This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/extern/mantaflow/helper/util/vectorbase.h
Sebastián Barschkis a563775649 Fluid: Updated Mantaflow source files
This updates fixes the following issues (critical for 2.92):

- Issue that prevented dense 'int' grids from being exported (incorrect clip value)
- Issue with particles outside out of domain bounds (position between -1 and 0) not being deleted
2021-02-05 16:23:02 +01:00

717 lines
18 KiB
C++

/******************************************************************************
*
* MantaFlow fluid solver framework
* Copyright 2011-2016 Tobias Pfaff, Nils Thuerey
*
* This program is free software, distributed under the terms of the
* Apache License, Version 2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Basic vector class
*
******************************************************************************/
#ifndef _VECTORBASE_H
#define _VECTORBASE_H
// get rid of windos min/max defines
#if (defined(WIN32) || defined(_WIN32)) && !defined(NOMINMAX)
# define NOMINMAX
#endif
#include <stdio.h>
#include <string>
#include <limits>
#include <iostream>
#include "general.h"
// if min/max are still around...
#if defined(WIN32) || defined(_WIN32)
# undef min
# undef max
#endif
// redefine usage of some windows functions
#if defined(WIN32) || defined(_WIN32)
# ifndef snprintf
# define snprintf _snprintf
# endif
#endif
// use which fp-precision? 1=float, 2=double
#ifndef FLOATINGPOINT_PRECISION
# define FLOATINGPOINT_PRECISION 1
#endif
// VECTOR_EPSILON is the minimal vector length
// In order to be able to discriminate floating point values near zero, and
// to be sure not to fail a comparison because of roundoff errors, use this
// value as a threshold.
#if FLOATINGPOINT_PRECISION == 1
typedef float Real;
# define VECTOR_EPSILON (1e-6f)
#else
typedef double Real;
# define VECTOR_EPSILON (1e-10)
#endif
#ifndef M_PI
# define M_PI 3.1415926536
#endif
#ifndef M_E
# define M_E 2.7182818284
#endif
namespace Manta {
//! Basic inlined vector class
template<class S> class Vector3D {
public:
//! Constructor
inline Vector3D() : x(0), y(0), z(0)
{
}
//! Copy-Constructor
inline Vector3D(const Vector3D<S> &v) : x(v.x), y(v.y), z(v.z)
{
}
//! Copy-Constructor
inline Vector3D(const int *v) : x((S)v[0]), y((S)v[1]), z((S)v[2])
{
}
//! Copy-Constructor
inline Vector3D(const float *v) : x((S)v[0]), y((S)v[1]), z((S)v[2])
{
}
//! Copy-Constructor
inline Vector3D(const double *v) : x((S)v[0]), y((S)v[1]), z((S)v[2])
{
}
//! Construct a vector from one S
inline Vector3D(S v) : x(v), y(v), z(v)
{
}
//! Construct a vector from three Ss
inline Vector3D(S vx, S vy, S vz) : x(vx), y(vy), z(vz)
{
}
// Operators
//! Assignment operator
inline const Vector3D<S> &operator=(const Vector3D<S> &v)
{
x = v.x;
y = v.y;
z = v.z;
return *this;
}
//! Assignment operator
inline const Vector3D<S> &operator=(S s)
{
x = y = z = s;
return *this;
}
//! Assign and add operator
inline const Vector3D<S> &operator+=(const Vector3D<S> &v)
{
x += v.x;
y += v.y;
z += v.z;
return *this;
}
//! Assign and add operator
inline const Vector3D<S> &operator+=(S s)
{
x += s;
y += s;
z += s;
return *this;
}
//! Assign and sub operator
inline const Vector3D<S> &operator-=(const Vector3D<S> &v)
{
x -= v.x;
y -= v.y;
z -= v.z;
return *this;
}
//! Assign and sub operator
inline const Vector3D<S> &operator-=(S s)
{
x -= s;
y -= s;
z -= s;
return *this;
}
//! Assign and mult operator
inline const Vector3D<S> &operator*=(const Vector3D<S> &v)
{
x *= v.x;
y *= v.y;
z *= v.z;
return *this;
}
//! Assign and mult operator
inline const Vector3D<S> &operator*=(S s)
{
x *= s;
y *= s;
z *= s;
return *this;
}
//! Assign and div operator
inline const Vector3D<S> &operator/=(const Vector3D<S> &v)
{
x /= v.x;
y /= v.y;
z /= v.z;
return *this;
}
//! Assign and div operator
inline const Vector3D<S> &operator/=(S s)
