This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/draw/engines/eevee/shaders/lights_lib.glsl
Clément Foucault 131ac2ec82 Fix T70249 EEVEE: Light bleeding on SSS translucency
This was caused by 2 things: Shadow map bias and aliasing.

It made the expected depth of the shadowmap further than the surface
itself in some cases. In normal time this leads to light leaking on normal
shadow mapping but here we need to always have the shadowmap depth above
the shading point.

To fix this, we use a 5 tap inflate filter using the minimum depth of all
5 samples. Using these 5 taps, we can deduce entrance surface derivatives
and there orientation towards the light ray. We use these derivatives to
bias the depth to avoid wrong depth at depth discontinuity in the shadowmap.

This bias can lead to some shadowleaks that are less distracting than the
lightleaks it fixes.

We also add a small bias to counteract the shadowmap depth precision.
2019-10-16 18:58:20 +02:00

303 lines
9.6 KiB
GLSL

uniform sampler2DArrayShadow shadowCubeTexture;
uniform sampler2DArrayShadow shadowCascadeTexture;
#define LAMPS_LIB
layout(std140) uniform shadow_block
{
ShadowData shadows_data[MAX_SHADOW];
ShadowCubeData shadows_cube_data[MAX_SHADOW_CUBE];
ShadowCascadeData shadows_cascade_data[MAX_SHADOW_CASCADE];
};
layout(std140) uniform light_block
{
LightData lights_data[MAX_LIGHT];
};
/* type */
#define POINT 0.0
#define SUN 1.0
#define SPOT 2.0
#define AREA_RECT 4.0
/* Used to define the area light shape, doesn't directly correspond to a Blender light type. */
#define AREA_ELLIPSE 100.0
float cubeFaceIndexEEVEE(vec3 P)
{
vec3 aP = abs(P);
if (all(greaterThan(aP.xx, aP.yz))) {
return (P.x > 0.0) ? 0.0 : 1.0;
}
else if (all(greaterThan(aP.yy, aP.xz))) {
return (P.y > 0.0) ? 2.0 : 3.0;
}
else {
return (P.z > 0.0) ? 4.0 : 5.0;
}
}
vec2 cubeFaceCoordEEVEE(vec3 P, float face, float scale)
{
if (face < 2.0) {
return (P.zy / P.x) * scale * vec2(-0.5, -sign(P.x) * 0.5) + 0.5;
}
else if (face < 4.0) {
return (P.xz / P.y) * scale * vec2(sign(P.y) * 0.5, 0.5) + 0.5;
}
else {
return (P.xy / P.z) * scale * vec2(0.5, -sign(P.z) * 0.5) + 0.5;
}
}
vec2 cubeFaceCoordEEVEE(vec3 P, float face, sampler2DArray tex)
{
/* Scaling to compensate the 1px border around the face. */
float cube_res = float(textureSize(tex, 0).x);
float scale = (cube_res) / (cube_res + 1.0);
return cubeFaceCoordEEVEE(P, face, scale);
}
vec2 cubeFaceCoordEEVEE(vec3 P, float face, sampler2DArrayShadow tex)
{
/* Scaling to compensate the 1px border around the face. */
float cube_res = float(textureSize(tex, 0).x);
float scale = (cube_res) / (cube_res + 1.0);
return cubeFaceCoordEEVEE(P, face, scale);
}
vec4 sample_cube(sampler2DArray tex, vec3 cubevec, float cube)
{
/* Manual Shadow Cube Layer indexing. */
float face = cubeFaceIndexEEVEE(cubevec);
vec2 uv = cubeFaceCoordEEVEE(cubevec, face, tex);
vec3 coord = vec3(uv, cube * 6.0 + face);
return texture(tex, coord);
}
vec4 sample_cascade(sampler2DArray tex, vec2 co, float cascade_id)
{
return texture(tex, vec3(co, cascade_id));
}
/* Some driver poorly optimize this code. Use direct reference to matrices. */
#define sd(x) shadows_data[x]
#define scube(x) shadows_cube_data[x]
#define scascade(x) shadows_cascade_data[x]
float sample_cube_shadow(int shadow_id, vec3 W)
{
int data_id = int(sd(shadow_id).sh_data_index);
