This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/particle.c
Janne Karhu 8fae0c6d7e Particle dupliobject rotation changes:
There has been quite a bit of fuss about particle dupliobject rotation in 2.59, so here are some changes to make things work a bit more consistently and predictably in 2.60.

Much of the confusion has been about what the "Initial rotation" for particles actually means. Simply put it's just a vector that that the particles (and the dupliobjects) are aligned to and around which they can be rotated with the phase controls. I've now renamed these controls under a label "Rotation axis".

In 2.59 and previous versions the dupliobject's global x-axis was aligned to the particle rotation axis for non-hair particles. This meant that the object's own rotation (in addition to the particle rotation) could effect the dupliobjects' rotations. This old behavior can still be used with the "Rotation" option in the particle render panel when object/group is set as the visualization. This option is also activated automatically for old files to maintain backwards compatibility.

Now the default dupliobject rotations ignore the object's own rotation completely and align the object's tracking axis to the particle rotation axis. The tracking axis can be found under the Object tab -> Animation Hacks panel.

In 2.58 the way of calculating the rotation for hair didn't work as intended and enabled many non-functional combinations of options. For this reason I removed most of the rotation options for hair in 2.59. Now the options have been reimplemented better and the dupliobject's tracking axis is aligned to the hair direction by default (Rotation axis = Velocity / Hair). All the other axis options work too along with the phase controls.
2011-10-16 16:14:36 +00:00

4554 lines
122 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2007 by Janne Karhu.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/particle.c
* \ingroup bke
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
#include "DNA_group_types.h"
#include "DNA_key_types.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_particle_types.h"
#include "DNA_smoke_types.h"
#include "DNA_scene_types.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_kdtree.h"
#include "BLI_rand.h"
#include "BLI_threads.h"
#include "BKE_anim.h"
#include "BKE_animsys.h"
#include "BKE_boids.h"
#include "BKE_cloth.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_group.h"
#include "BKE_main.h"
#include "BKE_lattice.h"
#include "BKE_displist.h"
#include "BKE_particle.h"
#include "BKE_object.h"
#include "BKE_material.h"
#include "BKE_key.h"
#include "BKE_library.h"
#include "BKE_depsgraph.h"
#include "BKE_modifier.h"
#include "BKE_mesh.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_pointcache.h"
#include "RE_render_ext.h"
static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx,
ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex);
static void do_child_modifiers(ParticleSimulationData *sim,
ParticleTexture *ptex, ParticleKey *par, float *par_rot, ChildParticle *cpa,
float *orco, float mat[4][4], ParticleKey *state, float t);
/* few helpers for countall etc. */
int count_particles(ParticleSystem *psys){
ParticleSettings *part=psys->part;
PARTICLE_P;
int tot=0;
LOOP_SHOWN_PARTICLES {
if(pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN)==0);
else if(pa->alive == PARS_DEAD && (part->flag & PART_DIED)==0);
else tot++;
}
return tot;
}
int count_particles_mod(ParticleSystem *psys, int totgr, int cur){
ParticleSettings *part=psys->part;
PARTICLE_P;
int tot=0;
LOOP_SHOWN_PARTICLES {
if(pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN)==0);
else if(pa->alive == PARS_DEAD && (part->flag & PART_DIED)==0);
else if(p%totgr==cur) tot++;
}
return tot;
}
/* we allocate path cache memory in chunks instead of a big continguous
* chunk, windows' memory allocater fails to find big blocks of memory often */
#define PATH_CACHE_BUF_SIZE 1024
static ParticleCacheKey **psys_alloc_path_cache_buffers(ListBase *bufs, int tot, int steps)
{
LinkData *buf;
ParticleCacheKey **cache;
int i, totkey, totbufkey;
tot= MAX2(tot, 1);
totkey = 0;
cache = MEM_callocN(tot*sizeof(void*), "PathCacheArray");
while(totkey < tot) {
totbufkey= MIN2(tot-totkey, PATH_CACHE_BUF_SIZE);
buf= MEM_callocN(sizeof(LinkData), "PathCacheLinkData");
buf->data= MEM_callocN(sizeof(ParticleCacheKey)*totbufkey*steps, "ParticleCacheKey");
for(i=0; i<totbufkey; i++)
cache[totkey+i] = ((ParticleCacheKey*)buf->data) + i*steps;
totkey += totbufkey;
BLI_addtail(bufs, buf);
}
return cache;
}
static void psys_free_path_cache_buffers(ParticleCacheKey **cache, ListBase *bufs)
{
LinkData *buf;
if(cache)
MEM_freeN(cache);
for(buf= bufs->first; buf; buf=buf->next)
MEM_freeN(buf->data);
BLI_freelistN(bufs);
}
/************************************************/
/* Getting stuff */
/************************************************/
/* get object's active particle system safely */
ParticleSystem *psys_get_current(Object *ob)
{
ParticleSystem *psys;
if(ob==NULL) return NULL;
for(psys=ob->particlesystem.first; psys; psys=psys->next){
if(psys->flag & PSYS_CURRENT)
return psys;
}
return NULL;
}
short psys_get_current_num(Object *ob)
{
ParticleSystem *psys;
short i;
if(ob==NULL) return 0;
for(psys=ob->particlesystem.first, i=0; psys; psys=psys->next, i++)
if(psys->flag & PSYS_CURRENT)
return i;
return i;
}
void psys_set_current_num(Object *ob, int index)
{
ParticleSystem *psys;
short i;
if(ob==NULL) return;
for(psys=ob->particlesystem.first, i=0; psys; psys=psys->next, i++) {
if(i == index)
psys->flag |= PSYS_CURRENT;
else
psys->flag &= ~PSYS_CURRENT;
}
}
Object *psys_find_object(Scene *scene, ParticleSystem *psys)
{
Base *base;
ParticleSystem *tpsys;
for(base = scene->base.first; base; base = base->next) {
for(tpsys = base->object->particlesystem.first; psys; psys=psys->next) {
if(tpsys == psys)
return base->object;
}
}
return NULL;
}
Object *psys_get_lattice(ParticleSimulationData *sim)
{
Object *lattice=NULL;
if(psys_in_edit_mode(sim->scene, sim->psys)==0){
ModifierData *md = (ModifierData*)psys_get_modifier(sim->ob, sim->psys);
for(; md; md=md->next){
if(md->type==eModifierType_Lattice){
LatticeModifierData *lmd = (LatticeModifierData *)md;
lattice=lmd->object;
break;
}
}
if(lattice)
init_latt_deform(lattice, NULL);
}
return lattice;
}
void psys_disable_all(Object *ob)
{
ParticleSystem *psys=ob->particlesystem.first;
for(; psys; psys=psys->next)
psys->flag |= PSYS_DISABLED;
}
void psys_enable_all(Object *ob)
{
ParticleSystem *psys=ob->particlesystem.first;
for(; psys; psys=psys->next)
psys->flag &= ~PSYS_DISABLED;
}
int psys_in_edit_mode(Scene *scene, ParticleSystem *psys)
{
return (scene->basact && (scene->basact->object->mode & OB_MODE_PARTICLE_EDIT) && psys==psys_get_current((scene->basact)->object) && (psys->edit || psys->pointcache->edit) && !psys->renderdata);
}
static void psys_create_frand(ParticleSystem *psys)
{
int i;
float *rand = psys->frand = MEM_callocN(PSYS_FRAND_COUNT * sizeof(float), "particle randoms");
BLI_srandom(psys->seed);
for(i=0; i<1024; i++, rand++)
*rand = BLI_frand();
}
int psys_check_enabled(Object *ob, ParticleSystem *psys)
{
ParticleSystemModifierData *psmd;
if(psys->flag & PSYS_DISABLED || psys->flag & PSYS_DELETE || !psys->part)
return 0;
psmd= psys_get_modifier(ob, psys);
if(psys->renderdata || G.rendering) {
if(!(psmd->modifier.mode & eModifierMode_Render))
return 0;
}
else if(!(psmd->modifier.mode & eModifierMode_Realtime))
return 0;
/* perhaps not the perfect place, but we have to be sure the rands are there before usage */
if(!psys->frand)
psys_create_frand(psys);
else if(psys->recalc & PSYS_RECALC_RESET) {
MEM_freeN(psys->frand);
psys_create_frand(psys);
}
return 1;
}
int psys_check_edited(ParticleSystem *psys)
{
if(psys->part && psys->part->type==PART_HAIR)
return (psys->flag & PSYS_EDITED || (psys->edit && psys->edit->edited));
else
return (psys->pointcache->edit && psys->pointcache->edit->edited);
}
void psys_check_group_weights(ParticleSettings *part)
{
ParticleDupliWeight *dw, *tdw;
GroupObject *go;
int current = 0;
if(part->ren_as == PART_DRAW_GR && part->dup_group && part->dup_group->gobject.first) {
/* first remove all weights that don't have an object in the group */
dw = part->dupliweights.first;
while(dw) {
if(!object_in_group(dw->ob, part->dup_group)) {
tdw = dw->next;
BLI_freelinkN(&part->dupliweights, dw);
dw = tdw;
}
else
dw = dw->next;
}
/* then add objects in the group to new list */
go = part->dup_group->gobject.first;
while(go) {
dw = part->dupliweights.first;
while(dw && dw->ob != go->ob)
dw = dw->next;
if(!dw) {
dw = MEM_callocN(sizeof(ParticleDupliWeight), "ParticleDupliWeight");
dw->ob = go->ob;
dw->count = 1;
BLI_addtail(&part->dupliweights, dw);
}
go = go->next;
}
dw = part->dupliweights.first;
for(; dw; dw=dw->next) {
if(dw->flag & PART_DUPLIW_CURRENT) {
current = 1;
break;
}
}
if(!current) {
dw = part->dupliweights.first;
if(dw)
dw->flag |= PART_DUPLIW_CURRENT;
}
}
else {
BLI_freelistN(&part->dupliweights);
}
}
int psys_uses_gravity(ParticleSimulationData *sim)
{
return sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY && sim->psys->part && sim->psys->part->effector_weights->global_gravity != 0.0f;
}
/************************************************/
/* Freeing stuff */
/************************************************/
static void fluid_free_settings(SPHFluidSettings *fluid)
{
if(fluid)
MEM_freeN(fluid);
}
void psys_free_settings(ParticleSettings *part)
{
MTex *mtex;
int a;
BKE_free_animdata(&part->id);
free_partdeflect(part->pd);
free_partdeflect(part->pd2);
if(part->effector_weights)
MEM_freeN(part->effector_weights);
BLI_freelistN(&part->dupliweights);
boid_free_settings(part->boids);
fluid_free_settings(part->fluid);
for(a=0; a<MAX_MTEX; a++) {
mtex= part->mtex[a];
if(mtex && mtex->tex) mtex->tex->id.us--;
if(mtex) MEM_freeN(mtex);
}
}
void free_hair(Object *UNUSED(ob), ParticleSystem *psys, int dynamics)
{
PARTICLE_P;
LOOP_PARTICLES {
if(pa->hair)
MEM_freeN(pa->hair);
pa->hair = NULL;
pa->totkey = 0;
}
psys->flag &= ~PSYS_HAIR_DONE;
if(psys->clmd) {
if(dynamics) {
BKE_ptcache_free_list(&psys->ptcaches);
psys->clmd->point_cache = psys->pointcache = NULL;
psys->clmd->ptcaches.first = psys->clmd->ptcaches.last = NULL;
modifier_free((ModifierData*)psys->clmd);
psys->clmd = NULL;
psys->pointcache = BKE_ptcache_add(&psys->ptcaches);
}
else {
cloth_free_modifier(psys->clmd);
}
}
if(psys->hair_in_dm)
psys->hair_in_dm->release(psys->hair_in_dm);
psys->hair_in_dm = NULL;
if(psys->hair_out_dm)
psys->hair_out_dm->release(psys->hair_out_dm);
psys->hair_out_dm = NULL;
}
void free_keyed_keys(ParticleSystem *psys)
{
PARTICLE_P;
if(psys->part->type == PART_HAIR)
return;
if(psys->particles && psys->particles->keys) {
MEM_freeN(psys->particles->keys);
LOOP_PARTICLES {
if(pa->keys) {
pa->keys= NULL;
pa->totkey= 0;
}
}
}
}
static void free_child_path_cache(ParticleSystem *psys)
{
psys_free_path_cache_buffers(psys->childcache, &psys->childcachebufs);
psys->childcache = NULL;
psys->totchildcache = 0;
}
void psys_free_path_cache(ParticleSystem *psys, PTCacheEdit *edit)
{
if(edit) {
psys_free_path_cache_buffers(edit->pathcache, &edit->pathcachebufs);
edit->pathcache= NULL;
edit->totcached= 0;
}
if(psys) {
psys_free_path_cache_buffers(psys->pathcache, &psys->pathcachebufs);
psys->pathcache= NULL;
psys->totcached= 0;
free_child_path_cache(psys);
}
}
void psys_free_children(ParticleSystem *psys)
{
if(psys->child) {
MEM_freeN(psys->child);
psys->child= NULL;
psys->totchild=0;
}
free_child_path_cache(psys);
}
void psys_free_particles(ParticleSystem *psys)
{
PARTICLE_P;
if(psys->particles) {
if(psys->part->type==PART_HAIR) {
LOOP_PARTICLES {
if(pa->hair)
MEM_freeN(pa->hair);
}
}
if(psys->particles->keys)
MEM_freeN(psys->particles->keys);
if(psys->particles->boid)
MEM_freeN(psys->particles->boid);
MEM_freeN(psys->particles);
psys->particles= NULL;
psys->totpart= 0;
}
}
void psys_free_pdd(ParticleSystem *psys)
{
if(psys->pdd) {
if(psys->pdd->cdata)
MEM_freeN(psys->pdd->cdata);
psys->pdd->cdata = NULL;
if(psys->pdd->vdata)
MEM_freeN(psys->pdd->vdata);
psys->pdd->vdata = NULL;
if(psys->pdd->ndata)
MEM_freeN(psys->pdd->ndata);
psys->pdd->ndata = NULL;
if(psys->pdd->vedata)
MEM_freeN(psys->pdd->vedata);
psys->pdd->vedata = NULL;
psys->pdd->totpoint = 0;
psys->pdd->tot_vec_size = 0;
}
}
/* free everything */
void psys_free(Object *ob, ParticleSystem * psys)
{
if(psys){
int nr = 0;
ParticleSystem * tpsys;
psys_free_path_cache(psys, NULL);
free_hair(ob, psys, 1);
psys_free_particles(psys);
if(psys->edit && psys->free_edit)
psys->free_edit(psys->edit);
if(psys->child){
MEM_freeN(psys->child);
psys->child = NULL;
psys->totchild = 0;
}
// check if we are last non-visible particle system
for(tpsys=ob->particlesystem.first; tpsys; tpsys=tpsys->next){
if(tpsys->part)
{
if(ELEM(tpsys->part->ren_as,PART_DRAW_OB,PART_DRAW_GR))
{
nr++;
break;
}
}
}
// clear do-not-draw-flag
if(!nr)
ob->transflag &= ~OB_DUPLIPARTS;
if(psys->part){
psys->part->id.us--;
psys->part=NULL;
}
BKE_ptcache_free_list(&psys->ptcaches);
psys->pointcache = NULL;
BLI_freelistN(&psys->targets);
BLI_bvhtree_free(psys->bvhtree);
BLI_kdtree_free(psys->tree);
if(psys->fluid_springs)
MEM_freeN(psys->fluid_springs);
pdEndEffectors(&psys->effectors);
if(psys->frand)
MEM_freeN(psys->frand);
if(psys->pdd) {
psys_free_pdd(psys);
MEM_freeN(psys->pdd);
}
MEM_freeN(psys);
}
}
/************************************************/
/* Rendering */
/************************************************/
/* these functions move away particle data and bring it back after
* rendering, to make different render settings possible without
* removing the previous data. this should be solved properly once */
typedef struct ParticleRenderElem {
int curchild, totchild, reduce;
float lambda, t, scalemin, scalemax;
} ParticleRenderElem;
typedef struct ParticleRenderData {
ChildParticle *child;
ParticleCacheKey **pathcache;
ParticleCacheKey **childcache;
ListBase pathcachebufs, childcachebufs;
int totchild, totcached, totchildcache;
DerivedMesh *dm;
int totdmvert, totdmedge, totdmface;
float mat[4][4];
float viewmat[4][4], winmat[4][4];
int winx, winy;
int dosimplify;
int timeoffset;
ParticleRenderElem *elems;
int *origindex;
} ParticleRenderData;
static float psys_render_viewport_falloff(double rate, float dist, float width)
{
return pow(rate, dist/width);
}
static float psys_render_projected_area(ParticleSystem *psys, float *center, float area, double vprate, float *viewport)
{
ParticleRenderData *data= psys->renderdata;
float co[4], view[3], ortho1[3], ortho2[3], w, dx, dy, radius;
/* transform to view space */
VECCOPY(co, center);
co[3]= 1.0f;
mul_m4_v4(data->viewmat, co);
/* compute two vectors orthogonal to view vector */
normalize_v3_v3(view, co);
ortho_basis_v3v3_v3( ortho1, ortho2,view);
/* compute on screen minification */
w= co[2]*data->winmat[2][3] + data->winmat[3][3];
dx= data->winx*ortho2[0]*data->winmat[0][0];
dy= data->winy*ortho2[1]*data->winmat[1][1];
w= sqrt(dx*dx + dy*dy)/w;
/* w squared because we are working with area */
area= area*w*w;
/* viewport of the screen test */
/* project point on screen */
mul_m4_v4(data->winmat, co);
if(co[3] != 0.0f) {
co[0]= 0.5f*data->winx*(1.0f + co[0]/co[3]);
