed and freed directly.
* Unfortunately it does mean that memory is reallocated on all other
* devices as well, which is potentially dangerous when still in use (since
* a thread rendering on another devices would only be caught in this mutex
* if it so happens to do an allocation at the same time as well. */
max_mem->device_copy_to();
size = (max_size >= size) ? 0 : size - max_size;
any_device_moving_textures_to_host = false;
}
else {
break;
}
}
/* Unset flag before texture info is reloaded, since it should stay in device memory. */
move_texture_to_host = false;
/* Update texture info array with new pointers. */
load_texture_info();
}
CUDADevice::CUDAMem *CUDADevice::generic_alloc(device_memory &mem, size_t pitch_padding)
{
CUDAContextScope scope(this);
CUdeviceptr device_pointer = 0;
size_t size = mem.memory_size() + pitch_padding;
CUresult mem_alloc_result = CUDA_ERROR_OUT_OF_MEMORY;
const char *status = "";
/* First try allocating in device memory, respecting headroom. We make
* an exception for texture info. It is small and frequently accessed,
* so treat it as working memory.
*
* If there is not enough room for working memory, we will try to move
* textures to host memory, assuming the performance impact would have
* been worse for working memory. */
bool is_texture = (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) && (&mem != &texture_info);
bool is_image = is_texture && (mem.data_height > 1);
size_t headroom = (is_texture) ? device_texture_headroom : device_working_headroom;
size_t total = 0, free = 0;
cuMemGetInfo(&free, &total);
/* Move textures to host memory if needed. */
if (!move_texture_to_host && !is_image && (size + headroom) >= free && can_map_host) {
move_textures_to_host(size + headroom - free, is_texture);
cuMemGetInfo(&free, &total);
}
/* Allocate in device memory. */
if (!move_texture_to_host && (size + headroom) < free) {
mem_alloc_result = cuMemAlloc(&device_pointer, size);
if (mem_alloc_result == CUDA_SUCCESS) {
status = " in device memory";
}
}
/* Fall back to mapped host memory if needed and possible. */
void *shared_pointer = 0;
if (mem_alloc_result != CUDA_SUCCESS && can_map_host && mem.type != MEM_DEVICE_ONLY) {
if (mem.shared_pointer) {
/* Another device already allocated host memory. */
mem_alloc_result = CUDA_SUCCESS;
shared_pointer = mem.shared_pointer;
}
else if (map_host_used + size < map_host_limit) {
/* Allocate host memory ourselves. */
mem_alloc_result = cuMemHostAlloc(
&shared_pointer, size, CU_MEMHOSTALLOC_DEVICEMAP | CU_MEMHOSTALLOC_WRITECOMBINED);
assert((mem_alloc_result == CUDA_SUCCESS && shared_pointer != 0) ||
(mem_alloc_result != CUDA_SUCCESS && shared_pointer == 0));
}
if (mem_alloc_result == CUDA_SUCCESS) {
cuda_assert(cuMemHostGetDevicePointer_v2(&device_pointer, shared_pointer, 0));
map_host_used += size;
status = " in host memory";
}
}
if (mem_alloc_result != CUDA_SUCCESS) {
if (mem.type == MEM_DEVICE_ONLY) {
status = " failed, out of device memory";
set_error("System is out of GPU memory");
}
else {
status = " failed, out of device and host memory";
set_error("System is out of GPU and shared host memory");
}
}
if (mem.name) {
VLOG_WORK << "Buffer allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")" << status;
}
mem.device_pointer = (device_ptr)device_pointer;
mem.device_size = size;
