This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/render/integrator.cpp
Brecht Van Lommel 10d2cbfa36 Fix T84872: OptiX GPU + CPU rendering uses branched path samples
Branched path tracing is not supported for OptiX, and it would still use the
number of AA samples from there when branched path was enabled by the user
earlier but auto disabled and hidden in the UI when using OptiX.

Ref D10159
2021-01-20 14:59:23 +01:00

287 lines
9.9 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/integrator.h"
#include "device/device.h"
#include "render/background.h"
#include "render/film.h"
#include "render/jitter.h"
#include "render/light.h"
#include "render/scene.h"
#include "render/shader.h"
#include "render/sobol.h"
#include "render/stats.h"
#include "kernel/kernel_types.h"
#include "util/util_foreach.h"
#include "util/util_hash.h"
#include "util/util_logging.h"
#include "util/util_task.h"
#include "util/util_time.h"
CCL_NAMESPACE_BEGIN
NODE_DEFINE(Integrator)
{
NodeType *type = NodeType::add("integrator", create);
SOCKET_INT(min_bounce, "Min Bounce", 0);
SOCKET_INT(max_bounce, "Max Bounce", 7);
SOCKET_INT(max_diffuse_bounce, "Max Diffuse Bounce", 7);
SOCKET_INT(max_glossy_bounce, "Max Glossy Bounce", 7);
SOCKET_INT(max_transmission_bounce, "Max Transmission Bounce", 7);
SOCKET_INT(max_volume_bounce, "Max Volume Bounce", 7);
SOCKET_INT(transparent_min_bounce, "Transparent Min Bounce", 0);
SOCKET_INT(transparent_max_bounce, "Transparent Max Bounce", 7);
SOCKET_INT(ao_bounces, "AO Bounces", 0);
SOCKET_INT(volume_max_steps, "Volume Max Steps", 1024);
SOCKET_FLOAT(volume_step_rate, "Volume Step Rate", 1.0f);
SOCKET_BOOLEAN(caustics_reflective, "Reflective Caustics", true);
SOCKET_BOOLEAN(caustics_refractive, "Refractive Caustics", true);
SOCKET_FLOAT(filter_glossy, "Filter Glossy", 0.0f);
SOCKET_INT(seed, "Seed", 0);
SOCKET_FLOAT(sample_clamp_direct, "Sample Clamp Direct", 0.0f);
SOCKET_FLOAT(sample_clamp_indirect, "Sample Clamp Indirect", 0.0f);
SOCKET_BOOLEAN(motion_blur, "Motion Blur", false);
SOCKET_INT(aa_samples, "AA Samples", 0);
SOCKET_INT(diffuse_samples, "Diffuse Samples", 1);
SOCKET_INT(glossy_samples, "Glossy Samples", 1);
SOCKET_INT(transmission_samples, "Transmission Samples", 1);
SOCKET_INT(ao_samples, "AO Samples", 1);
SOCKET_INT(mesh_light_samples, "Mesh Light Samples", 1);
SOCKET_INT(subsurface_samples, "Subsurface Samples", 1);
SOCKET_INT(volume_samples, "Volume Samples", 1);
SOCKET_INT(start_sample, "Start Sample", 0);
SOCKET_FLOAT(adaptive_threshold, "Adaptive Threshold", 0.0f);
SOCKET_INT(adaptive_min_samples, "Adaptive Min Samples", 0);
SOCKET_BOOLEAN(sample_all_lights_direct, "Sample All Lights Direct", true);
SOCKET_BOOLEAN(sample_all_lights_indirect, "Sample All Lights Indirect", true);
SOCKET_FLOAT(light_sampling_threshold, "Light Sampling Threshold", 0.05f);
static NodeEnum method_enum;
method_enum.insert("path", PATH);
method_enum.insert("branched_path", BRANCHED_PATH);
SOCKET_ENUM(method, "Method", method_enum, PATH);
static NodeEnum sampling_pattern_enum;
sampling_pattern_enum.insert("sobol", SAMPLING_PATTERN_SOBOL);
sampling_pattern_enum.insert("cmj", SAMPLING_PATTERN_CMJ);
sampling_pattern_enum.insert("pmj", SAMPLING_PATTERN_PMJ);
SOCKET_ENUM(sampling_pattern, "Sampling Pattern", sampling_pattern_enum, SAMPLING_PATTERN_SOBOL);
return type;
}
Integrator::Integrator() : Node(node_type)
{
}
Integrator::~Integrator()
{
}
void Integrator::device_update(Device *device, DeviceScene *dscene, Scene *scene)
{
if (!is_modified())
return;
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->integrator.times.add_entry({"device_update", time});
}
});
device_free(device, dscene);
KernelIntegrator *kintegrator = &dscene->data.integrator;
/* integrator parameters */
kintegrator->min_bounce = min_bounce + 1;
kintegrator->max_bounce = max_bounce + 1;
kintegrator->max_diffuse_bounce = max_diffuse_bounce + 1;
kintegrator->max_glossy_bounce = max_glossy_bounce + 1;
kintegrator->max_transmission_bounce = max_transmission_bounce + 1;
kintegrator->max_volume_bounce = max_volume_bounce + 1;
kintegrator->transparent_min_bounce = transparent_min_bounce + 1;
kintegrator->transparent_max_bounce = transparent_max_bounce + 1;
if (ao_bounces == 0) {
kintegrator->ao_bounces = INT_MAX;
}
else {
kintegrator->ao_bounces = ao_bounces - 1;
}
/* Transparent Shadows
* We only need to enable transparent shadows, if we actually have
* transparent shaders in the scene. Otherwise we can disable it
* to improve performance a bit. */
kintegrator->transparent_shadows = false;
foreach (Shader *shader, scene->shaders) {
/* keep this in sync with SD_HAS_TRANSPARENT_SHADOW in shader.cpp */
if ((shader->has_surface_transparent && shader->get_use_transparent_shadow()) ||
shader->has_volume) {
kintegrator->transparent_shadows = true;
break;
}
}
kintegrator->volume_max_steps = volume_max_steps;
kintegrator->volume_step_rate = volume_step_rate;
kintegrator->caustics_reflective = caustics_reflective;
kintegrator->caustics_refractive = caustics_refractive;
kintegrator->filter_glossy = (filter_glossy == 0.0f) ? FLT_MAX : 1.0f / filter_glossy;
kintegrator->seed = hash_uint2(seed, 0);
kintegrator->use_ambient_occlusion = ((Pass::contains(scene->passes, PASS_AO)) ||
dscene->data.background.ao_factor != 0.0f);
kintegrator->sample_clamp_direct = (sample_clamp_direct == 0.0f) ? FLT_MAX :
sample_clamp_direct * 3.0f;
kintegrator->sample_clamp_indirect = (sample_clamp_indirect == 0.0f) ?