co[1]= 0.5f*data->winy*(1.0f + co[1]/co[3]);
}
/* screen space radius */
radius= sqrt(area/(float)M_PI);
/* make smaller using fallof once over screen edge */
*viewport= 1.0f;
if(co[0]+radius < 0.0f)
*viewport *= psys_render_viewport_falloff(vprate, -(co[0]+radius), data->winx);
else if(co[0]-radius > data->winx)
*viewport *= psys_render_viewport_falloff(vprate, (co[0]-radius) - data->winx, data->winx);
if(co[1]+radius < 0.0f)
*viewport *= psys_render_viewport_falloff(vprate, -(co[1]+radius), data->winy);
else if(co[1]-radius > data->winy)
*viewport *= psys_render_viewport_falloff(vprate, (co[1]-radius) - data->winy, data->winy);
return area;
}
void psys_render_set(Object *ob, ParticleSystem *psys, float viewmat[][4], float winmat[][4], int winx, int winy, int timeoffset)
{
ParticleRenderData*data;
ParticleSystemModifierData *psmd= psys_get_modifier(ob, psys);
if(!G.rendering)
return;
if(psys->renderdata)
return;
data= MEM_callocN(sizeof(ParticleRenderData), "ParticleRenderData");
data->child= psys->child;
data->totchild= psys->totchild;
data->pathcache= psys->pathcache;
data->pathcachebufs.first = psys->pathcachebufs.first;
data->pathcachebufs.last = psys->pathcachebufs.last;
data->totcached= psys->totcached;
data->childcache= psys->childcache;
data->childcachebufs.first = psys->childcachebufs.first;
data->childcachebufs.last = psys->childcachebufs.last;
data->totchildcache= psys->totchildcache;
if(psmd->dm)
data->dm= CDDM_copy(psmd->dm);
data->totdmvert= psmd->totdmvert;
data->totdmedge= psmd->totdmedge;
data->totdmface= psmd->totdmface;
psys->child= NULL;
psys->pathcache= NULL;
psys->childcache= NULL;
psys->totchild= psys->totcached= psys->totchildcache= 0;
psys->pathcachebufs.first = psys->pathcachebufs.last = NULL;
psys->childcachebufs.first = psys->childcachebufs.last = NULL;
copy_m4_m4(data->winmat, winmat);
mul_m4_m4m4(data->viewmat, ob->obmat, viewmat);
mul_m4_m4m4(data->mat, data->viewmat, winmat);
data->winx= winx;
data->winy= winy;
data->timeoffset= timeoffset;
psys->renderdata= data;
/* Hair can and has to be recalculated if everything isn't displayed. */
if(psys->part->disp != 100 && psys->part->type == PART_HAIR)
psys->recalc |= PSYS_RECALC_RESET;
}
void psys_render_restore(Object *ob, ParticleSystem *psys)
{
ParticleRenderData*data;
ParticleSystemModifierData *psmd= psys_get_modifier(ob, psys);
data= psys->renderdata;
if(!data)
return;
if(data->elems)
MEM_freeN(data->elems);
if(psmd->dm) {
psmd->dm->needsFree= 1;
psmd->dm->release(psmd->dm);
}
psys_free_path_cache(psys, NULL);
if(psys->child){
MEM_freeN(psys->child);
psys->child= 0;
psys->totchild= 0;
}
psys->child= data->child;
psys->totchild= data->totchild;
psys->pathcache= data->pathcache;
psys->pathcachebufs.first = data->pathcachebufs.first;
psys->pathcachebufs.last = data->pathcachebufs.last;
psys->totcached= data->totcached;
psys->childcache= data->childcache;
psys->childcachebufs.first = data->childcachebufs.first;
psys->childcachebufs.last = data->childcachebufs.last;
psys->totchildcache= data->totchildcache;
psmd->dm= data->dm;
psmd->totdmvert= data->totdmvert;
psmd->totdmedge= data->totdmedge;
psmd->totdmface= data->totdmface;
psmd->flag &= ~eParticleSystemFlag_psys_updated;
if(psmd->dm)
psys_calc_dmcache(ob, psmd->dm, psys);
MEM_freeN(data);
psys->renderdata= NULL;
}
int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot)
{
DerivedMesh *dm= ctx->dm;
Mesh *me= (Mesh*)(ctx->sim.ob->data);
MFace *mf, *mface;
MVert *mvert;
ParticleRenderData *data;
ParticleRenderElem *elems, *elem;
ParticleSettings *part= ctx->sim.psys->part;
float *facearea, (*facecenter)[3], size[3], fac, powrate, scaleclamp;
float co1[3], co2[3], co3[3], co4[3], lambda, arearatio, t, area, viewport;
double vprate;
int *origindex, *facetotvert;
int a, b, totorigface, totface, newtot, skipped;
if(part->ren_as!=PART_DRAW_PATH || !(part->draw & PART_DRAW_REN_STRAND))
return tot;
if(!ctx->sim.psys->renderdata)
return tot;
data= ctx->sim.psys->renderdata;
if(data->timeoffset)
return 0;
if(!(part->simplify_flag & PART_SIMPLIFY_ENABLE))
return tot;
mvert= dm->getVertArray(dm);
mface= dm->getFaceArray(dm);
origindex= dm->getFaceDataArray(dm, CD_ORIGINDEX);
totface= dm->getNumFaces(dm);
totorigface= me->totface;
if(totface == 0 || totorigface == 0)
return tot;
facearea= MEM_callocN(sizeof(float)*totorigface, "SimplifyFaceArea");
facecenter= MEM_callocN(sizeof(float[3])*totorigface, "SimplifyFaceCenter");
facetotvert= MEM_callocN(sizeof(int)*totorigface, "SimplifyFaceArea");
elems= MEM_callocN(sizeof(ParticleRenderElem)*totorigface, "SimplifyFaceElem");
if(data->elems)
MEM_freeN(data->elems);
data->dosimplify= 1;
data->elems= elems;
data->origindex= origindex;
/* compute number of children per original face */
for(a=0; a<tot; a++) {
b= (origindex)? origindex[ctx->index[a]]: ctx->index[a];
if(b != -1)
elems[b].totchild++;
}
/* compute areas and centers of original faces */
for(mf=mface, a=0; a<totface; a++, mf++) {
b= (origindex)? origindex[a]: a;
if(b != -1) {
VECCOPY(co1, mvert[mf->v1].co);
VECCOPY(co2, mvert[mf->v2].co);
VECCOPY(co3, mvert[mf->v3].co);
VECADD(facecenter[b], facecenter[b], co1);
VECADD(facecenter[b], facecenter[b], co2);
VECADD(facecenter[b], facecenter[b], co3);
if(mf->v4) {
VECCOPY(co4, mvert[mf->v4].co);
VECADD(facecenter[b], facecenter[b], co4);
facearea[b] += area_quad_v3(co1, co2, co3, co4);
facetotvert[b] += 4;
}
else {
facearea[b] += area_tri_v3(co1, co2, co3);
facetotvert[b] += 3;
}
}
}
for(a=0; a<totorigface; a++)
if(facetotvert[a] > 0)
mul_v3_fl(facecenter[a], 1.0f/facetotvert[a]);
/* for conversion from BU area / pixel area to reference screen size */
mesh_get_texspace(me, 0, 0, size);
fac= ((size[0] + size[1] + size[2])/3.0f)/part->simplify_refsize;
fac= fac*fac;
powrate= log(0.5f)/log(part->simplify_rate*0.5f);
if(part->simplify_flag & PART_SIMPLIFY_VIEWPORT)
vprate= pow(1.0f - part->simplify_viewport, 5.0);
else
vprate= 1.0;
/* set simplification parameters per original face */
for(a=0, elem=elems; a<totorigface; a++, elem++) {
area = psys_render_projected_area(ctx->sim.psys, facecenter[a], facearea[a], vprate, &viewport);
arearatio= fac*area/facearea[a];
if((arearatio < 1.0f || viewport < 1.0f) && elem->totchild) {
/* lambda is percentage of elements to keep */
lambda= (arearatio < 1.0f)? powf(arearatio, powrate): 1.0f;
lambda *= viewport;
lambda= MAX2(lambda, 1.0f/elem->totchild);
/* compute transition region */
t= part->simplify_transition;
elem->t= (lambda-t < 0.0f)? lambda: (lambda+t > 1.0f)? 1.0f-lambda: t;
elem->reduce= 1;
/* scale at end and beginning of the transition region */
elem->scalemax= (lambda+t < 1.0f)? 1.0f/lambda: 1.0f/(1.0f - elem->t*elem->t/t);
elem->scalemin= (lambda+t < 1.0f)? 0.0f: elem->scalemax*(1.0f-elem->t/t);
elem->scalemin= sqrt(elem->scalemin);
elem->scalemax= sqrt(elem->scalemax);
/* clamp scaling */
scaleclamp= MIN2(elem->totchild, 10.0f);
elem->scalemin= MIN2(scaleclamp, elem->scalemin);
elem->scalemax= MIN2(scaleclamp, elem->scalemax);
/* extend lambda to include transition */
lambda= lambda + elem->t;
if(lambda > 1.0f)
lambda= 1.0f;
}
else {
lambda= arearatio;
elem->scalemax= 1.0f; //sqrt(lambda);
elem->scalemin= 1.0f; //sqrt(lambda);
elem->reduce= 0;
}
elem->lambda= lambda;
elem->scalemin= sqrt(elem->scalemin);
elem->scalemax= sqrt(elem->scalemax);
elem->curchild= 0;
}
MEM_freeN(facearea);
MEM_freeN(facecenter);
MEM_freeN(facetotvert);
/* move indices and set random number skipping */
ctx->skip= MEM_callocN(sizeof(int)*tot, "SimplificationSkip");
skipped= 0;
for(a=0, newtot=0; a<tot; a++) {
b= (origindex)? origindex[ctx->index[a]]: ctx->index[a];
if(b != -1) {
if(elems[b].curchild++ < ceil(elems[b].lambda*elems[b].totchild)) {
ctx->index[newtot]= ctx->index[a];
ctx->skip[newtot]= skipped;
skipped= 0;
newtot++;
}
else skipped++;
}
else skipped++;
}
for(a=0, elem=elems; a<totorigface; a++, elem++)
elem->curchild= 0;
return newtot;
}
int psys_render_simplify_params(ParticleSystem *psys, ChildParticle *cpa, float *params)
{
ParticleRenderData *data;
ParticleRenderElem *elem;
float x, w, scale, alpha, lambda, t, scalemin, scalemax;
int b;
if(!(psys->renderdata && (psys->part->simplify_flag & PART_SIMPLIFY_ENABLE)))
return 0;
data= psys->renderdata;
if(!data->dosimplify)
return 0;
b= (data->origindex)? data->origindex[cpa->num]: cpa->num;
if(b == -1)
return 0;
elem= &data->elems[b];
lambda= elem->lambda;
t= elem->t;
scalemin= elem->scalemin;
scalemax= elem->scalemax;
if(!elem->reduce) {
scale= scalemin;
alpha= 1.0f;
}
else {
x= (elem->curchild+0.5f)/elem->totchild;
if(x < lambda-t) {
scale= scalemax;
alpha= 1.0f;
}
else if(x >= lambda+t) {
scale= scalemin;
alpha= 0.0f;
}
else {
w= (lambda+t - x)/(2.0f*t);
scale= scalemin + (scalemax - scalemin)*w;
alpha= w;
}
}
params[0]= scale;
params[1]= alpha;
elem->curchild++;
return 1;
}
/************************************************/
/* Interpolation */
/************************************************/
static float interpolate_particle_value(float v1, float v2, float v3, float v4, float *w, int four)
{
float value;
value= w[0]*v1 + w[1]*v2 + w[2]*v3;
if(four)
value += w[3]*v4;
CLAMP(value, 0.f, 1.f);
return value;
}
void psys_interpolate_particle(short type, ParticleKey keys[4], float dt, ParticleKey *result, int velocity)
{
float t[4];
if(type<0) {
interp_cubic_v3( result->co, result->vel,keys[1].co, keys[1].vel, keys[2].co, keys[2].vel, dt);
}
else {
key_curve_position_weights(dt, t, type);
interp_v3_v3v3v3v3(result->co, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t);
if(velocity){
float temp[3];
if(dt>0.999f){
key_curve_position_weights(dt-0.001f, t, type);
interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t);
VECSUB(result->vel, result->co, temp);
}
else{
key_curve_position_weights(dt+0.001f, t, type);
interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t);
VECSUB(result->vel, temp, result->co);
}
}
}
}
typedef struct ParticleInterpolationData {
HairKey *hkey[2];
DerivedMesh *dm;
MVert *mvert[2];
int keyed;
ParticleKey *kkey[2];
PointCache *cache;
PTCacheMem *pm;
PTCacheEditPoint *epoint;
PTCacheEditKey *ekey[2];
float birthtime, dietime;
int bspline;
} ParticleInterpolationData;
/* Assumes pointcache->mem_cache exists, so for disk cached particles call psys_make_temp_pointcache() before use */
/* It uses ParticleInterpolationData->pm to store the current memory cache frame so it's thread safe. */
static void get_pointcache_keys_for_time(Object *UNUSED(ob), PointCache *cache, PTCacheMem **cur, int index, float t, ParticleKey *key1, ParticleKey *key2)
{
static PTCacheMem *pm = NULL;
int index1, index2;
if(index < 0) { /* initialize */
*cur = cache->mem_cache.first;
if(*cur)
*cur = (*cur)->next;
}
else {
if(*cur) {
while(*cur && (*cur)->next && (float)(*cur)->frame < t)
*cur = (*cur)->next;
pm = *cur;
index2 = BKE_ptcache_mem_index_find(pm, index);
index1 = BKE_ptcache_mem_index_find(pm->prev, index);
BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame);
if(index1 < 0)
copy_particle_key(key1, key2, 1);
else
BKE_ptcache_make_particle_key(key1, index1, pm->prev->data, (float)pm->prev->frame);
}
else if(cache->mem_cache.first) {
pm = cache->mem_cache.first;
index2 = BKE_ptcache_mem_index_find(pm, index);
BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame);
copy_particle_key(key1, key2, 1);
}
}
}
static int get_pointcache_times_for_particle(PointCache *cache, int index, float *start, float *end)
{
PTCacheMem *pm;
int ret = 0;
for(pm=cache->mem_cache.first; pm; pm=pm->next) {
if(BKE_ptcache_mem_index_find(pm, index) >= 0) {
*start = pm->frame;
ret++;
break;
}
}
for(pm=cache->mem_cache.last; pm; pm=pm->prev) {
if(BKE_ptcache_mem_index_find(pm, index) >= 0) {
*end = pm->frame;
ret++;
break;
}
}
return ret == 2;
}
float psys_get_dietime_from_cache(PointCache *cache, int index) {
PTCacheMem *pm;
int dietime = 10000000; /* some max value so that we can default to pa->time+lifetime */
for(pm=cache->mem_cache.last; pm; pm=pm->prev) {
if(BKE_ptcache_mem_index_find(pm, index) >= 0)
return (float)pm->frame;
}
return (float)dietime;
}
static void init_particle_interpolation(Object *ob, ParticleSystem *psys, ParticleData *pa, ParticleInterpolationData *pind)
{
if(pind->epoint) {
PTCacheEditPoint *point = pind->epoint;
pind->ekey[0] = point->keys;
pind->ekey[1] = point->totkey > 1 ? point->keys + 1 : NULL;
pind->birthtime = *(point->keys->time);
pind->dietime = *((point->keys + point->totkey - 1)->time);
}
else if(pind->keyed) {
ParticleKey *key = pa->keys;
pind->kkey[0] = key;
pind->kkey[1] = pa->totkey > 1 ? key + 1 : NULL;
pind->birthtime = key->time;
pind->dietime = (key + pa->totkey - 1)->time;
}
else if(pind->cache) {
float start=0.0f, end=0.0f;
get_pointcache_keys_for_time(ob, pind->cache, &pind->pm, -1, 0.0f, NULL, NULL);
pind->birthtime = pa ? pa->time : pind->cache->startframe;
pind->dietime = pa ? pa->dietime : pind->cache->endframe;
if(get_pointcache_times_for_particle(pind->cache, pa - psys->particles, &start, &end)) {
pind->birthtime = MAX2(pind->birthtime, start);
pind->dietime = MIN2(pind->dietime, end);
}
}
else {
HairKey *key = pa->hair;
pind->hkey[0] = key;
pind->hkey[1] = key + 1;
pind->birthtime = key->time;
pind->dietime = (key + pa->totkey - 1)->time;
if(pind->dm) {
pind->mvert[0] = CDDM_get_vert(pind->dm, pa->hair_index);
pind->mvert[1] = pind->mvert[0] + 1;
}
}
}
static void edit_to_particle(ParticleKey *key, PTCacheEditKey *ekey)
{
VECCOPY(key->co, ekey->co);
if(ekey->vel) {
VECCOPY(key->vel, ekey->vel);
}
key->time = *(ekey->time);
}
static void hair_to_particle(ParticleKey *key, HairKey *hkey)
{
VECCOPY(key->co, hkey->co);
key->time = hkey->time;
}
static void mvert_to_particle(ParticleKey *key, MVert *mvert, HairKey *hkey)
{
VECCOPY(key->co, mvert->co);
key->time = hkey->time;
}
static void do_particle_interpolation(ParticleSystem *psys, int p, ParticleData *pa, float t, ParticleInterpolationData *pind, ParticleKey *result)
{
PTCacheEditPoint *point = pind->epoint;
ParticleKey keys[4];
int point_vel = (point && point->keys->vel);
float real_t, dfra, keytime, invdt = 1.f;
/* billboards wont fill in all of these, so start cleared */
memset(keys, 0, sizeof(keys));
/* interpret timing and find keys */
if(point) {
if(result->time < 0.0f)
real_t = -result->time;
else
real_t = *(pind->ekey[0]->time) + t * (*(pind->ekey[0][point->totkey-1].time) - *(pind->ekey[0]->time));
while(*(pind->ekey[1]->time) < real_t)
pind->ekey[1]++;
pind->ekey[0] = pind->ekey[1] - 1;
}
else if(pind->keyed) {
/* we have only one key, so let's use that */
if(pind->kkey[1]==NULL) {
copy_particle_key(result, pind->kkey[0], 1);
return;
}
if(result->time < 0.0f)
real_t = -result->time;
else
real_t = pind->kkey[0]->time + t * (pind->kkey[0][pa->totkey-1].time - pind->kkey[0]->time);
if(psys->part->phystype==PART_PHYS_KEYED && psys->flag & PSYS_KEYED_TIMING) {
ParticleTarget *pt = psys->targets.first;
pt=pt->next;
while(pt && pa->time + pt->time < real_t)
pt= pt->next;
if(pt) {
pt=pt->prev;
if(pa->time + pt->time + pt->duration > real_t)
real_t = pa->time + pt->time;
}
else
real_t = pa->time + ((ParticleTarget*)psys->targets.last)->time;
}
CLAMP(real_t, pa->time, pa->dietime);
while(pind->kkey[1]->time < real_t)
pind->kkey[1]++;
pind->kkey[0] = pind->kkey[1] - 1;
}
else if(pind->cache) {