stats.mem_alloc(size);
if (!mem.device_pointer) {
return NULL;
}
/* Insert into map of allocations. */
thread_scoped_lock lock(cuda_mem_map_mutex);
CUDAMem *cmem = &cuda_mem_map[&mem];
if (shared_pointer != 0) {
/* Replace host pointer with our host allocation. Only works if
* CUDA memory layout is the same and has no pitch padding. Also
* does not work if we move textures to host during a render,
* since other devices might be using the memory. */
if (!move_texture_to_host && pitch_padding == 0 && mem.host_pointer &&
mem.host_pointer != shared_pointer) {
memcpy(shared_pointer, mem.host_pointer, size);
/* A Call to device_memory::host_free() should be preceded by
* a call to device_memory::device_free() for host memory
* allocated by a device to be handled properly. Two exceptions
* are here and a call in OptiXDevice::generic_alloc(), where
* the current host memory can be assumed to be allocated by
* device_memory::host_alloc(), not by a device */
mem.host_free();
mem.host_pointer = shared_pointer;
}
mem.shared_pointer = shared_pointer;
mem.shared_counter++;
cmem->use_mapped_host = true;
}
else {
cmem->use_mapped_host = false;
}
return cmem;
}
void CUDADevice::generic_copy_to(device_memory &mem)
{
if (!mem.host_pointer || !mem.device_pointer) {
return;
}
/* If use_mapped_host of mem is false, the current device only uses device memory allocated by
* cuMemAlloc regardless of mem.host_pointer and mem.shared_pointer, and should copy data from
* mem.host_pointer. */
thread_scoped_lock lock(cuda_mem_map_mutex);
if (!cuda_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
const CUDAContextScope scope(this);
cuda_assert(
cuMemcpyHtoD((CUdeviceptr)mem.device_pointer, mem.host_pointer, mem.memory_size()));
}
}
void CUDADevice::generic_free(device_memory &mem)
{
if (mem.device_pointer) {
CUDAContextScope scope(this);
thread_scoped_lock lock(cuda_mem_map_mutex);
DCHECK(cuda_mem_map.find(&mem) != cuda_mem_map.end());
const CUDAMem &cmem = cuda_mem_map[&mem];
/* If cmem.use_mapped_host is true, reference counting is used
* to safely free a mapped host memory. */
if (cmem.use_mapped_host) {
assert(mem.shared_pointer);
if (mem.shared_pointer) {
assert(mem.shared_counter > 0);
if (--mem.shared_counter == 0) {
if (mem.host_pointer == mem.shared_pointer) {
mem.host_pointer = 0;
}
cuMemFreeHost(mem.shared_pointer);
mem.shared_pointer = 0;
}
}
map_host_used -= mem.device_size;
}
else {
/* Free device memory. */
cuda_assert(cuMemFree(mem.device_pointer));
}
stats.mem_free(mem.device_size);
mem.device_pointer = 0;
mem.device_size = 0;
cuda_mem_map.erase(cuda_mem_map.find(&mem));
}
}
void CUDADevice::mem_alloc(device_memory &mem)
{
if (mem.type == MEM_TEXTURE) {
assert(!"mem_alloc not supported for textures.");
}
else if (mem.type == MEM_GLOBAL) {
assert(!"mem_alloc not supported for global memory.");
}
else {
generic_alloc(mem);
}
}
void CUDADevice::mem_copy_to(device_memory &mem)
{
if (mem.type == MEM_GLOBAL) {
global_free(mem);
global_alloc(mem);
}
else if (mem.type == MEM_TEXTURE) {
tex_free((device_texture &)mem);
tex_alloc((device_texture &)mem);
}
else {
if (!mem.device_pointer) {
generic_alloc(mem);
}
generic_copy_to(mem);
}
}
void CUDADevice::mem_copy_from(device_memory &mem, size_t y, size_t w, size_t h, size_t elem)
{
if (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) {