{
x /= s;
y /= s;
z /= s;
return *this;
}
//! Negation operator
inline Vector3D<S> operator-() const
{
return Vector3D<S>(-x, -y, -z);
}
//! Get smallest component
inline S min() const
{
return (x < y) ? ((x < z) ? x : z) : ((y < z) ? y : z);
}
//! Get biggest component
inline S max() const
{
return (x > y) ? ((x > z) ? x : z) : ((y > z) ? y : z);
}
//! Test if all components are zero
inline bool empty()
{
return x == 0 && y == 0 && z == 0;
}
//! access operator
inline S &operator[](unsigned int i)
{
return value[i];
}
//! constant access operator
inline const S &operator[](unsigned int i) const
{
return value[i];
}
//! debug output vector to a string
std::string toString() const;
//! test if nans are present
bool isValid() const;
//! actual values
union {
S value[3];
struct {
S x;
S y;
S z;
};
struct {
S X;
S Y;
S Z;
};
};
//! zero element
static const Vector3D<S> Zero, Invalid;
//! For compatibility with 4d vectors (discards 4th comp)
inline Vector3D(S vx, S vy, S vz, S vDummy) : x(vx), y(vy), z(vz)
{
}
protected:
};
//! helper to check whether value is non-zero
template<class S> inline bool notZero(S v)
{
return (std::abs(v) > VECTOR_EPSILON);
}
template<class S> inline bool notZero(Vector3D<S> v)
{
return (std::abs(norm(v)) > VECTOR_EPSILON);
}
//************************************************************************
// Additional operators
//************************************************************************
//! Addition operator
template<class S> inline Vector3D<S> operator+(const Vector3D<S> &v1, const Vector3D<S> &v2)
{
return Vector3D<S>(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z);
}
//! Addition operator
template<class S, class S2> inline Vector3D<S> operator+(const Vector3D<S> &v, S2 s)
{
return Vector3D<S>(v.x + s, v.y + s, v.z + s);
}
//! Addition operator
template<class S, class S2> inline Vector3D<S> operator+(S2 s, const Vector3D<S> &v)
{
return Vector3D<S>(v.x + s, v.y + s, v.z + s);
}
//! Subtraction operator
template<class S> inline Vector3D<S> operator-(const Vector3D<S> &v1, const Vector3D<S> &v2)
{
return Vector3D<S>(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);
}
//! Subtraction operator
template<class S, class S2> inline Vector3D<S> operator-(const Vector3D<S> &v, S2 s)
{
return Vector3D<S>(v.x - s, v.y - s, v.z - s);
}
//! Subtraction operator
template<class S, class S2> inline Vector3D<S> operator-(S2 s, const Vector3D<S> &v)
{
return Vector3D<S>(s - v.x, s - v.y, s - v.z);
}
//! Multiplication operator
template<class S> inline Vector3D<S> operator*(const Vector3D<S> &v1, const Vector3D<S> &v2)
{
return Vector3D<S>(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z);
}
//! Multiplication operator
template<class S, class S2> inline Vector3D<S> operator*(const Vector3D<S> &v, S2 s)
{
return Vector3D<S>(v.x * s, v.y * s, v.z * s);
}
//! Multiplication operator
template<class S, class S2> inline Vector3D<S> operator*(S2 s, const Vector3D<S> &v)
{
return Vector3D<S>(s * v.x, s * v.y, s * v.z);
}
//! Division operator
template<class S> inline Vector3D<S> operator/(const Vector3D<S> &v1, const Vector3D<S> &v2)
{
return Vector3D<S>(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z);
}
//! Division operator
template<class S, class S2> inline Vector3D<S> operator/(const Vector3D<S> &v, S2 s)
{
return Vector3D<S>(v.x / s, v.y / s, v.z / s);
}
//! Division operator
template<class S, class S2> inline Vector3D<S> operator/(S2 s, const Vector3D<S> &v)
{
return Vector3D<S>(s / v.x, s / v.y, s / v.z);
}
//! Comparison operator
template<class S> inline bool operator==(const Vector3D<S> &s1, const Vector3D<S> &s2)
{
return s1.x == s2.x && s1.y == s2.y && s1.z == s2.z;
}
//! Comparison operator
template<class S> inline bool operator!=(const Vector3D<S> &s1, const Vector3D<S> &s2)
{
return s1.x != s2.x || s1.y != s2.y || s1.z != s2.z;