if(result->time < 0.0f) /* flag for time in frames */
real_t = -result->time;
else
real_t = pa->time + t * (pa->dietime - pa->time);
}
else {
if(result->time < 0.0f)
real_t = -result->time;
else
real_t = pind->hkey[0]->time + t * (pind->hkey[0][pa->totkey-1].time - pind->hkey[0]->time);
while(pind->hkey[1]->time < real_t) {
pind->hkey[1]++;
pind->mvert[1]++;
}
pind->hkey[0] = pind->hkey[1] - 1;
}
/* set actual interpolation keys */
if(point) {
edit_to_particle(keys + 1, pind->ekey[0]);
edit_to_particle(keys + 2, pind->ekey[1]);
}
else if(pind->dm) {
pind->mvert[0] = pind->mvert[1] - 1;
mvert_to_particle(keys + 1, pind->mvert[0], pind->hkey[0]);
mvert_to_particle(keys + 2, pind->mvert[1], pind->hkey[1]);
}
else if(pind->keyed) {
memcpy(keys + 1, pind->kkey[0], sizeof(ParticleKey));
memcpy(keys + 2, pind->kkey[1], sizeof(ParticleKey));
}
else if(pind->cache) {
get_pointcache_keys_for_time(NULL, pind->cache, &pind->pm, p, real_t, keys+1, keys+2);
}
else {
hair_to_particle(keys + 1, pind->hkey[0]);
hair_to_particle(keys + 2, pind->hkey[1]);
}
/* set secondary interpolation keys for hair */
if(!pind->keyed && !pind->cache && !point_vel) {
if(point) {
if(pind->ekey[0] != point->keys)
edit_to_particle(keys, pind->ekey[0] - 1);
else
edit_to_particle(keys, pind->ekey[0]);
}
else if(pind->dm) {
if(pind->hkey[0] != pa->hair)
mvert_to_particle(keys, pind->mvert[0] - 1, pind->hkey[0] - 1);
else
mvert_to_particle(keys, pind->mvert[0], pind->hkey[0]);
}
else {
if(pind->hkey[0] != pa->hair)
hair_to_particle(keys, pind->hkey[0] - 1);
else
hair_to_particle(keys, pind->hkey[0]);
}
if(point) {
if(pind->ekey[1] != point->keys + point->totkey - 1)
edit_to_particle(keys + 3, pind->ekey[1] + 1);
else
edit_to_particle(keys + 3, pind->ekey[1]);
}
else if(pind->dm) {
if(pind->hkey[1] != pa->hair + pa->totkey - 1)
mvert_to_particle(keys + 3, pind->mvert[1] + 1, pind->hkey[1] + 1);
else
mvert_to_particle(keys + 3, pind->mvert[1], pind->hkey[1]);
}
else {
if(pind->hkey[1] != pa->hair + pa->totkey - 1)
hair_to_particle(keys + 3, pind->hkey[1] + 1);
else
hair_to_particle(keys + 3, pind->hkey[1]);
}
}
dfra = keys[2].time - keys[1].time;
keytime = (real_t - keys[1].time) / dfra;
/* convert velocity to timestep size */
if(pind->keyed || pind->cache || point_vel){
invdt = dfra * 0.04f * (psys ? psys->part->timetweak : 1.f);
mul_v3_fl(keys[1].vel, invdt);
mul_v3_fl(keys[2].vel, invdt);
interp_qt_qtqt(result->rot,keys[1].rot,keys[2].rot,keytime);
}
/* now we should have in chronologiacl order k1<=k2<=t<=k3<=k4 with keytime between [0,1]->[k2,k3] (k1 & k4 used for cardinal & bspline interpolation)*/
psys_interpolate_particle((pind->keyed || pind->cache || point_vel) ? -1 /* signal for cubic interpolation */
: (pind->bspline ? KEY_BSPLINE : KEY_CARDINAL)
,keys, keytime, result, 1);
/* the velocity needs to be converted back from cubic interpolation */
if(pind->keyed || pind->cache || point_vel)
mul_v3_fl(result->vel, 1.f/invdt);
}
/************************************************/
/* Particles on a dm */
/************************************************/
/* interpolate a location on a face based on face coordinates */
void psys_interpolate_face(MVert *mvert, MFace *mface, MTFace *tface, float (*orcodata)[3], float *w, float *vec, float *nor, float *utan, float *vtan, float *orco,float *ornor){
float *v1=0, *v2=0, *v3=0, *v4=0;
float e1[3],e2[3],s1,s2,t1,t2;
float *uv1, *uv2, *uv3, *uv4;
float n1[3], n2[3], n3[3], n4[3];
float tuv[4][2];
float *o1, *o2, *o3, *o4;
v1= mvert[mface->v1].co;
v2= mvert[mface->v2].co;
v3= mvert[mface->v3].co;
normal_short_to_float_v3(n1, mvert[mface->v1].no);
normal_short_to_float_v3(n2, mvert[mface->v2].no);
normal_short_to_float_v3(n3, mvert[mface->v3].no);
if(mface->v4) {
v4= mvert[mface->v4].co;
normal_short_to_float_v3(n4, mvert[mface->v4].no);
interp_v3_v3v3v3v3(vec, v1, v2, v3, v4, w);
if(nor){
if(mface->flag & ME_SMOOTH)
interp_v3_v3v3v3v3(nor, n1, n2, n3, n4, w);
else
normal_quad_v3(nor,v1,v2,v3,v4);
}
}
else {
interp_v3_v3v3v3(vec, v1, v2, v3, w);
if(nor){
if(mface->flag & ME_SMOOTH)
interp_v3_v3v3v3(nor, n1, n2, n3, w);
else
normal_tri_v3(nor,v1,v2,v3);
}
}
/* calculate tangent vectors */
if(utan && vtan){
if(tface){
uv1= tface->uv[0];
uv2= tface->uv[1];
uv3= tface->uv[2];
uv4= tface->uv[3];
}
else{
uv1= tuv[0]; uv2= tuv[1]; uv3= tuv[2]; uv4= tuv[3];
map_to_sphere( uv1, uv1+1,v1[0], v1[1], v1[2]);
map_to_sphere( uv2, uv2+1,v2[0], v2[1], v2[2]);
map_to_sphere( uv3, uv3+1,v3[0], v3[1], v3[2]);
if(v4)
map_to_sphere( uv4, uv4+1,v4[0], v4[1], v4[2]);
}
if(v4){
s1= uv3[0] - uv1[0];
s2= uv4[0] - uv1[0];
t1= uv3[1] - uv1[1];
t2= uv4[1] - uv1[1];
sub_v3_v3v3(e1, v3, v1);
sub_v3_v3v3(e2, v4, v1);
}
else{
s1= uv2[0] - uv1[0];
s2= uv3[0] - uv1[0];
t1= uv2[1] - uv1[1];
t2= uv3[1] - uv1[1];
sub_v3_v3v3(e1, v2, v1);
sub_v3_v3v3(e2, v3, v1);
}
vtan[0] = (s1*e2[0] - s2*e1[0]);
vtan[1] = (s1*e2[1] - s2*e1[1]);
vtan[2] = (s1*e2[2] - s2*e1[2]);
utan[0] = (t1*e2[0] - t2*e1[0]);
utan[1] = (t1*e2[1] - t2*e1[1]);
utan[2] = (t1*e2[2] - t2*e1[2]);
}
if(orco) {
if(orcodata) {
o1= orcodata[mface->v1];
o2= orcodata[mface->v2];
o3= orcodata[mface->v3];
if(mface->v4) {
o4= orcodata[mface->v4];
interp_v3_v3v3v3v3(orco, o1, o2, o3, o4, w);
if(ornor)
normal_quad_v3( ornor,o1, o2, o3, o4);
}
else {
interp_v3_v3v3v3(orco, o1, o2, o3, w);
if(ornor)
normal_tri_v3( ornor,o1, o2, o3);
}
}
else {
VECCOPY(orco, vec);
if(ornor && nor)
VECCOPY(ornor, nor);
}
}
}
void psys_interpolate_uvs(MTFace *tface, int quad, float *w, float *uvco)
{
float v10= tface->uv[0][0];
float v11= tface->uv[0][1];
float v20= tface->uv[1][0];
float v21= tface->uv[1][1];
float v30= tface->uv[2][0];
float v31= tface->uv[2][1];
float v40,v41;
if(quad) {
v40= tface->uv[3][0];
v41= tface->uv[3][1];
uvco[0]= w[0]*v10 + w[1]*v20 + w[2]*v30 + w[3]*v40;
uvco[1]= w[0]*v11 + w[1]*v21 + w[2]*v31 + w[3]*v41;
}
else {
uvco[0]= w[0]*v10 + w[1]*v20 + w[2]*v30;
uvco[1]= w[0]*v11 + w[1]*v21 + w[2]*v31;
}
}
void psys_interpolate_mcol(MCol *mcol, int quad, float *w, MCol *mc)
{
char *cp, *cp1, *cp2, *cp3, *cp4;
cp= (char *)mc;
cp1= (char *)&mcol[0];
cp2= (char *)&mcol[1];
cp3= (char *)&mcol[2];
if(quad) {
cp4= (char *)&mcol[3];
cp[0]= (int)(w[0]*cp1[0] + w[1]*cp2[0] + w[2]*cp3[0] + w[3]*cp4[0]);
cp[1]= (int)(w[0]*cp1[1] + w[1]*cp2[1] + w[2]*cp3[1] + w[3]*cp4[1]);
cp[2]= (int)(w[0]*cp1[2] + w[1]*cp2[2] + w[2]*cp3[2] + w[3]*cp4[2]);
cp[3]= (int)(w[0]*cp1[3] + w[1]*cp2[3] + w[2]*cp3[3] + w[3]*cp4[3]);
}
else {
cp[0]= (int)(w[0]*cp1[0] + w[1]*cp2[0] + w[2]*cp3[0]);
cp[1]= (int)(w[0]*cp1[1] + w[1]*cp2[1] + w[2]*cp3[1]);
cp[2]= (int)(w[0]*cp1[2] + w[1]*cp2[2] + w[2]*cp3[2]);
cp[3]= (int)(w[0]*cp1[3] + w[1]*cp2[3] + w[2]*cp3[3]);
}
}
static float psys_interpolate_value_from_verts(DerivedMesh *dm, short from, int index, float *fw, float *values)
{
if(values==0 || index==-1)
return 0.0;
switch(from){
case PART_FROM_VERT:
return values[index];
case PART_FROM_FACE:
case PART_FROM_VOLUME:
{
MFace *mf=dm->getFaceData(dm,index,CD_MFACE);
return interpolate_particle_value(values[mf->v1],values[mf->v2],values[mf->v3],values[mf->v4],fw,mf->v4);
}
}
return 0.0;
}
/* conversion of pa->fw to origspace layer coordinates */
static void psys_w_to_origspace(float *w, float *uv)
{
uv[0]= w[1] + w[2];
uv[1]= w[2] + w[3];
}
/* conversion of pa->fw to weights in face from origspace */
static void psys_origspace_to_w(OrigSpaceFace *osface, int quad, float *w, float *neww)
{
float v[4][3], co[3];
v[0][0]= osface->uv[0][0]; v[0][1]= osface->uv[0][1]; v[0][2]= 0.0f;
v[1][0]= osface->uv[1][0]; v[1][1]= osface->uv[1][1]; v[1][2]= 0.0f;
v[2][0]= osface->uv[2][0]; v[2][1]= osface->uv[2][1]; v[2][2]= 0.0f;
psys_w_to_origspace(w, co);
co[2]= 0.0f;
if(quad) {
v[3][0]= osface->uv[3][0]; v[3][1]= osface->uv[3][1]; v[3][2]= 0.0f;
interp_weights_poly_v3( neww,v, 4, co);
}
else {
interp_weights_poly_v3( neww,v, 3, co);
neww[3]= 0.0f;
}
}
/* find the derived mesh face for a particle, set the mf passed. this is slow
* and can be optimized but only for many lookups. returns the face index. */
int psys_particle_dm_face_lookup(Object *ob, DerivedMesh *dm, int index, float *fw, struct LinkNode *node)
{
Mesh *me= (Mesh*)ob->data;
MFace *mface;
OrigSpaceFace *osface;
int *origindex;
int quad, findex, totface;
float uv[2], (*faceuv)[2];
mface = dm->getFaceDataArray(dm, CD_MFACE);
origindex = dm->getFaceDataArray(dm, CD_ORIGINDEX);
osface = dm->getFaceDataArray(dm, CD_ORIGSPACE);
totface = dm->getNumFaces(dm);
if(osface==NULL || origindex==NULL) {
/* Assume we dont need osface data */
if (index <totface) {
//printf("\tNO CD_ORIGSPACE, assuming not needed\n");
return index;
} else {
printf("\tNO CD_ORIGSPACE, error out of range\n");
return DMCACHE_NOTFOUND;
}
}
else if(index >= me->totface)
return DMCACHE_NOTFOUND; /* index not in the original mesh */
psys_w_to_origspace(fw, uv);
if(node) { /* we have a linked list of faces that we use, faster! */
for(;node; node=node->next) {
findex= GET_INT_FROM_POINTER(node->link);
faceuv= osface[findex].uv;
quad= mface[findex].v4;
/* check that this intersects - Its possible this misses :/ -
* could also check its not between */
if(quad) {
if(isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3]))
return findex;
}
else if(isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2]))
return findex;
}
}
else { /* if we have no node, try every face */
for(findex=0; findex<totface; findex++) {
if(origindex[findex] == index) {
faceuv= osface[findex].uv;
quad= mface[findex].v4;
/* check that this intersects - Its possible this misses :/ -
* could also check its not between */
if(quad) {
if(isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3]))
return findex;
}
else if(isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2]))
return findex;
}
}
}
return DMCACHE_NOTFOUND;
}
static int psys_map_index_on_dm(DerivedMesh *dm, int from, int index, int index_dmcache, float *fw, float UNUSED(foffset), int *mapindex, float *mapfw)
{
if(index < 0)
return 0;
if (dm->deformedOnly || index_dmcache == DMCACHE_ISCHILD) {
/* for meshes that are either only defined or for child particles, the
* index and fw do not require any mapping, so we can directly use it */
if(from == PART_FROM_VERT) {
if(index >= dm->getNumVerts(dm))
return 0;
*mapindex = index;
}
else { /* FROM_FACE/FROM_VOLUME */
if(index >= dm->getNumFaces(dm))
return 0;
*mapindex = index;
QUATCOPY(mapfw, fw);
}
} else {
/* for other meshes that have been modified, we try to map the particle
* to their new location, which means a different index, and for faces
* also a new face interpolation weights */
if(from == PART_FROM_VERT) {
if (index_dmcache == DMCACHE_NOTFOUND || index_dmcache > dm->getNumVerts(dm))
return 0;
*mapindex = index_dmcache;
}
else { /* FROM_FACE/FROM_VOLUME */
/* find a face on the derived mesh that uses this face */
MFace *mface;
OrigSpaceFace *osface;
int i;
i = index_dmcache;
if(i== DMCACHE_NOTFOUND || i >= dm->getNumFaces(dm))
return 0;
*mapindex = i;
/* modify the original weights to become
* weights for the derived mesh face */
osface= dm->getFaceDataArray(dm, CD_ORIGSPACE);
mface= dm->getFaceData(dm, i, CD_MFACE);
if(osface == NULL)
mapfw[0]= mapfw[1]= mapfw[2]= mapfw[3]= 0.0f;
else
psys_origspace_to_w(&osface[i], mface->v4, fw, mapfw);
}
}
return 1;
}
/* interprets particle data to get a point on a mesh in object space */
void psys_particle_on_dm(DerivedMesh *dm, int from, int index, int index_dmcache, float *fw, float foffset, float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor)
{
float tmpnor[3], mapfw[4];
float (*orcodata)[3];
int mapindex;
if(!psys_map_index_on_dm(dm, from, index, index_dmcache, fw, foffset, &mapindex, mapfw)) {
if(vec) { vec[0]=vec[1]=vec[2]=0.0; }
if(nor) { nor[0]=nor[1]=0.0; nor[2]=1.0; }
if(orco) { orco[0]=orco[1]=orco[2]=0.0; }
if(ornor) { ornor[0]=ornor[1]=0.0; ornor[2]=1.0; }
if(utan) { utan[0]=utan[1]=utan[2]=0.0; }
if(vtan) { vtan[0]=vtan[1]=vtan[2]=0.0; }
return;
}
orcodata= dm->getVertDataArray(dm, CD_ORCO);
if(from == PART_FROM_VERT) {
dm->getVertCo(dm,mapindex,vec);
if(nor) {
dm->getVertNo(dm,mapindex,nor);
normalize_v3(nor);
}
if(orco)
VECCOPY(orco, orcodata[mapindex])
if(ornor) {
dm->getVertNo(dm,mapindex,nor);
normalize_v3(nor);
}
if(utan && vtan) {
utan[0]= utan[1]= utan[2]= 0.0f;
vtan[0]= vtan[1]= vtan[2]= 0.0f;
}
}
else { /* PART_FROM_FACE / PART_FROM_VOLUME */
MFace *mface;
MTFace *mtface;
MVert *mvert;
mface=dm->getFaceData(dm,mapindex,CD_MFACE);
mvert=dm->getVertDataArray(dm,CD_MVERT);
mtface=CustomData_get_layer(&dm->faceData,CD_MTFACE);
if(mtface)
mtface += mapindex;
if(from==PART_FROM_VOLUME) {
psys_interpolate_face(mvert,mface,mtface,orcodata,mapfw,vec,tmpnor,utan,vtan,orco,ornor);
if(nor)
VECCOPY(nor,tmpnor);
normalize_v3(tmpnor);
mul_v3_fl(tmpnor,-foffset);
VECADD(vec,vec,tmpnor);
}
else
psys_interpolate_face(mvert,mface,mtface,orcodata,mapfw,vec,nor,utan,vtan,orco,ornor);
}
}
float psys_particle_value_from_verts(DerivedMesh *dm, short from, ParticleData *pa, float *values)
{
float mapfw[4];
int mapindex;
if(!psys_map_index_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, &mapindex, mapfw))
return 0.0f;
return psys_interpolate_value_from_verts(dm, from, mapindex, mapfw, values);
}
ParticleSystemModifierData *psys_get_modifier(Object *ob, ParticleSystem *psys)
{
ModifierData *md;
ParticleSystemModifierData *psmd;
for(md=ob->modifiers.first; md; md=md->next){
if(md->type==eModifierType_ParticleSystem){
psmd= (ParticleSystemModifierData*) md;
if(psmd->psys==psys){
return psmd;
}
}
}
return NULL;
}
/************************************************/
/* Particles on a shape */
/************************************************/
/* ready for future use */
static void psys_particle_on_shape(int UNUSED(distr), int UNUSED(index), float *UNUSED(fuv), float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor)
{
/* TODO */
float zerovec[3]={0.0f,0.0f,0.0f};
if(vec){
VECCOPY(vec,zerovec);
}
if(nor){
VECCOPY(nor,zerovec);
}
if(utan){
VECCOPY(utan,zerovec);
}
if(vtan){
VECCOPY(vtan,zerovec);
}
if(orco){
VECCOPY(orco,zerovec);
}
if(ornor){
VECCOPY(ornor,zerovec);
}
}
/************************************************/
/* Particles on emitter */
/************************************************/
void psys_particle_on_emitter(ParticleSystemModifierData *psmd, int from, int index, int index_dmcache, float *fuv, float foffset, float *vec, float *nor, float *utan, float *vtan, float *orco, float *ornor){
if(psmd){
if(psmd->psys->part->distr==PART_DISTR_GRID && psmd->psys->part->from != PART_FROM_VERT){
if(vec)
copy_v3_v3(vec,fuv);
if(orco)
copy_v3_v3(orco, fuv);
return;
}
/* we cant use the num_dmcache */
psys_particle_on_dm(psmd->dm,from,index,index_dmcache,fuv,foffset,vec,nor,utan,vtan,orco,ornor);
}
else
psys_particle_on_shape(from,index,fuv,vec,nor,utan,vtan,orco,ornor);
}
/************************************************/
/* Path Cache */
/************************************************/
static float vert_weight(MDeformVert *dvert, int group)
{
MDeformWeight *dw;
int i;
if(dvert) {
dw= dvert->dw;
for(i= dvert->totweight; i>0; i--, dw++) {
if(dw->def_nr == group) return dw->weight;
if(i==1) break; /*otherwise dw will point to somewhere it shouldn't*/
}
}
return 0.0;
}