vec3 cubevec = transform_point(scube(data_id).shadowmat, W);
float dist = max(sd(shadow_id).sh_near, max_v3(abs(cubevec)) - sd(shadow_id).sh_bias);
dist = buffer_depth(true, dist, sd(shadow_id).sh_far, sd(shadow_id).sh_near);
/* Manual Shadow Cube Layer indexing. */
/* TODO Shadow Cube Array. */
float face = cubeFaceIndexEEVEE(cubevec);
vec2 coord = cubeFaceCoordEEVEE(cubevec, face, shadowCubeTexture);
/* tex_id == data_id for cube shadowmap */
float tex_id = float(data_id);
return texture(shadowCubeTexture, vec4(coord, tex_id * 6.0 + face, dist));
}
float sample_cascade_shadow(int shadow_id, vec3 W)
{
int data_id = int(sd(shadow_id).sh_data_index);
float tex_id = scascade(data_id).sh_tex_index;
vec4 view_z = vec4(dot(W - cameraPos, cameraForward));
vec4 weights = 1.0 - smoothstep(scascade(data_id).split_end_distances,
scascade(data_id).split_start_distances.yzwx,
view_z);
float tot_weight = dot(weights.xyz, vec3(1.0));
int cascade = int(clamp(tot_weight, 0.0, 3.0));
float blend = fract(tot_weight);
float vis = weights.w;
vec4 coord, shpos;
/* Main cascade. */
shpos = scascade(data_id).shadowmat[cascade] * vec4(W, 1.0);
coord = vec4(shpos.xy, tex_id + float(cascade), shpos.z - sd(shadow_id).sh_bias);
vis += texture(shadowCascadeTexture, coord) * (1.0 - blend);
cascade = min(3, cascade + 1);
/* Second cascade. */
shpos = scascade(data_id).shadowmat[cascade] * vec4(W, 1.0);
coord = vec4(shpos.xy, tex_id + float(cascade), shpos.z - sd(shadow_id).sh_bias);
vis += texture(shadowCascadeTexture, coord) * blend;
return saturate(vis);
}
#undef sd
#undef scube
#undef scsmd
/* ----------------------------------------------------------- */
/* --------------------- Light Functions --------------------- */
/* ----------------------------------------------------------- */
/* From Frostbite PBR Course
* Distance based attenuation
* http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf */
float distance_attenuation(float dist_sqr, float inv_sqr_influence)
{
float factor = dist_sqr * inv_sqr_influence;
float fac = saturate(1.0 - factor * factor);
return fac * fac;
}
float spot_attenuation(LightData ld, vec3 l_vector)
{
float z = dot(ld.l_forward, l_vector.xyz);
vec3 lL = l_vector.xyz / z;
float x = dot(ld.l_right, lL) / ld.l_sizex;
float y = dot(ld.l_up, lL) / ld.l_sizey;
float ellipse = inversesqrt(1.0 + x * x + y * y);
float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);
return spotmask;
}
float light_attenuation(LightData ld, vec4 l_vector)
{
float vis = 1.0;
if (ld.l_type == SPOT) {
vis *= spot_attenuation(ld, l_vector.xyz);
}
if (ld.l_type >= SPOT) {
vis *= step(0.0, -dot(l_vector.xyz, ld.l_forward));
}
if (ld.l_type != SUN) {
vis *= distance_attenuation(l_vector.w * l_vector.w, ld.l_influence);
}
return vis;
}
float light_visibility(LightData ld,
vec3 W,
#ifndef VOLUMETRICS
vec3 viewPosition,
float tracing_depth,
vec3 true_normal,
float rand_x,
const bool use_contact_shadows,
#endif
vec4 l_vector)
{
float vis = light_attenuation(ld, l_vector);
#if !defined(VOLUMETRICS) || defined(VOLUME_SHADOW)
/* shadowing */
if (ld.l_shadowid >= 0.0 && vis > 0.001) {
if (ld.l_type == SUN) {
vis *= sample_cascade_shadow(int(ld.l_shadowid), W);
}
else {
vis *= sample_cube_shadow(int(ld.l_shadowid), W);
}
# ifndef VOLUMETRICS
ShadowData sd = shadows_data[int(ld.l_shadowid)];