}
//************************************************************************
// External functions
//************************************************************************
//! Min operator
template<class S> inline Vector3D<S> vmin(const Vector3D<S> &s1, const Vector3D<S> &s2)
{
return Vector3D<S>(std::min(s1.x, s2.x), std::min(s1.y, s2.y), std::min(s1.z, s2.z));
}
//! Min operator
template<class S, class S2> inline Vector3D<S> vmin(const Vector3D<S> &s1, S2 s2)
{
return Vector3D<S>(std::min(s1.x, s2), std::min(s1.y, s2), std::min(s1.z, s2));
}
//! Min operator
template<class S1, class S> inline Vector3D<S> vmin(S1 s1, const Vector3D<S> &s2)
{
return Vector3D<S>(std::min(s1, s2.x), std::min(s1, s2.y), std::min(s1, s2.z));
}
//! Max operator
template<class S> inline Vector3D<S> vmax(const Vector3D<S> &s1, const Vector3D<S> &s2)
{
return Vector3D<S>(std::max(s1.x, s2.x), std::max(s1.y, s2.y), std::max(s1.z, s2.z));
}
//! Max operator
template<class S, class S2> inline Vector3D<S> vmax(const Vector3D<S> &s1, S2 s2)
{
return Vector3D<S>(std::max(s1.x, s2), std::max(s1.y, s2), std::max(s1.z, s2));
}
//! Max operator
template<class S1, class S> inline Vector3D<S> vmax(S1 s1, const Vector3D<S> &s2)
{
return Vector3D<S>(std::max(s1, s2.x), std::max(s1, s2.y), std::max(s1, s2.z));
}
//! Dot product
template<class S> inline S dot(const Vector3D<S> &t, const Vector3D<S> &v)
{
return t.x * v.x + t.y * v.y + t.z * v.z;
}
//! Cross product
template<class S> inline Vector3D<S> cross(const Vector3D<S> &t, const Vector3D<S> &v)
{
Vector3D<S> cp(
((t.y * v.z) - (t.z * v.y)), ((t.z * v.x) - (t.x * v.z)), ((t.x * v.y) - (t.y * v.x)));
return cp;
}
//! Project a vector into a plane, defined by its normal
/*! Projects a vector into a plane normal to the given vector, which must
have unit length. Self is modified.
\param v The vector to project
\param n The plane normal
\return The projected vector */
template<class S>
inline const Vector3D<S> &projectNormalTo(const Vector3D<S> &v, const Vector3D<S> &n)
{
S sprod = dot(v, n);
return v - n * dot(v, n);
}
//! Compute the magnitude (length) of the vector
//! (clamps to 0 and 1 with VECTOR_EPSILON)
template<class S> inline S norm(const Vector3D<S> &v)
{
S l = v.x * v.x + v.y * v.y + v.z * v.z;
if (l <= VECTOR_EPSILON * VECTOR_EPSILON)
return (0.);
return (fabs(l - 1.) < VECTOR_EPSILON * VECTOR_EPSILON) ? 1. : sqrt(l);
}
//! Compute squared magnitude
template<class S> inline S normSquare(const Vector3D<S> &v)
{
return v.x * v.x + v.y * v.y + v.z * v.z;
}
//! compatibility, allow use of int, Real and Vec inputs with norm/normSquare
inline Real norm(const Real v)
{
return fabs(v);
}
inline Real normSquare(const Real v)
{
return square(v);
}
inline Real norm(const int v)
{
return abs(v);
}
inline Real normSquare(const int v)
{
return square(v);
}
//! Compute sum of all components, allow use of int, Real too
template<class S> inline S sum(const S v)
{
return v;
}
template<class S> inline S sum(const Vector3D<S> &v)
{
return v.x + v.y + v.z;
}
//! Get absolute representation of vector, allow use of int, Real too
inline Real abs(const Real v)
{
return std::fabs(v);
}
inline int abs(const int v)
{
return std::abs(v);
}
template<class S> inline Vector3D<S> abs(const Vector3D<S> &v)
{
Vector3D<S> cp(v.x, v.y, v.z);
for (int i = 0; i < 3; ++i) {
if (cp[i] < 0)
cp[i] *= (-1.0);
}
return cp;
}
//! Returns a normalized vector
template<class S> inline Vector3D<S> getNormalized(const Vector3D<S> &v)
{
S l = v.x * v.x + v.y * v.y + v.z * v.z;
if (fabs(l - 1.) < VECTOR_EPSILON * VECTOR_EPSILON)
return v; /* normalized "enough"... */
else if (l > VECTOR_EPSILON * VECTOR_EPSILON) {
S fac = 1. / sqrt(l);
return Vector3D<S>(v.x * fac, v.y * fac, v.z * fac);
}
else
return Vector3D<S>((S)0);
}
//! Compute the norm of the vector and normalize it.