static void do_kink(ParticleKey *state, ParticleKey *par, float *par_rot, float time, float freq, float shape, float amplitude, float flat, short type, short axis, float obmat[][4], int smooth_start)
{
float kink[3]={1.f,0.f,0.f}, par_vec[3], q1[4]={1.f,0.f,0.f,0.f};
float t, dt=1.f, result[3];
if(par == NULL || type == PART_KINK_NO)
return;
CLAMP(time, 0.f, 1.f);
if(shape!=0.0f && type!=PART_KINK_BRAID) {
if(shape<0.0f)
time= (float)pow(time, 1.f+shape);
else
time= (float)pow(time, 1.f/(1.f-shape));
}
t = time * freq *(float)M_PI;
if(smooth_start) {
dt = fabs(t);
/* smooth the beginning of kink */
CLAMP(dt, 0.f, (float)M_PI);
dt = sin(dt/2.f);
}
if(type != PART_KINK_RADIAL) {
float temp[3];
kink[axis]=1.f;
if(obmat)
mul_mat3_m4_v3(obmat, kink);
if(par_rot)
mul_qt_v3(par_rot, kink);
/* make sure kink is normal to strand */
project_v3_v3v3(temp, kink, par->vel);
sub_v3_v3(kink, temp);
normalize_v3(kink);
}
copy_v3_v3(result, state->co);
sub_v3_v3v3(par_vec, par->co, state->co);
switch(type) {
case PART_KINK_CURL:
{
mul_v3_fl(par_vec, -1.f);
if(flat > 0.f) {
float proj[3];
project_v3_v3v3(proj, par_vec, par->vel);
madd_v3_v3fl(par_vec, proj, -flat);
project_v3_v3v3(proj, par_vec, kink);
madd_v3_v3fl(par_vec, proj, -flat);
}
axis_angle_to_quat(q1, kink, (float)M_PI/2.f);
mul_qt_v3(q1, par_vec);
madd_v3_v3fl(par_vec, kink, amplitude);
/* rotate kink vector around strand tangent */
if(t!=0.f) {
axis_angle_to_quat(q1, par->vel, t);
mul_qt_v3(q1, par_vec);
}
add_v3_v3v3(result, par->co, par_vec);
break;
}
case PART_KINK_RADIAL:
{
if(flat > 0.f) {
float proj[3];
/* flatten along strand */
project_v3_v3v3(proj, par_vec, par->vel);
madd_v3_v3fl(result, proj, flat);
}
madd_v3_v3fl(result, par_vec, -amplitude*(float)sin(t));
break;
}
case PART_KINK_WAVE:
{
madd_v3_v3fl(result, kink, amplitude*(float)sin(t));
if(flat > 0.f) {
float proj[3];
/* flatten along wave */
project_v3_v3v3(proj, par_vec, kink);
madd_v3_v3fl(result, proj, flat);
/* flatten along strand */
project_v3_v3v3(proj, par_vec, par->vel);
madd_v3_v3fl(result, proj, flat);
}
break;
}
case PART_KINK_BRAID:
{
float y_vec[3]={0.f,1.f,0.f};
float z_vec[3]={0.f,0.f,1.f};
float vec_one[3], state_co[3];
float inp_y, inp_z, length;
if(par_rot) {
mul_qt_v3(par_rot, y_vec);
mul_qt_v3(par_rot, z_vec);
}
mul_v3_fl(par_vec, -1.f);
normalize_v3_v3(vec_one, par_vec);
inp_y=dot_v3v3(y_vec, vec_one);
inp_z=dot_v3v3(z_vec, vec_one);
if(inp_y > 0.5f){
copy_v3_v3(state_co, y_vec);
mul_v3_fl(y_vec, amplitude*(float)cos(t));
mul_v3_fl(z_vec, amplitude/2.f*(float)sin(2.f*t));
}
else if(inp_z > 0.0f){
mul_v3_v3fl(state_co, z_vec, (float)sin((float)M_PI/3.f));
VECADDFAC(state_co,state_co,y_vec,-0.5f);
mul_v3_fl(y_vec, -amplitude * (float)cos(t + (float)M_PI/3.f));
mul_v3_fl(z_vec, amplitude/2.f * (float)cos(2.f*t + (float)M_PI/6.f));
}
else{
mul_v3_v3fl(state_co, z_vec, -(float)sin((float)M_PI/3.f));
madd_v3_v3fl(state_co, y_vec, -0.5f);
mul_v3_fl(y_vec, amplitude * (float)-sin(t + (float)M_PI/6.f));
mul_v3_fl(z_vec, amplitude/2.f * (float)-sin(2.f*t + (float)M_PI/3.f));
}
mul_v3_fl(state_co, amplitude);
add_v3_v3(state_co, par->co);
sub_v3_v3v3(par_vec, state->co, state_co);
length = normalize_v3(par_vec);
mul_v3_fl(par_vec, MIN2(length, amplitude/2.f));
add_v3_v3v3(state_co, par->co, y_vec);
add_v3_v3(state_co, z_vec);
add_v3_v3(state_co, par_vec);
shape = 2.f*(float)M_PI * (1.f+shape);
if(t<shape){
shape = t/shape;
shape = (float)sqrt((double)shape);
interp_v3_v3v3(result, result, state_co, shape);
}
else{
copy_v3_v3(result, state_co);
}
break;
}
}
/* blend the start of the kink */
if(dt < 1.f)
interp_v3_v3v3(state->co, state->co, result, dt);
else
copy_v3_v3(state->co, result);
}
static float do_clump(ParticleKey *state, ParticleKey *par, float time, float clumpfac, float clumppow, float pa_clump)
{
float clump = 0.f;
if(par && clumpfac!=0.0f){
float cpow;
if(clumppow < 0.0f)
cpow=1.0f+clumppow;
else
cpow=1.0f+9.0f*clumppow;
if(clumpfac < 0.0f) /* clump roots instead of tips */
clump = -clumpfac*pa_clump*(float)pow(1.0-(double)time,(double)cpow);
else
clump = clumpfac*pa_clump*(float)pow((double)time,(double)cpow);
interp_v3_v3v3(state->co,state->co,par->co,clump);
}
return clump;
}
void precalc_guides(ParticleSimulationData *sim, ListBase *effectors)
{
EffectedPoint point;
ParticleKey state;
EffectorData efd;
EffectorCache *eff;
ParticleSystem *psys = sim->psys;
EffectorWeights *weights = sim->psys->part->effector_weights;
GuideEffectorData *data;
PARTICLE_P;
if(!effectors)
return;
LOOP_PARTICLES {
psys_particle_on_emitter(sim->psmd,sim->psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,state.co,0,0,0,0,0);
mul_m4_v3(sim->ob->obmat, state.co);
mul_mat3_m4_v3(sim->ob->obmat, state.vel);
pd_point_from_particle(sim, pa, &state, &point);
for(eff = effectors->first; eff; eff=eff->next) {
if(eff->pd->forcefield != PFIELD_GUIDE)
continue;
if(!eff->guide_data)
eff->guide_data = MEM_callocN(sizeof(GuideEffectorData)*psys->totpart, "GuideEffectorData");
data = eff->guide_data + p;
VECSUB(efd.vec_to_point, state.co, eff->guide_loc);
copy_v3_v3(efd.nor, eff->guide_dir);
efd.distance = len_v3(efd.vec_to_point);
copy_v3_v3(data->vec_to_point, efd.vec_to_point);
data->strength = effector_falloff(eff, &efd, &point, weights);
}
}
}
int do_guides(ListBase *effectors, ParticleKey *state, int index, float time)
{
EffectorCache *eff;
PartDeflect *pd;
Curve *cu;
ParticleKey key, par;
GuideEffectorData *data;
float effect[3] = {0.0f, 0.0f, 0.0f}, veffect[3] = {0.0f, 0.0f, 0.0f};
float guidevec[4], guidedir[3], rot2[4], temp[3];
float guidetime, radius, weight, angle, totstrength = 0.0f;
float vec_to_point[3];
if(effectors) for(eff = effectors->first; eff; eff=eff->next) {
pd = eff->pd;
if(pd->forcefield != PFIELD_GUIDE)
continue;
data = eff->guide_data + index;
if(data->strength <= 0.0f)
continue;
guidetime = time / (1.0f - pd->free_end);
if(guidetime>1.0f)
continue;
cu = (Curve*)eff->ob->data;
if(pd->flag & PFIELD_GUIDE_PATH_ADD) {
if(where_on_path(eff->ob, data->strength * guidetime, guidevec, guidedir, NULL, &radius, &weight)==0)
return 0;
}
else {
if(where_on_path(eff->ob, guidetime, guidevec, guidedir, NULL, &radius, &weight)==0)
return 0;
}
mul_m4_v3(eff->ob->obmat, guidevec);
mul_mat3_m4_v3(eff->ob->obmat, guidedir);
normalize_v3(guidedir);
VECCOPY(vec_to_point, data->vec_to_point);
if(guidetime != 0.0f) {
/* curve direction */
cross_v3_v3v3(temp, eff->guide_dir, guidedir);
angle = dot_v3v3(eff->guide_dir, guidedir)/(len_v3(eff->guide_dir));
angle = saacos(angle);
axis_angle_to_quat( rot2,temp, angle);
mul_qt_v3(rot2, vec_to_point);
/* curve tilt */
axis_angle_to_quat( rot2,guidedir, guidevec[3] - eff->guide_loc[3]);
mul_qt_v3(rot2, vec_to_point);
}
/* curve taper */
if(cu->taperobj)
mul_v3_fl(vec_to_point, calc_taper(eff->scene, cu->taperobj, (int)(data->strength*guidetime*100.0f), 100));
else{ /* curve size*/
if(cu->flag & CU_PATH_RADIUS) {
mul_v3_fl(vec_to_point, radius);
}
}
par.co[0] = par.co[1] = par.co[2] = 0.0f;
VECCOPY(key.co, vec_to_point);
do_kink(&key, &par, 0, guidetime, pd->kink_freq, pd->kink_shape, pd->kink_amp, 0.f, pd->kink, pd->kink_axis, 0, 0);
do_clump(&key, &par, guidetime, pd->clump_fac, pd->clump_pow, 1.0f);
VECCOPY(vec_to_point, key.co);
VECADD(vec_to_point, vec_to_point, guidevec);
//VECSUB(pa_loc,pa_loc,pa_zero);
VECADDFAC(effect, effect, vec_to_point, data->strength);
VECADDFAC(veffect, veffect, guidedir, data->strength);
totstrength += data->strength;
if(pd->flag & PFIELD_GUIDE_PATH_WEIGHT)
totstrength *= weight;
}
if(totstrength != 0.0f){
if(totstrength > 1.0f)
mul_v3_fl(effect, 1.0f / totstrength);
CLAMP(totstrength, 0.0f, 1.0f);
//VECADD(effect,effect,pa_zero);
interp_v3_v3v3(state->co, state->co, effect, totstrength);
normalize_v3(veffect);
mul_v3_fl(veffect, len_v3(state->vel));
VECCOPY(state->vel, veffect);
return 1;
}
return 0;
}
static void do_rough(float *loc, float mat[4][4], float t, float fac, float size, float thres, ParticleKey *state)
{
float rough[3];
float rco[3];
if(thres != 0.0f)
if((float)fabs((float)(-1.5f+loc[0]+loc[1]+loc[2]))<1.5f*thres) return;
VECCOPY(rco,loc);
mul_v3_fl(rco,t);
rough[0]=-1.0f+2.0f*BLI_gTurbulence(size, rco[0], rco[1], rco[2], 2,0,2);
rough[1]=-1.0f+2.0f*BLI_gTurbulence(size, rco[1], rco[2], rco[0], 2,0,2);
rough[2]=-1.0f+2.0f*BLI_gTurbulence(size, rco[2], rco[0], rco[1], 2,0,2);
VECADDFAC(state->co,state->co,mat[0],fac*rough[0]);
VECADDFAC(state->co,state->co,mat[1],fac*rough[1]);
VECADDFAC(state->co,state->co,mat[2],fac*rough[2]);
}
static void do_rough_end(float *loc, float mat[4][4], float t, float fac, float shape, ParticleKey *state)
{
float rough[2];
float roughfac;
roughfac=fac*(float)pow((double)t,shape);
copy_v2_v2(rough,loc);
rough[0]=-1.0f+2.0f*rough[0];
rough[1]=-1.0f+2.0f*rough[1];
mul_v2_fl(rough,roughfac);
VECADDFAC(state->co,state->co,mat[0],rough[0]);
VECADDFAC(state->co,state->co,mat[1],rough[1]);
}
static void do_path_effectors(ParticleSimulationData *sim, int i, ParticleCacheKey *ca, int k, int steps, float *UNUSED(rootco), float effector, float UNUSED(dfra), float UNUSED(cfra), float *length, float *vec)
{
float force[3] = {0.0f,0.0f,0.0f};
ParticleKey eff_key;
EffectedPoint epoint;
/* Don't apply effectors for dynamic hair, otherwise the effectors don't get applied twice. */
if(sim->psys->flag & PSYS_HAIR_DYNAMICS)
return;
VECCOPY(eff_key.co,(ca-1)->co);
VECCOPY(eff_key.vel,(ca-1)->vel);
QUATCOPY(eff_key.rot,(ca-1)->rot);
pd_point_from_particle(sim, sim->psys->particles+i, &eff_key, &epoint);
pdDoEffectors(sim->psys->effectors, sim->colliders, sim->psys->part->effector_weights, &epoint, force, NULL);
mul_v3_fl(force, effector*powf((float)k / (float)steps, 100.0f * sim->psys->part->eff_hair) / (float)steps);
add_v3_v3(force, vec);
normalize_v3(force);
if(k < steps)
sub_v3_v3v3(vec, (ca+1)->co, ca->co);
madd_v3_v3v3fl(ca->co, (ca-1)->co, force, *length);
if(k < steps)
*length = len_v3(vec);
}
static int check_path_length(int k, ParticleCacheKey *keys, ParticleCacheKey *state, float max_length, float *cur_length, float length, float *dvec)
{
if(*cur_length + length > max_length){
mul_v3_fl(dvec, (max_length - *cur_length) / length);
VECADD(state->co, (state - 1)->co, dvec);
keys->steps = k;
/* something over the maximum step value */
return k=100000;
}
else {
*cur_length+=length;
return k;
}
}
static void offset_child(ChildParticle *cpa, ParticleKey *par, float *par_rot, ParticleKey *child, float flat, float radius)
{
copy_v3_v3(child->co, cpa->fuv);
mul_v3_fl(child->co, radius);
child->co[0]*=flat;
copy_v3_v3(child->vel, par->vel);
if(par_rot) {
mul_qt_v3(par_rot, child->co);
copy_qt_qt(child->rot, par_rot);
}
else
unit_qt(child->rot);
add_v3_v3(child->co, par->co);
}
float *psys_cache_vgroup(DerivedMesh *dm, ParticleSystem *psys, int vgroup)
{
float *vg=0;
if(vgroup < 0) {
/* hair dynamics pinning vgroup */
}
else if(psys->vgroup[vgroup]){
MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
if(dvert){
int totvert=dm->getNumVerts(dm), i;
vg=MEM_callocN(sizeof(float)*totvert, "vg_cache");
if(psys->vg_neg&(1<<vgroup)){
for(i=0; i<totvert; i++)
vg[i]=1.0f-vert_weight(dvert+i,psys->vgroup[vgroup]-1);
}
else{
for(i=0; i<totvert; i++)
vg[i]=vert_weight(dvert+i,psys->vgroup[vgroup]-1);
}
}
}
return vg;
}
void psys_find_parents(ParticleSimulationData *sim)
{
ParticleSettings *part=sim->psys->part;
KDTree *tree;
ChildParticle *cpa;
int p, totparent,totchild=sim->psys->totchild;
float co[3], orco[3];
int from=PART_FROM_FACE;
totparent=(int)(totchild*part->parents*0.3f);
if(G.rendering && part->child_nbr && part->ren_child_nbr)
totparent*=(float)part->child_nbr/(float)part->ren_child_nbr;
tree=BLI_kdtree_new(totparent);
for(p=0,cpa=sim->psys->child; p<totparent; p++,cpa++){
psys_particle_on_emitter(sim->psmd,from,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co,0,0,0,orco,0);
BLI_kdtree_insert(tree, p, orco, NULL);
}
BLI_kdtree_balance(tree);
for(; p<totchild; p++,cpa++){
psys_particle_on_emitter(sim->psmd,from,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co,0,0,0,orco,0);
cpa->parent=BLI_kdtree_find_nearest(tree, orco, NULL, NULL);
}
BLI_kdtree_free(tree);
}
static void get_strand_normal(Material *ma, float *surfnor, float surfdist, float *nor)
{
float cross[3], nstrand[3], vnor[3], blend;
if(!((ma->mode & MA_STR_SURFDIFF) || (ma->strand_surfnor > 0.0f)))
return;
if(ma->mode & MA_STR_SURFDIFF) {
cross_v3_v3v3(cross, surfnor, nor);
cross_v3_v3v3(nstrand, nor, cross);
blend= INPR(nstrand, surfnor);
CLAMP(blend, 0.0f, 1.0f);
interp_v3_v3v3(vnor, nstrand, surfnor, blend);
normalize_v3(vnor);
}
else
VECCOPY(vnor, nor)
if(ma->strand_surfnor > 0.0f) {
if(ma->strand_surfnor > surfdist) {
blend= (ma->strand_surfnor - surfdist)/ma->strand_surfnor;
interp_v3_v3v3(vnor, vnor, surfnor, blend);
normalize_v3(vnor);
}
}
VECCOPY(nor, vnor);
}
static int psys_threads_init_path(ParticleThread *threads, Scene *scene, float cfra, int editupdate)
{
ParticleThreadContext *ctx= threads[0].ctx;
/* Object *ob= ctx->sim.ob; */
ParticleSystem *psys= ctx->sim.psys;
ParticleSettings *part = psys->part;
/* ParticleEditSettings *pset = &scene->toolsettings->particle; */
int totparent=0, between=0;
int steps = (int)pow(2.0, (double)part->draw_step);
int totchild = psys->totchild;
int i, seed, totthread= threads[0].tot;
/*---start figuring out what is actually wanted---*/
if(psys_in_edit_mode(scene, psys)) {
ParticleEditSettings *pset = &scene->toolsettings->particle;
if(psys->renderdata==0 && (psys->edit==NULL || pset->flag & PE_DRAW_PART)==0)
totchild=0;
steps = (int)pow(2.0, (double)pset->draw_step);
}
if(totchild && part->childtype==PART_CHILD_FACES){
totparent=(int)(totchild*part->parents*0.3f);
if(G.rendering && part->child_nbr && part->ren_child_nbr)
totparent*=(float)part->child_nbr/(float)part->ren_child_nbr;
/* part->parents could still be 0 so we can't test with totparent */
between=1;
}
if(psys->renderdata)
steps=(int)pow(2.0,(double)part->ren_step);
else{
totchild=(int)((float)totchild*(float)part->disp/100.0f);
totparent=MIN2(totparent,totchild);
}
if(totchild==0) return 0;
/* init random number generator */
seed= 31415926 + ctx->sim.psys->seed;
if(ctx->editupdate || totchild < 10000)
totthread= 1;
for(i=0; i<totthread; i++) {
threads[i].rng_path= rng_new(seed);
threads[i].tot= totthread;
}
/* fill context values */
ctx->between= between;
ctx->steps= steps;
ctx->totchild= totchild;
ctx->totparent= totparent;
ctx->parent_pass= 0;
ctx->cfra= cfra;
ctx->editupdate= editupdate;
psys->lattice = psys_get_lattice(&ctx->sim);
/* cache all relevant vertex groups if they exist */
ctx->vg_length = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_LENGTH);
ctx->vg_clump = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_CLUMP);
ctx->vg_kink = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_KINK);
ctx->vg_rough1 = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGH1);
ctx->vg_rough2 = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGH2);
ctx->vg_roughe = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_ROUGHE);
if(psys->part->flag & PART_CHILD_EFFECT)
ctx->vg_effector = psys_cache_vgroup(ctx->dm,psys,PSYS_VG_EFFECTOR);
/* set correct ipo timing */
#if 0 // XXX old animation system
if(part->flag&PART_ABS_TIME && part->ipo){
calc_ipo(part->ipo, cfra);
execute_ipo((ID *)part, part->ipo);
}
#endif // XXX old animation system