assert(!"mem_copy_from not supported for textures.");
}
else if (mem.host_pointer) {
const size_t size = elem * w * h;
const size_t offset = elem * y * w;
if (mem.device_pointer) {
const CUDAContextScope scope(this);
cuda_assert(cuMemcpyDtoH(
(char *)mem.host_pointer + offset, (CUdeviceptr)mem.device_pointer + offset, size));
}
else {
memset((char *)mem.host_pointer + offset, 0, size);
}
}
}
void CUDADevice::mem_zero(device_memory &mem)
{
if (!mem.device_pointer) {
mem_alloc(mem);
}
if (!mem.device_pointer) {
return;
}
/* If use_mapped_host of mem is false, mem.device_pointer currently refers to device memory
* regardless of mem.host_pointer and mem.shared_pointer. */
thread_scoped_lock lock(cuda_mem_map_mutex);
if (!cuda_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
const CUDAContextScope scope(this);
cuda_assert(cuMemsetD8((CUdeviceptr)mem.device_pointer, 0, mem.memory_size()));
}
else if (mem.host_pointer) {
memset(mem.host_pointer, 0, mem.memory_size());
}
}
void CUDADevice::mem_free(device_memory &mem)
{
if (mem.type == MEM_GLOBAL) {
global_free(mem);
}
else if (mem.type == MEM_TEXTURE) {
tex_free((device_texture &)mem);
}
else {
generic_free(mem);
}
}
device_ptr CUDADevice::mem_alloc_sub_ptr(device_memory &mem, size_t offset, size_t /*size*/)
{
return (device_ptr)(((char *)mem.device_pointer) + mem.memory_elements_size(offset));
}
void CUDADevice::const_copy_to(const char *name, void *host, size_t size)
{
CUDAContextScope scope(this);
CUdeviceptr mem;
size_t bytes;
cuda_assert(cuModuleGetGlobal(&mem, &bytes, cuModule, "kernel_params"));
assert(bytes == sizeof(KernelParamsCUDA));
/* Update data storage pointers in launch parameters. */
# define KERNEL_DATA_ARRAY(data_type, data_name) \
if (strcmp(name, #data_name) == 0) { \
cuda_assert(cuMemcpyHtoD(mem + offsetof(KernelParamsCUDA, data_name), host, size)); \
return; \
}
KERNEL_DATA_ARRAY(KernelData, data)
KERNEL_DATA_ARRAY(IntegratorStateGPU, integrator_state)
# include "kernel/data_arrays.h"
# undef KERNEL_DATA_ARRAY
}
void CUDADevice::global_alloc(device_memory &mem)
{
if (mem.is_resident(this)) {
generic_alloc(mem);
generic_copy_to(mem);
}
const_copy_to(mem.name, &mem.device_pointer, sizeof(mem.device_pointer));
}
void CUDADevice::global_free(device_memory &mem)
{
if (mem.is_resident(this) && mem.device_pointer) {
generic_free(mem);
}
}
void CUDADevice::tex_alloc(device_texture &mem)
{
CUDAContextScope scope(this);
size_t dsize = datatype_size(mem.data_type);
size_t size = mem.memory_size();
CUaddress_mode address_mode = CU_TR_ADDRESS_MODE_WRAP;
switch (mem.info.extension) {
case EXTENSION_REPEAT:
address_mode = CU_TR_ADDRESS_MODE_WRAP;
break;
case EXTENSION_EXTEND:
address_mode = CU_TR_ADDRESS_MODE_CLAMP;
break;
case EXTENSION_CLIP:
address_mode = CU_TR_ADDRESS_MODE_BORDER;
break;
case EXTENSION_MIRROR:
address_mode = CU_TR_ADDRESS_MODE_MIRROR;
break;
default:
assert(0);
break;
}
CUfilter_mode filter_mode;
if (mem.info.interpolation == INTERPOLATION_CLOSEST) {
filter_mode = CU_TR_FILTER_MODE_POINT;
}
else {
filter_mode = CU_TR_FILTER_MODE_LINEAR;
}
/* Image Texture Storage */
CUarray_format_enum format;
switch (mem.data_type) {
case TYPE_UCHAR:
format = CU_AD_FORMAT_UNSIGNED_INT8;
break;
case TYPE_UINT16:
format = CU_AD_FORMAT_UNSIGNED_INT16;
break;
case TYPE_UINT:
format = CU_AD_FORMAT_UNSIGNED_INT32;