/*! \return The value of the norm */
template<class S> inline S normalize(Vector3D<S> &v)
{
S norm;
S l = v.x * v.x + v.y * v.y + v.z * v.z;
if (fabs(l - 1.) < VECTOR_EPSILON * VECTOR_EPSILON) {
norm = 1.;
}
else if (l > VECTOR_EPSILON * VECTOR_EPSILON) {
norm = sqrt(l);
v *= 1. / norm;
}
else {
v = Vector3D<S>::Zero;
norm = 0.;
}
return (S)norm;
}
//! Obtain an orthogonal vector
/*! Compute a vector that is orthonormal to the given vector.
* Nothing else can be assumed for the direction of the new vector.
* \return The orthonormal vector */
template<class S> Vector3D<S> getOrthogonalVector(const Vector3D<S> &v)
{
// Determine the component with max. absolute value
int maxIndex = (fabs(v.x) > fabs(v.y)) ? 0 : 1;
maxIndex = (fabs(v[maxIndex]) > fabs(v.z)) ? maxIndex : 2;
// Choose another axis than the one with max. component and project
// orthogonal to self
Vector3D<S> o(0.0);
o[(maxIndex + 1) % 3] = 1;
Vector3D<S> c = cross(v, o);
normalize(c);
return c;
}
//! Convert vector to polar coordinates
/*! Stable vector to angle conversion
*\param v vector to convert
\param phi unique angle [0,2PI]
\param theta unique angle [0,PI]
*/
template<class S> inline void vecToAngle(const Vector3D<S> &v, S &phi, S &theta)
{
if (fabs(v.y) < VECTOR_EPSILON)
theta = M_PI / 2;
else if (fabs(v.x) < VECTOR_EPSILON && fabs(v.z) < VECTOR_EPSILON)
theta = (v.y >= 0) ? 0 : M_PI;
else
theta = atan(sqrt(v.x * v.x + v.z * v.z) / v.y);
if (theta < 0)
theta += M_PI;
if (fabs(v.x) < VECTOR_EPSILON)
phi = M_PI / 2;
else
phi = atan(v.z / v.x);
if (phi < 0)
phi += M_PI;
if (fabs(v.z) < VECTOR_EPSILON)
phi = (v.x >= 0) ? 0 : M_PI;
else if (v.z < 0)
phi += M_PI;
}
//! Compute vector reflected at a surface
/*! Compute a vector, that is self (as an incoming vector)
* reflected at a surface with a distinct normal vector.
* Note that the normal is reversed, if the scalar product with it is positive.
\param t The incoming vector
\param n The surface normal
\return The new reflected vector
*/
template<class S> inline Vector3D<S> reflectVector(const Vector3D<S> &t, const Vector3D<S> &n)
{
Vector3D<S> nn = (dot(t, n) > 0.0) ? (n * -1.0) : n;
return (t - nn * (2.0 * dot(nn, t)));
}
//! Compute vector refracted at a surface
/*! \param t The incoming vector
* \param n The surface normal
* \param nt The "inside" refraction index
* \param nair The "outside" refraction index
* \param refRefl Set to 1 on total reflection
* \return The refracted vector
*/
template<class S>
inline Vector3D<S> refractVector(
const Vector3D<S> &t, const Vector3D<S> &normal, S nt, S nair, int &refRefl)
{
// from Glassner's book, section 5.2 (Heckberts method)
S eta = nair / nt;
S n = -dot(t, normal);
S tt = 1.0 + eta * eta * (n * n - 1.0);
if (tt < 0.0) {
// we have total reflection!