return 1;
}
/* note: this function must be thread safe, except for branching! */
static void psys_thread_create_path(ParticleThread *thread, struct ChildParticle *cpa, ParticleCacheKey *child_keys, int i)
{
ParticleThreadContext *ctx= thread->ctx;
Object *ob= ctx->sim.ob;
ParticleSystem *psys = ctx->sim.psys;
ParticleSettings *part = psys->part;
ParticleCacheKey **cache= psys->childcache;
ParticleCacheKey **pcache= psys_in_edit_mode(ctx->sim.scene, psys) ? psys->edit->pathcache : psys->pathcache;
ParticleCacheKey *child, *par = NULL, *key[4];
ParticleTexture ptex;
float *cpa_fuv=0, *par_rot=0, rot[4];
float orco[3], ornor[3], hairmat[4][4], t, dvec[3], off1[4][3], off2[4][3];
float length, max_length = 1.0f, cur_length = 0.0f;
float eff_length, eff_vec[3], weight[4];
int k, cpa_num;
short cpa_from;
if(!pcache)
return;
if(ctx->between){
ParticleData *pa = psys->particles + cpa->pa[0];
int w, needupdate;
float foffset, wsum=0.f;
float co[3];
float p_min = part->parting_min;
float p_max = part->parting_max;
/* Virtual parents don't work nicely with parting. */
float p_fac = part->parents > 0.f ? 0.f : part->parting_fac;
if(ctx->editupdate) {
needupdate= 0;
w= 0;
while(w<4 && cpa->pa[w]>=0) {
if(psys->edit->points[cpa->pa[w]].flag & PEP_EDIT_RECALC) {
needupdate= 1;
break;
}
w++;
}
if(!needupdate)
return;
else
memset(child_keys, 0, sizeof(*child_keys)*(ctx->steps+1));
}
/* get parent paths */
for(w=0; w<4; w++) {
if(cpa->pa[w] >= 0) {
key[w] = pcache[cpa->pa[w]];
weight[w] = cpa->w[w];
}
else {
key[w] = pcache[0];
weight[w] = 0.f;
}
}
/* modify weights to create parting */
if(p_fac > 0.f) {
for(w=0; w<4; w++) {
if(w && weight[w] > 0.f) {
float d;
if(part->flag & PART_CHILD_LONG_HAIR) {
/* For long hair use tip distance/root distance as parting factor instead of root to tip angle. */
float d1 = len_v3v3(key[0]->co, key[w]->co);
float d2 = len_v3v3((key[0]+key[0]->steps-1)->co, (key[w]+key[w]->steps-1)->co);
d = d1 > 0.f ? d2/d1 - 1.f : 10000.f;
}
else {
float v1[3], v2[3];
sub_v3_v3v3(v1, (key[0]+key[0]->steps-1)->co, key[0]->co);
sub_v3_v3v3(v2, (key[w]+key[w]->steps-1)->co, key[w]->co);
normalize_v3(v1);
normalize_v3(v2);
d = RAD2DEGF(saacos(dot_v3v3(v1, v2)));
}
if(p_max > p_min)
d = (d - p_min)/(p_max - p_min);
else
d = (d - p_min) <= 0.f ? 0.f : 1.f;
CLAMP(d, 0.f, 1.f);
if(d > 0.f)
weight[w] *= (1.f - d);
}
wsum += weight[w];
}
for(w=0; w<4; w++)
weight[w] /= wsum;
interp_v4_v4v4(weight, cpa->w, weight, p_fac);
}
/* get the original coordinates (orco) for texture usage */
cpa_num = cpa->num;
foffset = cpa->foffset;
cpa_fuv = cpa->fuv;
cpa_from = PART_FROM_FACE;
psys_particle_on_emitter(ctx->sim.psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa->fuv,foffset,co,ornor,0,0,orco,0);
mul_m4_v3(ob->obmat, co);
for(w=0; w<4; w++)
sub_v3_v3v3(off1[w], co, key[w]->co);
psys_mat_hair_to_global(ob, ctx->sim.psmd->dm, psys->part->from, pa, hairmat);
}
else{
ParticleData *pa = psys->particles + cpa->parent;
float co[3];
if(ctx->editupdate) {
if(!(psys->edit->points[cpa->parent].flag & PEP_EDIT_RECALC))
return;
memset(child_keys, 0, sizeof(*child_keys)*(ctx->steps+1));
}
/* get the parent path */
key[0] = pcache[cpa->parent];
/* get the original coordinates (orco) for texture usage */
cpa_from = part->from;
cpa_num = pa->num;
cpa_fuv = pa->fuv;
psys_particle_on_emitter(ctx->sim.psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa_fuv,pa->foffset,co,ornor,0,0,orco,0);
psys_mat_hair_to_global(ob, ctx->sim.psmd->dm, psys->part->from, pa, hairmat);
}
child_keys->steps = ctx->steps;
/* get different child parameters from textures & vgroups */
get_child_modifier_parameters(part, ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex);
if(ptex.exist < PSYS_FRAND(i + 24)) {
child_keys->steps = -1;
return;
}
/* create the child path */
for(k=0,child=child_keys; k<=ctx->steps; k++,child++){
if(ctx->between){
int w=0;
zero_v3(child->co);
zero_v3(child->vel);
unit_qt(child->rot);
for(w=0; w<4; w++) {
copy_v3_v3(off2[w], off1[w]);
if(part->flag & PART_CHILD_LONG_HAIR) {
/* Use parent rotation (in addition to emission location) to determine child offset. */
if(k)
mul_qt_v3((key[w]+k)->rot, off2[w]);
/* Fade the effect of rotation for even lengths in the end */
project_v3_v3v3(dvec, off2[w], (key[w]+k)->vel);
madd_v3_v3fl(off2[w], dvec, -(float)k/(float)ctx->steps);
}
add_v3_v3(off2[w], (key[w]+k)->co);
}
/* child position is the weighted sum of parent positions */
interp_v3_v3v3v3v3(child->co, off2[0], off2[1], off2[2], off2[3], weight);
interp_v3_v3v3v3v3(child->vel, (key[0]+k)->vel, (key[1]+k)->vel, (key[2]+k)->vel, (key[3]+k)->vel, weight);
copy_qt_qt(child->rot, (key[0]+k)->rot);
}
else{
if(k) {
mul_qt_qtqt(rot, (key[0]+k)->rot, key[0]->rot);
par_rot = rot;
}
else {
par_rot = key[0]->rot;
}
/* offset the child from the parent position */
offset_child(cpa, (ParticleKey*)(key[0]+k), par_rot, (ParticleKey*)child, part->childflat, part->childrad);
}
}
/* apply effectors */
if(part->flag & PART_CHILD_EFFECT) {
for(k=0,child=child_keys; k<=ctx->steps; k++,child++) {
if(k) {
do_path_effectors(&ctx->sim, cpa->pa[0], child, k, ctx->steps, child_keys->co, ptex.effector, 0.0f, ctx->cfra, &eff_length, eff_vec);
}
else {
sub_v3_v3v3(eff_vec, (child+1)->co, child->co);
eff_length = len_v3(eff_vec);
}
}
}
for(k=0,child=child_keys; k<=ctx->steps; k++,child++){
t = (float)k/(float)ctx->steps;
if(ctx->totparent)
/* this is now threadsafe, virtual parents are calculated before rest of children */
par = (i >= ctx->totparent) ? cache[cpa->parent] : NULL;
else if(cpa->parent >= 0)
par = pcache[cpa->parent];
if(par) {
if(k) {
mul_qt_qtqt(rot, (par+k)->rot, par->rot);
par_rot = rot;
}
else {
par_rot = par->rot;
}
par += k;
}
/* apply different deformations to the child path */
do_child_modifiers(&ctx->sim, &ptex, (ParticleKey *)par, par_rot, cpa, orco, hairmat, (ParticleKey *)child, t);
/* we have to correct velocity because of kink & clump */
if(k>1){
sub_v3_v3v3((child-1)->vel, child->co, (child-2)->co);
mul_v3_fl((child-1)->vel, 0.5);
if(ctx->ma && (part->draw_col == PART_DRAW_COL_MAT))
get_strand_normal(ctx->ma, ornor, cur_length, (child-1)->vel);
}
if(k == ctx->steps)
sub_v3_v3v3(child->vel, child->co, (child-1)->co);
/* check if path needs to be cut before actual end of data points */
if(k){
sub_v3_v3v3(dvec, child->co, (child-1)->co);
length = 1.0f/(float)ctx->steps;
k = check_path_length(k, child_keys, child, max_length, &cur_length, length, dvec);
}
else{
/* initialize length calculation */
max_length = ptex.length;
cur_length = 0.0f;
}
if(ctx->ma && (part->draw_col == PART_DRAW_COL_MAT)) {
VECCOPY(child->col, &ctx->ma->r)
get_strand_normal(ctx->ma, ornor, cur_length, child->vel);
}
}
/* Hide virtual parents */
if(i < ctx->totparent)
child_keys->steps = -1;
}
static void *exec_child_path_cache(void *data)
{
ParticleThread *thread= (ParticleThread*)data;
ParticleThreadContext *ctx= thread->ctx;
ParticleSystem *psys= ctx->sim.psys;
ParticleCacheKey **cache= psys->childcache;
ChildParticle *cpa;
int i, totchild= ctx->totchild, first= 0;
if(thread->tot > 1){
first= ctx->parent_pass? 0 : ctx->totparent;
totchild= ctx->parent_pass? ctx->totparent : ctx->totchild;
}
cpa= psys->child + first + thread->num;
for(i=first+thread->num; i<totchild; i+=thread->tot, cpa+=thread->tot)
psys_thread_create_path(thread, cpa, cache[i], i);
return 0;
}
void psys_cache_child_paths(ParticleSimulationData *sim, float cfra, int editupdate)
{
ParticleThread *pthreads;
ParticleThreadContext *ctx;
ListBase threads;
int i, totchild, totparent, totthread;
if(sim->psys->flag & PSYS_GLOBAL_HAIR)
return;
pthreads= psys_threads_create(sim);
if(!psys_threads_init_path(pthreads, sim->scene, cfra, editupdate)) {
psys_threads_free(pthreads);
return;
}
ctx= pthreads[0].ctx;
totchild= ctx->totchild;
totparent= ctx->totparent;
if(editupdate && sim->psys->childcache && totchild == sim->psys->totchildcache) {
; /* just overwrite the existing cache */
}
else {
/* clear out old and create new empty path cache */
free_child_path_cache(sim->psys);
sim->psys->childcache= psys_alloc_path_cache_buffers(&sim->psys->childcachebufs, totchild, ctx->steps+1);
sim->psys->totchildcache = totchild;
}
totthread= pthreads[0].tot;
if(totthread > 1) {
/* make virtual child parents thread safe by calculating them first */
if(totparent) {
BLI_init_threads(&threads, exec_child_path_cache, totthread);
for(i=0; i<totthread; i++) {
pthreads[i].ctx->parent_pass = 1;
BLI_insert_thread(&threads, &pthreads[i]);
}
BLI_end_threads(&threads);
for(i=0; i<totthread; i++)
pthreads[i].ctx->parent_pass = 0;
}
BLI_init_threads(&threads, exec_child_path_cache, totthread);
for(i=0; i<totthread; i++)
BLI_insert_thread(&threads, &pthreads[i]);
BLI_end_threads(&threads);
}
else
exec_child_path_cache(&pthreads[0]);
psys_threads_free(pthreads);
}
/* figure out incremental rotations along path starting from unit quat */
static void cache_key_incremental_rotation(ParticleCacheKey *key0, ParticleCacheKey *key1, ParticleCacheKey *key2, float *prev_tangent, int i)
{
float cosangle, angle, tangent[3], normal[3], q[4];
switch(i) {
case 0:
/* start from second key */
break;
case 1:
/* calculate initial tangent for incremental rotations */
sub_v3_v3v3(prev_tangent, key0->co, key1->co);
normalize_v3(prev_tangent);
unit_qt(key1->rot);
break;
default:
sub_v3_v3v3(tangent, key0->co, key1->co);
normalize_v3(tangent);
cosangle= dot_v3v3(tangent, prev_tangent);
/* note we do the comparison on cosangle instead of
* angle, since floating point accuracy makes it give
* different results across platforms */
if(cosangle > 0.999999f) {
QUATCOPY(key1->rot, key2->rot);
}
else {
angle= saacos(cosangle);
cross_v3_v3v3(normal, prev_tangent, tangent);
axis_angle_to_quat( q,normal, angle);
mul_qt_qtqt(key1->rot, q, key2->rot);
}
copy_v3_v3(prev_tangent, tangent);
}
}
/* Calculates paths ready for drawing/rendering. */
/* -Usefull for making use of opengl vertex arrays for super fast strand drawing. */
/* -Makes child strands possible and creates them too into the cache. */
/* -Cached path data is also used to determine cut position for the editmode tool. */
void psys_cache_paths(ParticleSimulationData *sim, float cfra)
{
PARTICLE_PSMD;
ParticleEditSettings *pset = &sim->scene->toolsettings->particle;
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleCacheKey *ca, **cache;
DerivedMesh *hair_dm = (psys->part->type==PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS) ? psys->hair_out_dm : NULL;
ParticleKey result;
Material *ma;
ParticleInterpolationData pind;
ParticleTexture ptex;
PARTICLE_P;
float birthtime = 0.0, dietime = 0.0;
float t, time = 0.0, dfra = 1.0 /* , frs_sec = sim->scene->r.frs_sec*/ /*UNUSED*/;
float col[4] = {0.5f, 0.5f, 0.5f, 1.0f};
float prev_tangent[3] = {0.0f, 0.0f, 0.0f}, hairmat[4][4];
float rotmat[3][3];
int k;
int steps = (int)pow(2.0, (double)(psys->renderdata ? part->ren_step : part->draw_step));
int totpart = psys->totpart;
float length, vec[3];
float *vg_effector= NULL;
float *vg_length= NULL, pa_length=1.0f;
int keyed, baked;
/* we don't have anything valid to create paths from so let's quit here */
if((psys->flag & PSYS_HAIR_DONE || psys->flag & PSYS_KEYED || psys->pointcache)==0)
return;
if(psys_in_edit_mode(sim->scene, psys))
if(psys->renderdata==0 && (psys->edit==NULL || pset->flag & PE_DRAW_PART)==0)
return;
keyed = psys->flag & PSYS_KEYED;
baked = psys->pointcache->mem_cache.first && psys->part->type != PART_HAIR;
/* clear out old and create new empty path cache */
psys_free_path_cache(psys, psys->edit);
cache= psys->pathcache= psys_alloc_path_cache_buffers(&psys->pathcachebufs, totpart, steps+1);
psys->lattice = psys_get_lattice(sim);
ma= give_current_material(sim->ob, psys->part->omat);
if(ma && (psys->part->draw_col == PART_DRAW_COL_MAT))
VECCOPY(col, &ma->r)
if((psys->flag & PSYS_GLOBAL_HAIR)==0) {
if((psys->part->flag & PART_CHILD_EFFECT)==0)
vg_effector = psys_cache_vgroup(psmd->dm, psys, PSYS_VG_EFFECTOR);
if(!psys->totchild)
vg_length = psys_cache_vgroup(psmd->dm, psys, PSYS_VG_LENGTH);
}
/*---first main loop: create all actual particles' paths---*/
LOOP_SHOWN_PARTICLES {
if(!psys->totchild) {
psys_get_texture(sim, pa, &ptex, PAMAP_LENGTH, 0.f);
pa_length = ptex.length * (1.0f - part->randlength * PSYS_FRAND(psys->seed + p));
if(vg_length)
pa_length *= psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_length);
}
pind.keyed = keyed;
pind.cache = baked ? psys->pointcache : NULL;
pind.epoint = NULL;
pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE);
pind.dm = hair_dm;
memset(cache[p], 0, sizeof(*cache[p])*(steps+1));
cache[p]->steps = steps;
/*--get the first data points--*/
init_particle_interpolation(sim->ob, sim->psys, pa, &pind);
/* hairmat is needed for for non-hair particle too so we get proper rotations */
psys_mat_hair_to_global(sim->ob, psmd->dm, psys->part->from, pa, hairmat);
VECCOPY(rotmat[0], hairmat[2]);
VECCOPY(rotmat[1], hairmat[1]);
VECCOPY(rotmat[2], hairmat[0]);
if(part->draw & PART_ABS_PATH_TIME) {
birthtime = MAX2(pind.birthtime, part->path_start);
dietime = MIN2(pind.dietime, part->path_end);
}
else {
float tb = pind.birthtime;
birthtime = tb + part->path_start * (pind.dietime - tb);
dietime = tb + part->path_end * (pind.dietime - tb);
}
if(birthtime >= dietime) {
cache[p]->steps = -1;
continue;
}
dietime = birthtime + pa_length * (dietime - birthtime);
/*--interpolate actual path from data points--*/
for(k=0, ca=cache[p]; k<=steps; k++, ca++){
time = (float)k / (float)steps;
t = birthtime + time * (dietime - birthtime);
result.time = -t;
do_particle_interpolation(psys, p, pa, t, &pind, &result);
copy_v3_v3(ca->co, result.co);
/* dynamic hair is in object space */
/* keyed and baked are already in global space */
if(hair_dm)
mul_m4_v3(sim->ob->obmat, ca->co);
else if(!keyed && !baked && !(psys->flag & PSYS_GLOBAL_HAIR))
mul_m4_v3(hairmat, ca->co);
copy_v3_v3(ca->col, col);
}
/*--modify paths and calculate rotation & velocity--*/
if(!(psys->flag & PSYS_GLOBAL_HAIR)) {
/* apply effectors */
if((psys->part->flag & PART_CHILD_EFFECT) == 0) {
float effector= 1.0f;
if(vg_effector)
effector*= psys_particle_value_from_verts(psmd->dm,psys->part->from,pa,vg_effector);
sub_v3_v3v3(vec,(cache[p]+1)->co,cache[p]->co);
length = len_v3(vec);
for(k=1, ca=cache[p]+1; k<=steps; k++, ca++)
do_path_effectors(sim, p, ca, k, steps, cache[p]->co, effector, dfra, cfra, &length, vec);
}
/* apply guide curves to path data */
if(sim->psys->effectors && (psys->part->flag & PART_CHILD_EFFECT)==0) {
for(k=0, ca=cache[p]; k<=steps; k++, ca++)
/* ca is safe to cast, since only co and vel are used */
do_guides(sim->psys->effectors, (ParticleKey*)ca, p, (float)k/(float)steps);
}
/* lattices have to be calculated separately to avoid mixups between effector calculations */
if(psys->lattice) {
for(k=0, ca=cache[p]; k<=steps; k++, ca++)
calc_latt_deform(psys->lattice, ca->co, 1.0f);
}
}
/* finally do rotation & velocity */
for(k=1, ca=cache[p]+1; k<=steps; k++, ca++) {
cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k);
if(k == steps)
copy_qt_qt(ca->rot, (ca - 1)->rot);
/* set velocity */
sub_v3_v3v3(ca->vel, ca->co, (ca-1)->co);
if(k==1)
copy_v3_v3((ca-1)->vel, ca->vel);
}
/* First rotation is based on emitting face orientation.