break;
case TYPE_INT:
format = CU_AD_FORMAT_SIGNED_INT32;
break;
case TYPE_FLOAT:
format = CU_AD_FORMAT_FLOAT;
break;
case TYPE_HALF:
format = CU_AD_FORMAT_HALF;
break;
default:
assert(0);
return;
}
CUDAMem *cmem = NULL;
CUarray array_3d = NULL;
size_t src_pitch = mem.data_width * dsize * mem.data_elements;
size_t dst_pitch = src_pitch;
if (!mem.is_resident(this)) {
thread_scoped_lock lock(cuda_mem_map_mutex);
cmem = &cuda_mem_map[&mem];
cmem->texobject = 0;
if (mem.data_depth > 1) {
array_3d = (CUarray)mem.device_pointer;
cmem->array = array_3d;
}
else if (mem.data_height > 0) {
dst_pitch = align_up(src_pitch, pitch_alignment);
}
}
else if (mem.data_depth > 1) {
/* 3D texture using array, there is no API for linear memory. */
CUDA_ARRAY3D_DESCRIPTOR desc;
desc.Width = mem.data_width;
desc.Height = mem.data_height;
desc.Depth = mem.data_depth;
desc.Format = format;
desc.NumChannels = mem.data_elements;
desc.Flags = 0;
VLOG_WORK << "Array 3D allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
cuda_assert(cuArray3DCreate(&array_3d, &desc));
if (!array_3d) {
return;
}
CUDA_MEMCPY3D param;
memset(&param, 0, sizeof(param));
param.dstMemoryType = CU_MEMORYTYPE_ARRAY;
param.dstArray = array_3d;
param.srcMemoryType = CU_MEMORYTYPE_HOST;
param.srcHost = mem.host_pointer;
param.srcPitch = src_pitch;
param.WidthInBytes = param.srcPitch;
param.Height = mem.data_height;
param.Depth = mem.data_depth;
cuda_assert(cuMemcpy3D(&param));
mem.device_pointer = (device_ptr)array_3d;
mem.device_size = size;
stats.mem_alloc(size);
thread_scoped_lock lock(cuda_mem_map_mutex);
cmem = &cuda_mem_map[&mem];
cmem->texobject = 0;
cmem->array = array_3d;
}
else if (mem.data_height > 0) {
/* 2D texture, using pitch aligned linear memory. */
dst_pitch = align_up(src_pitch, pitch_alignment);
size_t dst_size = dst_pitch * mem.data_height;
cmem = generic_alloc(mem, dst_size - mem.memory_size());
if (!cmem) {
return;
}
CUDA_MEMCPY2D param;
memset(&param, 0, sizeof(param));
param.dstMemoryType = CU_MEMORYTYPE_DEVICE;
param.dstDevice = mem.device_pointer;
param.dstPitch = dst_pitch;
param.srcMemoryType = CU_MEMORYTYPE_HOST;
param.srcHost = mem.host_pointer;
param.srcPitch = src_pitch;
param.WidthInBytes = param.srcPitch;
param.Height = mem.data_height;
cuda_assert(cuMemcpy2DUnaligned(&param));
}
else {
/* 1D texture, using linear memory. */
cmem = generic_alloc(mem);
if (!cmem) {
return;
}
cuda_assert(cuMemcpyHtoD(mem.device_pointer, mem.host_pointer, size));
}
/* Resize once */
const uint slot = mem.slot;
if (slot >= texture_info.size()) {
/* Allocate some slots in advance, to reduce amount
* of re-allocations. */
texture_info.resize(slot + 128);
}
/* Set Mapping and tag that we need to (re-)upload to device */
texture_info[slot] = mem.info;
need_texture_info = true;
if (mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FLOAT &&
mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FLOAT3 &&
mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FPN &&
mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FP16) {
CUDA_RESOURCE_DESC resDesc;
memset(&resDesc, 0, sizeof(resDesc));
if (array_3d) {
resDesc.resType = CU_RESOURCE_TYPE_ARRAY;
resDesc.res.array.hArray = array_3d;
resDesc.flags = 0;
}
else if (mem.data_height > 0) {
resDesc.resType = CU_RESOURCE_TYPE_PITCH2D;