refRefl = 1;
}
else {
// normal reflection
tt = eta * n - sqrt(tt);
return (t * eta + normal * tt);
}
return t;
}
//! Outputs the object in human readable form as string
template<class S> std::string Vector3D<S>::toString() const
{
char buf[256];
snprintf(buf,
256,
"[%+4.6f,%+4.6f,%+4.6f]",
(double)(*this)[0],
(double)(*this)[1],
(double)(*this)[2]);
// for debugging, optionally increase precision:
// snprintf ( buf,256,"[%+4.16f,%+4.16f,%+4.16f]", ( double ) ( *this ) [0], ( double ) ( *this )
// [1], ( double ) ( *this ) [2] );
return std::string(buf);
}
template<> std::string Vector3D<int>::toString() const;
//! Outputs the object in human readable form to stream
/*! Output format [x,y,z] */
template<class S> std::ostream &operator<<(std::ostream &os, const Vector3D<S> &i)
{
os << i.toString();
return os;
}
//! Reads the contents of the object from a stream
/*! Input format [x,y,z] */
template<class S> std::istream &operator>>(std::istream &is, Vector3D<S> &i)
{
char c;
char dummy[3];
is >> c >> i[0] >> dummy >> i[1] >> dummy >> i[2] >> c;
return is;
}
/**************************************************************************/
// Define default vector alias
/**************************************************************************/
//! 3D vector class of type Real (typically float)
typedef Vector3D<Real> Vec3;
//! 3D vector class of type int
typedef Vector3D<int> Vec3i;
//! convert to Real Vector
template<class T> inline Vec3 toVec3(T v)
{
return Vec3(v[0], v[1], v[2]);
}
//! convert to int Vector
template<class T> inline Vec3i toVec3i(T v)
{
return Vec3i((int)v[0], (int)v[1], (int)v[2]);
}
//! convert to int Vector
template<class T> inline Vec3i toVec3i(T v0, T v1, T v2)
{
return Vec3i((int)v0, (int)v1, (int)v2);
}
//! round, and convert to int Vector
template<class T> inline Vec3i toVec3iRound(T v)
{
return Vec3i((int)round(v[0]), (int)round(v[1]), (int)round(v[2]));
}
template<class T> inline Vec3i toVec3iFloor(T v)
{
return Vec3i((int)floor(v[0]), (int)floor(v[1]), (int)floor(v[2]));
}
//! convert to int Vector if values are close enough to an int
template<class T> inline Vec3i toVec3iChecked(T v)
{
Vec3i ret;
for (size_t i = 0; i < 3; i++) {
Real a = v[i];
if (fabs(a - floor(a + 0.5)) > 1e-5)
errMsg("argument is not an int, cannot convert");
ret[i] = (int)(a + 0.5);
}
return ret;
}
//! convert to double Vector
template<class T> inline Vector3D<double> toVec3d(T v)
{
return Vector3D<double>(v[0], v[1], v[2]);
}
//! convert to float Vector
template<class T> inline Vector3D<float> toVec3f(T v)
{
return Vector3D<float>(v[0], v[1], v[2]);
}
/**************************************************************************/
// Specializations for common math functions
/**************************************************************************/
template<> inline Vec3 clamp<Vec3>(const Vec3 &a, const Vec3 &b, const Vec3 &c)
{
return Vec3(clamp(a.x, b.x, c.x), clamp(a.y, b.y, c.y), clamp(a.z, b.z, c.z));
}
template<> inline Vec3 safeDivide<Vec3>(const Vec3 &a, const Vec3 &b)
{
return Vec3(safeDivide(a.x, b.x), safeDivide(a.y, b.y), safeDivide(a.z, b.z));
}
template<> inline Vec3 nmod<Vec3>(const Vec3 &a, const Vec3 &b)
{
return Vec3(nmod(a.x, b.x), nmod(a.y, b.y), nmod(a.z, b.z));
}
}; // namespace Manta
#endif