* This is way better than having flipping rotations resulting
* from using a global axis as a rotation pole (vec_to_quat()).
* It's not an ideal solution though since it disregards the
* initial tangent, but taking that in to account will allow
* the possibility of flipping again. -jahka
*/
mat3_to_quat_is_ok(cache[p]->rot, rotmat);
}
psys->totcached = totpart;
if(psys->lattice){
end_latt_deform(psys->lattice);
psys->lattice= NULL;
}
if(vg_effector)
MEM_freeN(vg_effector);
if(vg_length)
MEM_freeN(vg_length);
}
void psys_cache_edit_paths(Scene *scene, Object *ob, PTCacheEdit *edit, float cfra)
{
ParticleCacheKey *ca, **cache= edit->pathcache;
ParticleEditSettings *pset = &scene->toolsettings->particle;
PTCacheEditPoint *point = NULL;
PTCacheEditKey *ekey = NULL;
ParticleSystem *psys = edit->psys;
ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
ParticleData *pa = psys ? psys->particles : NULL;
ParticleInterpolationData pind;
ParticleKey result;
float birthtime = 0.0f, dietime = 0.0f;
float t, time = 0.0f, keytime = 0.0f /*, frs_sec */;
float hairmat[4][4], rotmat[3][3], prev_tangent[3] = {0.0f, 0.0f, 0.0f};
int k, i;
int steps = (int)pow(2.0, (double)pset->draw_step);
int totpart = edit->totpoint, recalc_set=0;
float sel_col[3];
float nosel_col[3];
steps = MAX2(steps, 4);
if(!cache || edit->totpoint != edit->totcached) {
/* clear out old and create new empty path cache */
psys_free_path_cache(edit->psys, edit);
cache= edit->pathcache= psys_alloc_path_cache_buffers(&edit->pathcachebufs, totpart, steps+1);
/* set flag for update (child particles check this too) */
for(i=0, point=edit->points; i<totpart; i++, point++)
point->flag |= PEP_EDIT_RECALC;
recalc_set = 1;
}
/* frs_sec = (psys || edit->pid.flag & PTCACHE_VEL_PER_SEC) ? 25.0f : 1.0f; */ /* UNUSED */
if(pset->brushtype == PE_BRUSH_WEIGHT) {
;/* use weight painting colors now... */
}
else{
sel_col[0] = (float)edit->sel_col[0] / 255.0f;
sel_col[1] = (float)edit->sel_col[1] / 255.0f;
sel_col[2] = (float)edit->sel_col[2] / 255.0f;
nosel_col[0] = (float)edit->nosel_col[0] / 255.0f;
nosel_col[1] = (float)edit->nosel_col[1] / 255.0f;
nosel_col[2] = (float)edit->nosel_col[2] / 255.0f;
}
/*---first main loop: create all actual particles' paths---*/
for(i=0, point=edit->points; i<totpart; i++, pa+=pa?1:0, point++){
if(edit->totcached && !(point->flag & PEP_EDIT_RECALC))
continue;
ekey = point->keys;
pind.keyed = 0;
pind.cache = NULL;
pind.epoint = point;
pind.bspline = psys ? (psys->part->flag & PART_HAIR_BSPLINE) : 0;
pind.dm = NULL;
/* should init_particle_interpolation set this ? */
if(pset->brushtype==PE_BRUSH_WEIGHT){
pind.hkey[0] = NULL;
/* pa != NULL since the weight brush is only available for hair */
pind.hkey[1] = pa->hair;
}
memset(cache[i], 0, sizeof(*cache[i])*(steps+1));
cache[i]->steps = steps;
/*--get the first data points--*/
init_particle_interpolation(ob, psys, pa, &pind);
if(psys) {
psys_mat_hair_to_global(ob, psmd->dm, psys->part->from, pa, hairmat);
copy_v3_v3(rotmat[0], hairmat[2]);
copy_v3_v3(rotmat[1], hairmat[1]);
copy_v3_v3(rotmat[2], hairmat[0]);
}
birthtime = pind.birthtime;
dietime = pind.dietime;
if(birthtime >= dietime) {
cache[i]->steps = -1;
continue;
}
/*--interpolate actual path from data points--*/
for(k=0, ca=cache[i]; k<=steps; k++, ca++){
time = (float)k / (float)steps;
t = birthtime + time * (dietime - birthtime);
result.time = -t;
do_particle_interpolation(psys, i, pa, t, &pind, &result);
copy_v3_v3(ca->co, result.co);
/* non-hair points are already in global space */
if(psys && !(psys->flag & PSYS_GLOBAL_HAIR)) {
mul_m4_v3(hairmat, ca->co);
if(k) {
cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k);
if(k == steps)
copy_qt_qt(ca->rot, (ca - 1)->rot);
/* set velocity */
sub_v3_v3v3(ca->vel, ca->co, (ca - 1)->co);
if(k==1)
copy_v3_v3((ca - 1)->vel, ca->vel);
}
}
else {
ca->vel[0] = ca->vel[1] = 0.0f;
ca->vel[2] = 1.0f;
}
/* selection coloring in edit mode */
if(pset->brushtype==PE_BRUSH_WEIGHT){
float t2;
if(k==0) {
weight_to_rgb(pind.hkey[1]->weight, ca->col, ca->col+1, ca->col+2);
} else {
float w1[3], w2[3];
keytime = (t - (*pind.ekey[0]->time))/((*pind.ekey[1]->time) - (*pind.ekey[0]->time));
weight_to_rgb(pind.hkey[0]->weight, w1, w1+1, w1+2);
weight_to_rgb(pind.hkey[1]->weight, w2, w2+1, w2+2);
interp_v3_v3v3(ca->col, w1, w2, keytime);
}
/* at the moment this is only used for weight painting.
* will need to move out of this check if its used elsewhere. */
t2 = birthtime + ((float)k/(float)steps) * (dietime - birthtime);
while (pind.hkey[1]->time < t2) pind.hkey[1]++;
pind.hkey[0] = pind.hkey[1] - 1;
}
else {
if((ekey + (pind.ekey[0] - point->keys))->flag & PEK_SELECT){
if((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT){
VECCOPY(ca->col, sel_col);
}
else{
keytime = (t - (*pind.ekey[0]->time))/((*pind.ekey[1]->time) - (*pind.ekey[0]->time));
interp_v3_v3v3(ca->col, sel_col, nosel_col, keytime);
}
}
else{
if((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT){
keytime = (t - (*pind.ekey[0]->time))/((*pind.ekey[1]->time) - (*pind.ekey[0]->time));
interp_v3_v3v3(ca->col, nosel_col, sel_col, keytime);
}
else{
VECCOPY(ca->col, nosel_col);
}
}
}
ca->time = t;
}
if(psys && !(psys->flag & PSYS_GLOBAL_HAIR)) {
/* First rotation is based on emitting face orientation.
* This is way better than having flipping rotations resulting
* from using a global axis as a rotation pole (vec_to_quat()).
* It's not an ideal solution though since it disregards the
* initial tangent, but taking that in to account will allow
* the possibility of flipping again. -jahka
*/
mat3_to_quat_is_ok(cache[i]->rot, rotmat);
}
}
edit->totcached = totpart;
if(psys) {
ParticleSimulationData sim= {0};
sim.scene= scene;
sim.ob= ob;
sim.psys= psys;
sim.psmd= psys_get_modifier(ob, psys);
psys_cache_child_paths(&sim, cfra, 1);
}
/* clear recalc flag if set here */
if(recalc_set) {
for(i=0, point=edit->points; i<totpart; i++, point++)
point->flag &= ~PEP_EDIT_RECALC;
}
}
/************************************************/
/* Particle Key handling */
/************************************************/
void copy_particle_key(ParticleKey *to, ParticleKey *from, int time){
if(time){
memcpy(to,from,sizeof(ParticleKey));
}
else{
float to_time=to->time;
memcpy(to,from,sizeof(ParticleKey));
to->time=to_time;
}
}
void psys_get_from_key(ParticleKey *key, float *loc, float *vel, float *rot, float *time){
if(loc) VECCOPY(loc,key->co);
if(vel) VECCOPY(vel,key->vel);
if(rot) QUATCOPY(rot,key->rot);
if(time) *time=key->time;
}
/*-------changing particle keys from space to another-------*/
#if 0
static void key_from_object(Object *ob, ParticleKey *key){
float q[4];
VECADD(key->vel,key->vel,key->co);
mul_m4_v3(ob->obmat,key->co);
mul_m4_v3(ob->obmat,key->vel);
mat4_to_quat(q,ob->obmat);
VECSUB(key->vel,key->vel,key->co);
mul_qt_qtqt(key->rot,q,key->rot);
}
#endif
static void triatomat(float *v1, float *v2, float *v3, float (*uv)[2], float mat[][4])
{
float det, w1, w2, d1[2], d2[2];
memset(mat, 0, sizeof(float)*4*4);
mat[3][3]= 1.0f;
/* first axis is the normal */
normal_tri_v3( mat[2],v1, v2, v3);
/* second axis along (1, 0) in uv space */
if(uv) {
d1[0]= uv[1][0] - uv[0][0];
d1[1]= uv[1][1] - uv[0][1];
d2[0]= uv[2][0] - uv[0][0];
d2[1]= uv[2][1] - uv[0][1];
det = d2[0]*d1[1] - d2[1]*d1[0];
if(det != 0.0f) {
det= 1.0f/det;
w1= -d2[1]*det;
w2= d1[1]*det;
mat[1][0]= w1*(v2[0] - v1[0]) + w2*(v3[0] - v1[0]);
mat[1][1]= w1*(v2[1] - v1[1]) + w2*(v3[1] - v1[1]);
mat[1][2]= w1*(v2[2] - v1[2]) + w2*(v3[2] - v1[2]);
normalize_v3(mat[1]);
}
else
mat[1][0]= mat[1][1]= mat[1][2]= 0.0f;
}
else {
sub_v3_v3v3(mat[1], v2, v1);
normalize_v3(mat[1]);
}
/* third as a cross product */
cross_v3_v3v3(mat[0], mat[1], mat[2]);
}
static void psys_face_mat(Object *ob, DerivedMesh *dm, ParticleData *pa, float mat[][4], int orco)
{
float v[3][3];
MFace *mface;
OrigSpaceFace *osface;
float (*orcodata)[3];
int i = pa->num_dmcache==DMCACHE_NOTFOUND ? pa->num : pa->num_dmcache;
if (i==-1 || i >= dm->getNumFaces(dm)) { unit_m4(mat); return; }
mface=dm->getFaceData(dm,i,CD_MFACE);
osface=dm->getFaceData(dm,i,CD_ORIGSPACE);
if(orco && (orcodata=dm->getVertDataArray(dm, CD_ORCO))) {
VECCOPY(v[0], orcodata[mface->v1]);
VECCOPY(v[1], orcodata[mface->v2]);
VECCOPY(v[2], orcodata[mface->v3]);
/* ugly hack to use non-transformed orcos, since only those
* give symmetric results for mirroring in particle mode */
if(DM_get_vert_data_layer(dm, CD_ORIGINDEX))
transform_mesh_orco_verts(ob->data, v, 3, 1);
}
else {
dm->getVertCo(dm,mface->v1,v[0]);
dm->getVertCo(dm,mface->v2,v[1]);
dm->getVertCo(dm,mface->v3,v[2]);
}
triatomat(v[0], v[1], v[2], (osface)? osface->uv: NULL, mat);
}
void psys_mat_hair_to_object(Object *UNUSED(ob), DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4])
{
float vec[3];
psys_face_mat(0, dm, pa, hairmat, 0);
psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, 0, 0);
VECCOPY(hairmat[3],vec);
}
void psys_mat_hair_to_orco(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4])
{
float vec[3], orco[3];
psys_face_mat(ob, dm, pa, hairmat, 1);
psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, orco, 0);
/* see psys_face_mat for why this function is called */
if(DM_get_vert_data_layer(dm, CD_ORIGINDEX))
transform_mesh_orco_verts(ob->data, &orco, 1, 1);
VECCOPY(hairmat[3],orco);
}
void psys_vec_rot_to_face(DerivedMesh *dm, ParticleData *pa, float *vec)
{
float mat[4][4];
psys_face_mat(0, dm, pa, mat, 0);
transpose_m4(mat); /* cheap inverse for rotation matrix */
mul_mat3_m4_v3(mat, vec);
}
void psys_mat_hair_to_global(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[][4])
{
float facemat[4][4];
psys_mat_hair_to_object(ob, dm, from, pa, facemat);
mul_m4_m4m4(hairmat, facemat, ob->obmat);
}
/************************************************/
/* ParticleSettings handling */
/************************************************/
ModifierData *object_add_particle_system(Scene *scene, Object *ob, const char *name)
{
ParticleSystem *psys;
ModifierData *md;
ParticleSystemModifierData *psmd;
if(!ob || ob->type != OB_MESH)
return NULL;
psys = ob->particlesystem.first;
for(; psys; psys=psys->next)
psys->flag &= ~PSYS_CURRENT;
psys = MEM_callocN(sizeof(ParticleSystem), "particle_system");
psys->pointcache = BKE_ptcache_add(&psys->ptcaches);
BLI_addtail(&ob->particlesystem, psys);
psys->part = psys_new_settings("ParticleSettings", NULL);
if(BLI_countlist(&ob->particlesystem)>1)
sprintf(psys->name, "ParticleSystem %i", BLI_countlist(&ob->particlesystem));
else
strcpy(psys->name, "ParticleSystem");
md= modifier_new(eModifierType_ParticleSystem);
if(name) BLI_strncpy(md->name, name, sizeof(md->name));
else sprintf(md->name, "ParticleSystem %i", BLI_countlist(&ob->particlesystem));
modifier_unique_name(&ob->modifiers, md);
psmd= (ParticleSystemModifierData*) md;
psmd->psys=psys;
BLI_addtail(&ob->modifiers, md);
psys->totpart=0;
psys->flag = PSYS_ENABLED|PSYS_CURRENT;
psys->cfra=bsystem_time(scene,ob,scene->r.cfra+1,0.0);
DAG_scene_sort(G.main, scene);
DAG_id_tag_update(&ob->id, OB_RECALC_DATA);
return md;
}
void object_remove_particle_system(Scene *scene, Object *ob)
{
ParticleSystem *psys = psys_get_current(ob);
ParticleSystemModifierData *psmd;
ModifierData *md;
if(!psys)
return;
/* clear all other appearances of this pointer (like on smoke flow modifier) */
if((md = modifiers_findByType(ob, eModifierType_Smoke)))
{
SmokeModifierData *smd = (SmokeModifierData *)md;
if((smd->type == MOD_SMOKE_TYPE_FLOW) && smd->flow && smd->flow->psys)
if(smd->flow->psys == psys)
smd->flow->psys = NULL;
}
/* clear modifier */
psmd= psys_get_modifier(ob, psys);
BLI_remlink(&ob->modifiers, psmd);
modifier_free((ModifierData *)psmd);
/* clear particle system */
BLI_remlink(&ob->particlesystem, psys);
psys_free(ob,psys);
if(ob->particlesystem.first)
((ParticleSystem *) ob->particlesystem.first)->flag |= PSYS_CURRENT;
else
ob->mode &= ~OB_MODE_PARTICLE_EDIT;
DAG_scene_sort(G.main, scene);
DAG_id_tag_update(&ob->id, OB_RECALC_DATA);
}
static void default_particle_settings(ParticleSettings *part)
{
part->type= PART_EMITTER;
part->distr= PART_DISTR_JIT;
part->draw_as = PART_DRAW_REND;
part->ren_as = PART_DRAW_HALO;
part->bb_uv_split=1;
part->bb_align=PART_BB_VIEW;
part->bb_split_offset=PART_BB_OFF_LINEAR;
part->flag=PART_EDISTR|PART_TRAND|PART_HIDE_ADVANCED_HAIR;
part->sta= 1.0;
part->end= 200.0;
part->lifetime= 50.0;
part->jitfac= 1.0;
part->totpart= 1000;
part->grid_res= 10;
part->timetweak= 1.0;
part->courant_target = 0.2;
part->integrator= PART_INT_MIDPOINT;
part->phystype= PART_PHYS_NEWTON;
part->hair_step= 5;
part->keys_step= 5;
part->draw_step= 2;
part->ren_step= 3;
part->adapt_angle= 5;
part->adapt_pix= 3;
part->kink_axis= 2;
part->kink_amp_clump= 1.f;
part->reactevent= PART_EVENT_DEATH;
part->disp=100;
part->from= PART_FROM_FACE;
part->normfac= 1.0f;
part->mass=1.0;
part->size=0.05;
part->childsize=1.0;
part->rotmode = PART_ROT_VEL;
part->avemode = PART_AVE_SPIN;
part->child_nbr=10;
part->ren_child_nbr=100;
part->childrad=0.2f;
part->childflat=0.0f;
part->clumppow=0.0f;
part->kink_amp=0.2f;
part->kink_freq=2.0;
part->rough1_size=1.0;
part->rough2_size=1.0;
part->rough_end_shape=1.0;
part->clength=1.0f;
part->clength_thres=0.0f;
part->draw= PART_DRAW_EMITTER;
part->draw_line[0]=0.5;
part->path_start = 0.0f;
part->path_end = 1.0f;
part->bb_size[0] = part->bb_size[1] = 1.0f;
part->keyed_loops = 1;
part->color_vec_max = 1.f;
part->draw_col = PART_DRAW_COL_MAT;
part->simplify_refsize= 1920;
part->simplify_rate= 1.0f;
part->simplify_transition= 0.1f;
part->simplify_viewport= 0.8;
if(!part->effector_weights)
part->effector_weights = BKE_add_effector_weights(NULL);