resDesc.res.pitch2D.devPtr = mem.device_pointer;
resDesc.res.pitch2D.format = format;
resDesc.res.pitch2D.numChannels = mem.data_elements;
resDesc.res.pitch2D.height = mem.data_height;
resDesc.res.pitch2D.width = mem.data_width;
resDesc.res.pitch2D.pitchInBytes = dst_pitch;
}
else {
resDesc.resType = CU_RESOURCE_TYPE_LINEAR;
resDesc.res.linear.devPtr = mem.device_pointer;
resDesc.res.linear.format = format;
resDesc.res.linear.numChannels = mem.data_elements;
resDesc.res.linear.sizeInBytes = mem.device_size;
}
CUDA_TEXTURE_DESC texDesc;
memset(&texDesc, 0, sizeof(texDesc));
texDesc.addressMode[0] = address_mode;
texDesc.addressMode[1] = address_mode;
texDesc.addressMode[2] = address_mode;
texDesc.filterMode = filter_mode;
texDesc.flags = CU_TRSF_NORMALIZED_COORDINATES;
thread_scoped_lock lock(cuda_mem_map_mutex);
cmem = &cuda_mem_map[&mem];
cuda_assert(cuTexObjectCreate(&cmem->texobject, &resDesc, &texDesc, NULL));
texture_info[slot].data = (uint64_t)cmem->texobject;
}
else {
texture_info[slot].data = (uint64_t)mem.device_pointer;
}
}
void CUDADevice::tex_free(device_texture &mem)
{
if (mem.device_pointer) {
CUDAContextScope scope(this);
thread_scoped_lock lock(cuda_mem_map_mutex);
DCHECK(cuda_mem_map.find(&mem) != cuda_mem_map.end());
const CUDAMem &cmem = cuda_mem_map[&mem];
if (cmem.texobject) {
/* Free bindless texture. */
cuTexObjectDestroy(cmem.texobject);
}
if (!mem.is_resident(this)) {
/* Do not free memory here, since it was allocated on a different device. */
cuda_mem_map.erase(cuda_mem_map.find(&mem));
}
else if (cmem.array) {
/* Free array. */
cuArrayDestroy(cmem.array);
stats.mem_free(mem.device_size);
mem.device_pointer = 0;
mem.device_size = 0;
cuda_mem_map.erase(cuda_mem_map.find(&mem));
}
else {
lock.unlock();
generic_free(mem);
}
}
}
unique_ptr<DeviceQueue> CUDADevice::gpu_queue_create()
{
return make_unique<CUDADeviceQueue>(this);
}
bool CUDADevice::should_use_graphics_interop()
{
/* Check whether this device is part of OpenGL context.
*
* Using CUDA device for graphics interoperability which is not part of the OpenGL context is
* possible, but from the empiric measurements it can be considerably slower than using naive
* pixels copy. */
CUDAContextScope scope(this);
int num_all_devices = 0;
cuda_assert(cuDeviceGetCount(&num_all_devices));
if (num_all_devices == 0) {
return false;
}
vector<CUdevice> gl_devices(num_all_devices);
uint num_gl_devices = 0;
cuGLGetDevices(&num_gl_devices, gl_devices.data(), num_all_devices, CU_GL_DEVICE_LIST_ALL);
for (uint i = 0; i < num_gl_devices; ++i) {
if (gl_devices[i] == cuDevice) {
return true;
}
}
return false;
}
int CUDADevice::get_num_multiprocessors()
{
return get_device_default_attribute(CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, 0);
}
int CUDADevice::get_max_num_threads_per_multiprocessor()
{
return get_device_default_attribute(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, 0);
}
bool CUDADevice::get_device_attribute(CUdevice_attribute attribute, int *value)
{
CUDAContextScope scope(this);
return cuDeviceGetAttribute(value, attribute, cuDevice) == CUDA_SUCCESS;
}
int CUDADevice::get_device_default_attribute(CUdevice_attribute attribute, int default_value)
{
int value = 0;
if (!get_device_attribute(attribute, &value)) {
return default_value;
}
return value;
}
CCL_NAMESPACE_END
#endif