/* Only compute if not already in shadow. */
if (use_contact_shadows && sd.sh_contact_dist > 0.0 && vis > 1e-8) {
/* Contact Shadows. */
vec3 ray_ori, ray_dir;
float trace_distance;
if (ld.l_type == SUN) {
trace_distance = sd.sh_contact_dist;
ray_dir = shadows_cascade_data[int(sd.sh_data_index)].sh_shadow_vec * trace_distance;
}
else {
ray_dir = shadows_cube_data[int(sd.sh_data_index)].position.xyz - W;
float len = length(ray_dir);
trace_distance = min(sd.sh_contact_dist, len);
ray_dir *= trace_distance / len;
}
ray_dir = transform_direction(ViewMatrix, ray_dir);
ray_ori = vec3(viewPosition.xy, tracing_depth) + true_normal * sd.sh_contact_offset;
vec3 hit_pos = raycast(
-1, ray_ori, ray_dir, sd.sh_contact_thickness, rand_x, 0.1, 0.001, false);
if (hit_pos.z > 0.0) {
hit_pos = get_view_space_from_depth(hit_pos.xy, hit_pos.z);
float hit_dist = distance(viewPosition, hit_pos);
float dist_ratio = hit_dist / trace_distance;
return vis * saturate(dist_ratio * 3.0 - 2.0);
}
}
# endif /* VOLUMETRICS */
}
#endif
return vis;
}
#ifdef USE_LTC
float light_diffuse(LightData ld, vec3 N, vec3 V, vec4 l_vector)
{
if (ld.l_type == AREA_RECT) {
vec3 corners[4];
corners[0] = normalize((l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * ld.l_sizey);
corners[1] = normalize((l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * -ld.l_sizey);
corners[2] = normalize((l_vector.xyz + ld.l_right * ld.l_sizex) + ld.l_up * -ld.l_sizey);
corners[3] = normalize((l_vector.xyz + ld.l_right * ld.l_sizex) + ld.l_up * ld.l_sizey);
return ltc_evaluate_quad(corners, N);
}
else if (ld.l_type == AREA_ELLIPSE) {
vec3 points[3];
points[0] = (l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * -ld.l_sizey;
points[1] = (l_vector.xyz + ld.l_right * ld.l_sizex) + ld.l_up * -ld.l_sizey;
points[2] = (l_vector.xyz + ld.l_right * ld.l_sizex) + ld.l_up * ld.l_sizey;
return ltc_evaluate_disk(N, V, mat3(1.0), points);
}
else {
float radius = ld.l_radius;
radius /= (ld.l_type == SUN) ? 1.0 : l_vector.w;
vec3 L = (ld.l_type == SUN) ? -ld.l_forward : (l_vector.xyz / l_vector.w);
return ltc_evaluate_disk_simple(radius, dot(N, L));
}
}
float light_specular(LightData ld, vec4 ltc_mat, vec3 N, vec3 V, vec4 l_vector)
{
if (ld.l_type == AREA_RECT) {
vec3 corners[4];
corners[0] = (l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * ld.l_sizey;
corners[1] = (l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * -ld.l_sizey;
corners[2] = (l_vector.xyz + ld.l_right * ld.l_sizex) + ld.l_up * -ld.l_sizey;
corners[3] = (l_vector.xyz + ld.l_right * ld.l_sizex) + ld.l_up * ld.l_sizey;
ltc_transform_quad(N, V, ltc_matrix(ltc_mat), corners);
return ltc_evaluate_quad(corners, vec3(0.0, 0.0, 1.0));
}
else {
bool is_ellipse = (ld.l_type == AREA_ELLIPSE);
float radius_x = is_ellipse ? ld.l_sizex : ld.l_radius;
float radius_y = is_ellipse ? ld.l_sizey : ld.l_radius;
vec3 L = (ld.l_type == SUN) ? -ld.l_forward : l_vector.xyz;
vec3 Px = ld.l_right;
vec3 Py = ld.l_up;
if (ld.l_type == SPOT || ld.l_type == POINT) {
make_orthonormal_basis(l_vector.xyz / l_vector.w, Px, Py);
}
vec3 points[3];
points[0] = (L + Px * -radius_x) + Py * -radius_y;
points[1] = (L + Px * radius_x) + Py * -radius_y;
points[2] = (L + Px * radius_x) + Py * radius_y;
return ltc_evaluate_disk(N, V, ltc_matrix(ltc_mat), points);
}
}
#endif