}
ParticleSettings *psys_new_settings(const char *name, Main *main)
{
ParticleSettings *part;
if(main==NULL)
main = G.main;
part= alloc_libblock(&main->particle, ID_PA, name);
default_particle_settings(part);
return part;
}
ParticleSettings *psys_copy_settings(ParticleSettings *part)
{
ParticleSettings *partn;
int a;
partn= copy_libblock(part);
partn->pd= MEM_dupallocN(part->pd);
partn->pd2= MEM_dupallocN(part->pd2);
partn->effector_weights= MEM_dupallocN(part->effector_weights);
partn->fluid= MEM_dupallocN(part->fluid);
partn->boids = boid_copy_settings(part->boids);
for(a=0; a<MAX_MTEX; a++) {
if(part->mtex[a]) {
partn->mtex[a]= MEM_mallocN(sizeof(MTex), "psys_copy_tex");
memcpy(partn->mtex[a], part->mtex[a], sizeof(MTex));
id_us_plus((ID *)partn->mtex[a]->tex);
}
}
BLI_duplicatelist(&partn->dupliweights, &part->dupliweights);
return partn;
}
static void expand_local_particlesettings(ParticleSettings *part)
{
int i;
id_lib_extern((ID *)part->dup_group);
for(i=0; i<MAX_MTEX; i++) {
if(part->mtex[i]) id_lib_extern((ID *)part->mtex[i]->tex);
}
}
void make_local_particlesettings(ParticleSettings *part)
{
Main *bmain= G.main;
Object *ob;
int local=0, lib=0;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(part->id.lib==0) return;
if(part->id.us==1) {
part->id.lib= 0;
part->id.flag= LIB_LOCAL;
new_id(&bmain->particle, (ID *)part, 0);
expand_local_particlesettings(part);
return;
}
/* test objects */
for(ob= bmain->object.first; ob && ELEM(0, lib, local); ob= ob->id.next) {
ParticleSystem *psys=ob->particlesystem.first;
for(; psys; psys=psys->next){
if(psys->part==part) {
if(ob->id.lib) lib= 1;
else local= 1;
}
}
}
if(local && lib==0) {
part->id.lib= 0;
part->id.flag= LIB_LOCAL;
new_id(&bmain->particle, (ID *)part, 0);
expand_local_particlesettings(part);
}
else if(local && lib) {
ParticleSettings *partn= psys_copy_settings(part);
partn->id.us= 0;
/* do objects */
for(ob= bmain->object.first; ob; ob= ob->id.next) {
ParticleSystem *psys;
for(psys= ob->particlesystem.first; psys; psys=psys->next){
if(psys->part==part && ob->id.lib==0) {
psys->part= partn;
partn->id.us++;
part->id.us--;
}
}
}
}
}
/************************************************/
/* Textures */
/************************************************/
static int get_particle_uv(DerivedMesh *dm, ParticleData *pa, int face_index, float *fuv, char *name, float *texco)
{
MFace *mf;
MTFace *tf;
int i;
tf= CustomData_get_layer_named(&dm->faceData, CD_MTFACE, name);
if(tf == NULL)
tf= CustomData_get_layer(&dm->faceData, CD_MTFACE);
if(tf == NULL)
return 0;
if(pa) {
i= (pa->num_dmcache==DMCACHE_NOTFOUND)? pa->num: pa->num_dmcache;
if(i >= dm->getNumFaces(dm))
i = -1;
}
else
i= face_index;
if (i==-1) {
texco[0]= 0.0f;
texco[1]= 0.0f;
texco[2]= 0.0f;
}
else {
mf= dm->getFaceData(dm, i, CD_MFACE);
psys_interpolate_uvs(&tf[i], mf->v4, fuv, texco);
texco[0]= texco[0]*2.0f - 1.0f;
texco[1]= texco[1]*2.0f - 1.0f;
texco[2]= 0.0f;
}
return 1;
}
#define SET_PARTICLE_TEXTURE(type, pvalue, texfac) if((event & mtex->mapto) & type) {pvalue = texture_value_blend(def, pvalue, value, texfac, blend);}
#define CLAMP_PARTICLE_TEXTURE_POS(type, pvalue) if(event & type) { if(pvalue < 0.f) pvalue = 1.f+pvalue; CLAMP(pvalue, 0.0f, 1.0f); }
#define CLAMP_PARTICLE_TEXTURE_POSNEG(type, pvalue) if(event & type) { CLAMP(pvalue, -1.0f, 1.0f); }
static void get_cpa_texture(DerivedMesh *dm, ParticleSystem *psys, ParticleSettings *part, ParticleData *par, int child_index, int face_index, float *fw, float *orco, ParticleTexture *ptex, int event, float cfra)
{
MTex *mtex, **mtexp = part->mtex;
int m;
float value, rgba[4], texvec[3];
ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp =
ptex->gravity = ptex->field = ptex->time = ptex->clump = ptex->kink =
ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.f;
ptex->length= 1.0f - part->randlength * PSYS_FRAND(child_index + 26);
ptex->length*= part->clength_thres < PSYS_FRAND(child_index + 27) ? part->clength : 1.0f;
for(m=0; m<MAX_MTEX; m++, mtexp++){
mtex = *mtexp;
if(mtex && mtex->mapto){
float def=mtex->def_var;
short blend=mtex->blendtype;
short texco = mtex->texco;
if(ELEM(texco, TEXCO_UV, TEXCO_ORCO) && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID))
texco = TEXCO_GLOB;
switch(texco) {
case TEXCO_GLOB:
copy_v3_v3(texvec, par->state.co);
break;
case TEXCO_OBJECT:
copy_v3_v3(texvec, par->state.co);
if(mtex->object)
mul_m4_v3(mtex->object->imat, texvec);
break;
case TEXCO_UV:
if(fw && get_particle_uv(dm, NULL, face_index, fw, mtex->uvname, texvec))
break;
/* no break, failed to get uv's, so let's try orco's */
case TEXCO_ORCO:
copy_v3_v3(texvec, orco);
break;
case TEXCO_PARTICLE:
/* texture coordinates in range [-1,1] */
texvec[0] = 2.f * (cfra - par->time)/(par->dietime-par->time) - 1.f;
texvec[1] = 0.f;
texvec[2] = 0.f;
break;
}
externtex(mtex, texvec, &value, rgba, rgba+1, rgba+2, rgba+3, 0);
if((event & mtex->mapto) & PAMAP_ROUGH)
ptex->rough1= ptex->rough2= ptex->roughe= texture_value_blend(def,ptex->rough1,value,mtex->roughfac,blend);
SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac);
SET_PARTICLE_TEXTURE(PAMAP_CLUMP, ptex->clump, mtex->clumpfac);
SET_PARTICLE_TEXTURE(PAMAP_KINK, ptex->kink, mtex->kinkfac);
SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac);
}
}
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length);
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_CLUMP, ptex->clump);
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_KINK, ptex->kink);
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_ROUGH, ptex->rough1);
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist);
}
void psys_get_texture(ParticleSimulationData *sim, ParticleData *pa, ParticleTexture *ptex, int event, float cfra)
{
ParticleSettings *part = sim->psys->part;
MTex **mtexp = part->mtex;
MTex *mtex;
int m;
float value, rgba[4], co[3], texvec[3];
int setvars=0;
/* initialize ptex */
ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp =
ptex->gravity = ptex->field = ptex->length = ptex->clump = ptex->kink =
ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.f;
ptex->time = (float)(pa - sim->psys->particles)/(float)sim->psys->totpart;
for(m=0; m<MAX_MTEX; m++, mtexp++){
mtex = *mtexp;
if(mtex && mtex->mapto){
float def=mtex->def_var;
short blend=mtex->blendtype;
short texco = mtex->texco;
if(texco == TEXCO_UV && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID))
texco = TEXCO_GLOB;
switch(texco) {
case TEXCO_GLOB:
copy_v3_v3(texvec, pa->state.co);
break;
case TEXCO_OBJECT:
copy_v3_v3(texvec, pa->state.co);
if(mtex->object)
mul_m4_v3(mtex->object->imat, texvec);
break;
case TEXCO_UV:
if(get_particle_uv(sim->psmd->dm, pa, 0, pa->fuv, mtex->uvname, texvec))
break;
/* no break, failed to get uv's, so let's try orco's */
case TEXCO_ORCO:
psys_particle_on_emitter(sim->psmd,sim->psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,0,0,0,texvec, 0);
break;
case TEXCO_PARTICLE:
/* texture coordinates in range [-1,1] */
texvec[0] = 2.f * (cfra - pa->time)/(pa->dietime-pa->time) - 1.f;
texvec[1] = 0.f;
texvec[2] = 0.f;
break;
}
externtex(mtex, texvec, &value, rgba, rgba+1, rgba+2, rgba+3, 0);
if((event & mtex->mapto) & PAMAP_TIME) {
/* the first time has to set the base value for time regardless of blend mode */
if((setvars&MAP_PA_TIME)==0){
int flip= (mtex->timefac < 0.0f);
float timefac= fabsf(mtex->timefac);
ptex->time *= 1.0f - timefac;
ptex->time += timefac * ((flip)? 1.0f - value : value);
setvars |= MAP_PA_TIME;
}
else
ptex->time= texture_value_blend(def,ptex->time,value,mtex->timefac,blend);
}
SET_PARTICLE_TEXTURE(PAMAP_LIFE, ptex->life, mtex->lifefac)
SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac)
SET_PARTICLE_TEXTURE(PAMAP_SIZE, ptex->size, mtex->sizefac)
SET_PARTICLE_TEXTURE(PAMAP_IVEL, ptex->ivel, mtex->ivelfac)
SET_PARTICLE_TEXTURE(PAMAP_FIELD, ptex->field, mtex->fieldfac)
SET_PARTICLE_TEXTURE(PAMAP_GRAVITY, ptex->gravity, mtex->gravityfac)
SET_PARTICLE_TEXTURE(PAMAP_DAMP, ptex->damp, mtex->dampfac)
SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac)
}
}
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_TIME, ptex->time)
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LIFE, ptex->life)
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist)
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_SIZE, ptex->size)
CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_IVEL, ptex->ivel)
CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_FIELD, ptex->field)
CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_GRAVITY, ptex->gravity)
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_DAMP, ptex->damp)
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length)
}
/************************************************/
/* Particle State */
/************************************************/
float psys_get_timestep(ParticleSimulationData *sim)
{
return 0.04f * sim->psys->part->timetweak;
}
float psys_get_child_time(ParticleSystem *psys, ChildParticle *cpa, float cfra, float *birthtime, float *dietime)
{
ParticleSettings *part = psys->part;
float time, life;
if(part->childtype==PART_CHILD_FACES){
int w=0;
time=0.0;
while(w<4 && cpa->pa[w]>=0){
time+=cpa->w[w]*(psys->particles+cpa->pa[w])->time;
w++;
}
life = part->lifetime * (1.0f - part->randlife * PSYS_FRAND(cpa - psys->child + 25));
}
else{
ParticleData *pa = psys->particles + cpa->parent;
time = pa->time;
life = pa->lifetime;
}
if(birthtime)
*birthtime = time;
if(dietime)
*dietime = time+life;
return (cfra-time)/life;
}
float psys_get_child_size(ParticleSystem *psys, ChildParticle *cpa, float UNUSED(cfra), float *UNUSED(pa_time))
{
ParticleSettings *part = psys->part;
float size; // time XXX
if(part->childtype==PART_CHILD_FACES)
size=part->size;
else
size=psys->particles[cpa->parent].size;
size*=part->childsize;
if(part->childrandsize != 0.0f)
size *= 1.0f - part->childrandsize * PSYS_FRAND(cpa - psys->child + 26);
return size;
}
static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx, ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex)
{
ParticleSystem *psys = ctx->sim.psys;
int i = cpa - psys->child;
get_cpa_texture(ctx->dm, psys, part, psys->particles + cpa->pa[0], i, cpa_num, cpa_fuv, orco, ptex, PAMAP_DENS|PAMAP_CHILD, psys->cfra);
if(ptex->exist < PSYS_FRAND(i + 24))
return;
if(ctx->vg_length)
ptex->length*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_length);
if(ctx->vg_clump)
ptex->clump*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_clump);
if(ctx->vg_kink)
ptex->kink*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_kink);
if(ctx->vg_rough1)
ptex->rough1*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_rough1);
if(ctx->vg_rough2)
ptex->rough2*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_rough2);
if(ctx->vg_roughe)
ptex->roughe*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_roughe);
if(ctx->vg_effector)
ptex->effector*=psys_interpolate_value_from_verts(ctx->dm,cpa_from,cpa_num,cpa_fuv,ctx->vg_effector);
}
static void do_child_modifiers(ParticleSimulationData *sim, ParticleTexture *ptex, ParticleKey *par, float *par_rot, ChildParticle *cpa, float *orco, float mat[4][4], ParticleKey *state, float t)
{
ParticleSettings *part = sim->psys->part;
int i = cpa - sim->psys->child;
int guided = 0;
float kink_freq = part->kink_freq;
float rough1 = part->rough1;
float rough2 = part->rough2;
float rough_end = part->rough_end;
if(ptex) {
kink_freq *= ptex->kink;
rough1 *= ptex->rough1;
rough2 *= ptex->rough2;
rough_end *= ptex->roughe;
}
if(part->flag & PART_CHILD_EFFECT)
/* state is safe to cast, since only co and vel are used */
guided = do_guides(sim->psys->effectors, (ParticleKey*)state, cpa->parent, t);
if(guided==0){
float clump = do_clump(state, par, t, part->clumpfac, part->clumppow, ptex ? ptex->clump : 1.f);
if(kink_freq != 0.f) {
float kink_amp = part->kink_amp * (1.f - part->kink_amp_clump * clump);
do_kink(state, par, par_rot, t, kink_freq, part->kink_shape,
kink_amp, part->kink_flat, part->kink, part->kink_axis,
sim->ob->obmat, sim->psys->part->childtype == PART_CHILD_FACES);
}
}
if(rough1 > 0.f)
do_rough(orco, mat, t, rough1, part->rough1_size, 0.0, state);
if(rough2 > 0.f)
do_rough(sim->psys->frand + ((i + 27) % (PSYS_FRAND_COUNT - 3)), mat, t, rough2, part->rough2_size, part->rough2_thres, state);
if(rough_end > 0.f)
do_rough_end(sim->psys->frand + ((i + 27) % (PSYS_FRAND_COUNT - 3)), mat, t, rough_end, part->rough_end_shape, state);
}
/* get's hair (or keyed) particles state at the "path time" specified in state->time */
void psys_get_particle_on_path(ParticleSimulationData *sim, int p, ParticleKey *state, int vel)
{
PARTICLE_PSMD;
ParticleSystem *psys = sim->psys;
ParticleSettings *part = sim->psys->part;
Material *ma = give_current_material(sim->ob, part->omat);
ParticleData *pa;
ChildParticle *cpa;
ParticleTexture ptex;
ParticleKey *par=0, keys[4], tstate;
ParticleThreadContext ctx; /* fake thread context for child modifiers */
ParticleInterpolationData pind;
float t;
float co[3], orco[3];
float hairmat[4][4];
int totpart = psys->totpart;
int totchild = psys->totchild;
short between = 0, edit = 0;
int keyed = part->phystype & PART_PHYS_KEYED && psys->flag & PSYS_KEYED;
int cached = !keyed && part->type != PART_HAIR;
float *cpa_fuv; int cpa_num; short cpa_from;
/* initialize keys to zero */
memset(keys, 0, 4*sizeof(ParticleKey));
t=state->time;
CLAMP(t, 0.0f, 1.0f);
if(p<totpart){
pa = psys->particles + p;
pind.keyed = keyed;
pind.cache = cached ? psys->pointcache : NULL;
pind.epoint = NULL;
pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE);
/* pind.dm disabled in editmode means we dont get effectors taken into
* account when subdividing for instance */
pind.dm = psys_in_edit_mode(sim->scene, psys) ? NULL : psys->hair_out_dm;
init_particle_interpolation(sim->ob, psys, pa, &pind);
do_particle_interpolation(psys, p, pa, t, &pind, state);
if(pind.dm) {
mul_m4_v3(sim->ob->obmat, state->co);
mul_mat3_m4_v3(sim->ob->obmat, state->vel);
}
else if(!keyed && !cached && !(psys->flag & PSYS_GLOBAL_HAIR)) {
if((pa->flag & PARS_REKEY)==0) {
psys_mat_hair_to_global(sim->ob, sim->psmd->dm, part->from, pa, hairmat);
mul_m4_v3(hairmat, state->co);
mul_mat3_m4_v3(hairmat, state->vel);
if(sim->psys->effectors && (part->flag & PART_CHILD_GUIDE)==0) {
do_guides(sim->psys->effectors, state, p, state->time);
/* TODO: proper velocity handling */
}
if(psys->lattice && edit==0)
calc_latt_deform(psys->lattice, state->co,1.0f);
}
}
}
else if(totchild){
//invert_m4_m4(imat,ob->obmat);
cpa=psys->child+p-totpart;
if(state->time < 0.0f)
t = psys_get_child_time(psys, cpa, -state->time, NULL, NULL);
if(totchild && part->childtype==PART_CHILD_FACES){
/* part->parents could still be 0 so we can't test with totparent */
between=1;
}
if(between){
int w = 0;
float foffset;
/* get parent states */
while(w<4 && cpa->pa[w]>=0){
keys[w].time = state->time;
psys_get_particle_on_path(sim, cpa->pa[w], keys+w, 1);
w++;
}
/* get the original coordinates (orco) for texture usage */
cpa_num=cpa->num;
foffset= cpa->foffset;
cpa_fuv = cpa->fuv;
cpa_from = PART_FROM_FACE;
psys_particle_on_emitter(psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa->fuv,foffset,co,0,0,0,orco,0);
/* we need to save the actual root position of the child for positioning it accurately to the surface of the emitter */
//VECCOPY(cpa_1st,co);
//mul_m4_v3(ob->obmat,cpa_1st);
pa = psys->particles + cpa->parent;
if(part->type == PART_HAIR)
psys_mat_hair_to_global(sim->ob, sim->psmd->dm, psys->part->from, pa, hairmat);
else
unit_m4(hairmat);
pa=0;
}
else{
/* get the parent state */
keys->time = state->time;
psys_get_particle_on_path(sim, cpa->parent, keys,1);
/* get the original coordinates (orco) for texture usage */
pa=psys->particles+cpa->parent;
cpa_from=part->from;
cpa_num=pa->num;
cpa_fuv=pa->fuv;
if(part->type == PART_HAIR) {
psys_particle_on_emitter(psmd,cpa_from,cpa_num,DMCACHE_ISCHILD,cpa_fuv,pa->foffset,co,0,0,0,orco,0);
psys_mat_hair_to_global(sim->ob, sim->psmd->dm, psys->part->from, pa, hairmat);
}
else {
copy_v3_v3(orco, cpa->fuv);
unit_m4(hairmat);
}
}
/* correct child ipo timing */
#if 0 // XXX old animation system
if((part->flag&PART_ABS_TIME)==0 && part->ipo){
calc_ipo(part->ipo, 100.0f*t);
execute_ipo((ID *)part, part->ipo);
}
#endif // XXX old animation system
/* get different child parameters from textures & vgroups */
memset(&ctx, 0, sizeof(ParticleThreadContext));
ctx.sim = *sim;
ctx.dm = psmd->dm;
ctx.ma = ma;
/* TODO: assign vertex groups */
get_child_modifier_parameters(part, &ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex);
if(between){
int w=0;
state->co[0] = state->co[1] = state->co[2] = 0.0f;
state->vel[0] = state->vel[1] = state->vel[2] = 0.0f;
/* child position is the weighted sum of parent positions */
while(w<4 && cpa->pa[w]>=0){
state->co[0] += cpa->w[w] * keys[w].co[0];
state->co[1] += cpa->w[w] * keys[w].co[1];
state->co[2] += cpa->w[w] * keys[w].co[2];
state->vel[0] += cpa->w[w] * keys[w].vel[0];
state->vel[1] += cpa->w[w] * keys[w].vel[1];
state->vel[2] += cpa->w[w] * keys[w].vel[2];
w++;
}
/* apply offset for correct positioning */
//VECADD(state->co,state->co,cpa_1st);
}
else{
/* offset the child from the parent position */
offset_child(cpa, keys, keys->rot, state, part->childflat, part->childrad);
}
par = keys;
if(vel)
copy_particle_key(&tstate, state, 1);
/* apply different deformations to the child path */
do_child_modifiers(sim, &ptex, par, par->rot, cpa, orco, hairmat, state, t);
/* try to estimate correct velocity */
if(vel){
ParticleKey tstate;
float length = len_v3(state->vel);
if(t>=0.001f){
tstate.time=t-0.001f;
psys_get_particle_on_path(sim,p,&tstate,0);
VECSUB(state->vel,state->co,tstate.co);
normalize_v3(state->vel);
}
else{
tstate.time=t+0.001f;
psys_get_particle_on_path(sim,p,&tstate,0);
VECSUB(state->vel,tstate.co,state->co);
normalize_v3(state->vel);
}
mul_v3_fl(state->vel, length);
}
}
}
/* gets particle's state at a time, returns 1 if particle exists and can be seen and 0 if not */
int psys_get_particle_state(ParticleSimulationData *sim, int p, ParticleKey *state, int always){
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleData *pa = NULL;
ChildParticle *cpa = NULL;
float cfra;
int totpart = psys->totpart;
float timestep = psys_get_timestep(sim);
/* negative time means "use current time" */
cfra = state->time > 0 ? state->time : bsystem_time(sim->scene, 0, (float)sim->scene->r.cfra, 0.0);
if(p>=totpart){
if(!psys->totchild)
return 0;
if(part->childtype == PART_CHILD_FACES){
if(!(psys->flag & PSYS_KEYED))
return 0;
cpa = psys->child + p - totpart;
state->time = psys_get_child_time(psys, cpa, cfra, NULL, NULL);
if(!always)
if((state->time < 0.0f && !(part->flag & PART_UNBORN))
|| (state->time > 1.0f && !(part->flag & PART_DIED)))
return 0;
state->time= (cfra - (part->sta + (part->end - part->sta) * PSYS_FRAND(p + 23))) / (part->lifetime * PSYS_FRAND(p + 24));
psys_get_particle_on_path(sim, p, state,1);
return 1;
}
else {
cpa = sim->psys->child + p - totpart;
pa = sim->psys->particles + cpa->parent;
}
}
else {
pa = sim->psys->particles + p;
}
if(pa) {
if(!always)
if((cfra < pa->time && (part->flag & PART_UNBORN)==0)
|| (cfra > pa->dietime && (part->flag & PART_DIED)==0))
return 0;
cfra = MIN2(cfra, pa->dietime);
}
if(sim->psys->flag & PSYS_KEYED){
state->time= -cfra;
psys_get_particle_on_path(sim, p, state,1);
return 1;
}
else{
if(cpa){
float mat[4][4];
ParticleKey *key1;
float t = (cfra - pa->time) / pa->lifetime;
key1=&pa->state;
offset_child(cpa, key1, key1->rot, state, part->childflat, part->childrad);
CLAMP(t, 0.0f, 1.0f);
unit_m4(mat);
do_child_modifiers(sim, NULL, key1, key1->rot, cpa, cpa->fuv, mat, state, t);
if(psys->lattice)
calc_latt_deform(sim->psys->lattice, state->co,1.0f);
}
else{
if(pa->state.time==cfra || ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED))
copy_particle_key(state, &pa->state, 1);
else if(pa->prev_state.time==cfra)
copy_particle_key(state, &pa->prev_state, 1);
else {
float dfra, frs_sec = sim->scene->r.frs_sec;
/* let's interpolate to try to be as accurate as possible */
if(pa->state.time + 2.f >= state->time && pa->prev_state.time - 2.f <= state->time) {
if(pa->prev_state.time >= pa->state.time || pa->prev_state.time < 0.f) {
/* prev_state is wrong so let's not use it, this can happen at frames 1, 0 or particle birth */
dfra = state->time - pa->state.time;
copy_particle_key(state, &pa->state, 1);
madd_v3_v3v3fl(state->co, state->co, state->vel, dfra/frs_sec);
}
else {
ParticleKey keys[4];
float keytime;
copy_particle_key(keys+1, &pa->prev_state, 1);
copy_particle_key(keys+2, &pa->state, 1);
dfra = keys[2].time - keys[1].time;
keytime = (state->time - keys[1].time) / dfra;
/* convert velocity to timestep size */
mul_v3_fl(keys[1].vel, dfra * timestep);
mul_v3_fl(keys[2].vel, dfra * timestep);
psys_interpolate_particle(-1, keys, keytime, state, 1);
/* convert back to real velocity */
mul_v3_fl(state->vel, 1.f / (dfra * timestep));
interp_v3_v3v3(state->ave, keys[1].ave, keys[2].ave, keytime);
interp_qt_qtqt(state->rot, keys[1].rot, keys[2].rot, keytime);
}
}
else if(pa->state.time + 1.f >= state->time && pa->state.time - 1.f <= state->time) {
/* linear interpolation using only pa->state */
dfra = state->time - pa->state.time;
copy_particle_key(state, &pa->state, 1);
madd_v3_v3v3fl(state->co, state->co, state->vel, dfra/frs_sec);
}
else {
/* extrapolating over big ranges is not accurate so let's just give something close to reasonable back */
copy_particle_key(state, &pa->state, 0);
}
}
if(sim->psys->lattice)
calc_latt_deform(sim->psys->lattice, state->co,1.0f);
}
return 1;
}
}
void psys_get_dupli_texture(ParticleSystem *psys, ParticleSettings *part, ParticleSystemModifierData *psmd, ParticleData *pa, ChildParticle *cpa, float *uv, float *orco)
{
MFace *mface;
MTFace *mtface;
float loc[3];
int num;
uv[0] = uv[1] = 0.f;
if(cpa) {
if(part->childtype == PART_CHILD_FACES) {
mtface= CustomData_get_layer(&psmd->dm->faceData, CD_MTFACE);
if(mtface) {
mface= psmd->dm->getFaceData(psmd->dm, cpa->num, CD_MFACE);
mtface += cpa->num;
psys_interpolate_uvs(mtface, mface->v4, cpa->fuv, uv);
}
psys_particle_on_emitter(psmd,PART_FROM_FACE,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,loc,0,0,0,orco,0);
return;
}
else {
pa = psys->particles + cpa->pa[0];
}
}
if(part->from == PART_FROM_FACE) {
mtface= CustomData_get_layer(&psmd->dm->faceData, CD_MTFACE);
num= pa->num_dmcache;
if(num == DMCACHE_NOTFOUND)
num= pa->num;
if (num >= psmd->dm->getNumFaces(psmd->dm)) {
/* happens when simplify is enabled
* gives invalid coords but would crash otherwise */
num= DMCACHE_NOTFOUND;
}
if(mtface && num != DMCACHE_NOTFOUND) {
mface= psmd->dm->getFaceData(psmd->dm, num, CD_MFACE);
mtface += num;
psys_interpolate_uvs(mtface, mface->v4, pa->fuv, uv);
}
}
psys_particle_on_emitter(psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,0,0,0,orco,0);
}
void psys_get_dupli_path_transform(ParticleSimulationData *sim, ParticleData *pa, ChildParticle *cpa, ParticleCacheKey *cache, float mat[][4], float *scale)
{
Object *ob = sim->ob;
ParticleSystem *psys = sim->psys;
ParticleSystemModifierData *psmd = sim->psmd;
float loc[3], nor[3], vec[3], side[3], len;
float xvec[3] = {-1.0, 0.0, 0.0}, nmat[3][3];
sub_v3_v3v3(vec, (cache+cache->steps)->co, cache->co);
len= normalize_v3(vec);
if(pa == NULL && psys->part->childflat != PART_CHILD_FACES)
pa = psys->particles + cpa->pa[0];
if(pa)
psys_particle_on_emitter(psmd,sim->psys->part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,nor,0,0,0,0);
else
psys_particle_on_emitter(psmd,PART_FROM_FACE,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,loc,nor,0,0,0,0);
if(psys->part->rotmode == PART_ROT_VEL) {
copy_m3_m4(nmat, ob->imat);
transpose_m3(nmat);
mul_m3_v3(nmat, nor);
normalize_v3(nor);
/* make sure that we get a proper side vector */
if(fabs(dot_v3v3(nor,vec))>0.999999) {
if(fabs(dot_v3v3(nor,xvec))>0.999999) {
nor[0] = 0.0f;
nor[1] = 1.0f;
nor[2] = 0.0f;
}
else {
nor[0] = 1.0f;
nor[1] = 0.0f;
nor[2] = 0.0f;
}
}
cross_v3_v3v3(side, nor, vec);
normalize_v3(side);
/* rotate side vector around vec */
if(psys->part->phasefac != 0) {
float q_phase[4];
float phasefac = psys->part->phasefac;
if(psys->part->randphasefac != 0.0f)
phasefac += psys->part->randphasefac * PSYS_FRAND((pa-psys->particles) + 20);
axis_angle_to_quat( q_phase, vec, phasefac*(float)M_PI);
mul_qt_v3(q_phase, side);
}
cross_v3_v3v3(nor, vec, side);
unit_m4(mat);
VECCOPY(mat[0], vec);
VECCOPY(mat[1], side);
VECCOPY(mat[2], nor);
}
else {
quat_to_mat4(mat, pa->state.rot);
}
*scale= len;
}
void psys_make_billboard(ParticleBillboardData *bb, float xvec[3], float yvec[3], float zvec[3], float center[3])
{
float onevec[3] = {0.0f,0.0f,0.0f}, tvec[3], tvec2[3];
xvec[0] = 1.0f; xvec[1] = 0.0f; xvec[2] = 0.0f;
yvec[0] = 0.0f; yvec[1] = 1.0f; yvec[2] = 0.0f;
/* can happen with bad pointcache or physics calculation
* since this becomes geometry, nan's and inf's crash raytrace code.
* better not allow this. */
if( !finite(bb->vec[0]) || !finite(bb->vec[1]) || !finite(bb->vec[2]) ||
!finite(bb->vel[0]) || !finite(bb->vel[1]) || !finite(bb->vel[2]) )
{
zero_v3(bb->vec);
zero_v3(bb->vel);
zero_v3(xvec);
zero_v3(yvec);
zero_v3(zvec);
zero_v3(center);
return;
}
if(bb->align < PART_BB_VIEW)
onevec[bb->align]=1.0f;
if(bb->lock && (bb->align == PART_BB_VIEW)) {
normalize_v3_v3(xvec, bb->ob->obmat[0]);
normalize_v3_v3(yvec, bb->ob->obmat[1]);
normalize_v3_v3(zvec, bb->ob->obmat[2]);
}
else if(bb->align == PART_BB_VEL) {
float temp[3];
normalize_v3_v3(temp, bb->vel);
VECSUB(zvec, bb->ob->obmat[3], bb->vec);
if(bb->lock) {
float fac = -dot_v3v3(zvec, temp);
VECADDFAC(zvec, zvec, temp, fac);
}
normalize_v3(zvec);
cross_v3_v3v3(xvec,temp,zvec);
normalize_v3(xvec);
cross_v3_v3v3(yvec,zvec,xvec);
}
else {
VECSUB(zvec, bb->ob->obmat[3], bb->vec);
if(bb->lock)
zvec[bb->align] = 0.0f;
normalize_v3(zvec);
if(bb->align < PART_BB_VIEW)
cross_v3_v3v3(xvec, onevec, zvec);
else
cross_v3_v3v3(xvec, bb->ob->obmat[1], zvec);
normalize_v3(xvec);
cross_v3_v3v3(yvec,zvec,xvec);
}
VECCOPY(tvec, xvec);
VECCOPY(tvec2, yvec);
mul_v3_fl(xvec, cos(bb->tilt * (float)M_PI));
mul_v3_fl(tvec2, sin(bb->tilt * (float)M_PI));
VECADD(xvec, xvec, tvec2);
mul_v3_fl(yvec, cos(bb->tilt * (float)M_PI));
mul_v3_fl(tvec, -sin(bb->tilt * (float)M_PI));
VECADD(yvec, yvec, tvec);
mul_v3_fl(xvec, bb->size[0]);
mul_v3_fl(yvec, bb->size[1]);
VECADDFAC(center, bb->vec, xvec, bb->offset[0]);
VECADDFAC(center, center, yvec, bb->offset[1]);
}
void psys_apply_hair_lattice(Scene *scene, Object *ob, ParticleSystem *psys) {
ParticleSimulationData sim= {0};
sim.scene= scene;
sim.ob= ob;
sim.psys= psys;
sim.psmd= psys_get_modifier(ob, psys);
psys->lattice = psys_get_lattice(&sim);
if(psys->lattice) {
ParticleData *pa = psys->particles;
HairKey *hkey;
int p, h;
float hairmat[4][4], imat[4][4];
for(p=0; p<psys->totpart; p++, pa++) {
psys_mat_hair_to_global(sim.ob, sim.psmd->dm, psys->part->from, pa, hairmat);
invert_m4_m4(imat, hairmat);
hkey = pa->hair;
for(h=0; h<pa->totkey; h++, hkey++) {
mul_m4_v3(hairmat, hkey->co);
calc_latt_deform(psys->lattice, hkey->co, 1.0f);
mul_m4_v3(imat, hkey->co);
}
}
end_latt_deform(psys->lattice);
psys->lattice= NULL;
/* protect the applied shape */
psys->flag |= PSYS_EDITED;
}
}