FLT_MAX :
sample_clamp_indirect * 3.0f;
kintegrator->branched = (method == BRANCHED_PATH) && device->info.has_branched_path;
kintegrator->volume_decoupled = device->info.has_volume_decoupled;
kintegrator->diffuse_samples = diffuse_samples;
kintegrator->glossy_samples = glossy_samples;
kintegrator->transmission_samples = transmission_samples;
kintegrator->ao_samples = ao_samples;
kintegrator->mesh_light_samples = mesh_light_samples;
kintegrator->subsurface_samples = subsurface_samples;
kintegrator->volume_samples = volume_samples;
kintegrator->start_sample = start_sample;
if (kintegrator->branched) {
kintegrator->sample_all_lights_direct = sample_all_lights_direct;
kintegrator->sample_all_lights_indirect = sample_all_lights_indirect;
}
else {
kintegrator->sample_all_lights_direct = false;
kintegrator->sample_all_lights_indirect = false;
}
kintegrator->sampling_pattern = sampling_pattern;
kintegrator->aa_samples = aa_samples;
if (aa_samples > 0 && adaptive_min_samples == 0) {
kintegrator->adaptive_min_samples = max(4, (int)sqrtf(aa_samples));
VLOG(1) << "Cycles adaptive sampling: automatic min samples = "
<< kintegrator->adaptive_min_samples;
}
else {
kintegrator->adaptive_min_samples = max(4, adaptive_min_samples);
}
kintegrator->adaptive_step = 4;
kintegrator->adaptive_stop_per_sample = device->info.has_adaptive_stop_per_sample;
/* Adaptive step must be a power of two for bitwise operations to work. */
assert((kintegrator->adaptive_step & (kintegrator->adaptive_step - 1)) == 0);
if (aa_samples > 0 && adaptive_threshold == 0.0f) {
kintegrator->adaptive_threshold = max(0.001f, 1.0f / (float)aa_samples);
VLOG(1) << "Cycles adaptive sampling: automatic threshold = "
<< kintegrator->adaptive_threshold;
}
else {
kintegrator->adaptive_threshold = adaptive_threshold;
}
if (light_sampling_threshold > 0.0f) {
kintegrator->light_inv_rr_threshold = 1.0f / light_sampling_threshold;
}
else {
kintegrator->light_inv_rr_threshold = 0.0f;
}
/* sobol directions table */
int max_samples = 1;
if (kintegrator->branched) {
foreach (Light *light, scene->lights)
max_samples = max(max_samples, light->get_samples());
max_samples = max(max_samples,
max(diffuse_samples, max(glossy_samples, transmission_samples)));
max_samples = max(max_samples, max(ao_samples, max(mesh_light_samples, subsurface_samples)));
max_samples = max(max_samples, volume_samples);
}
uint total_bounces = max_bounce + transparent_max_bounce + 3 + VOLUME_BOUNDS_MAX +
max(BSSRDF_MAX_HITS, BSSRDF_MAX_BOUNCES);
max_samples *= total_bounces;
int dimensions = PRNG_BASE_NUM + max_samples * PRNG_BOUNCE_NUM;
dimensions = min(dimensions, SOBOL_MAX_DIMENSIONS);
if (sampling_pattern == SAMPLING_PATTERN_SOBOL) {
uint *directions = dscene->sample_pattern_lut.alloc(SOBOL_BITS * dimensions);
sobol_generate_direction_vectors((uint(*)[SOBOL_BITS])directions, dimensions);
dscene->sample_pattern_lut.copy_to_device();
}
else {
constexpr int sequence_size = NUM_PMJ_SAMPLES;
constexpr int num_sequences = NUM_PMJ_PATTERNS;
float2 *directions = (float2 *)dscene->sample_pattern_lut.alloc(sequence_size * num_sequences *
2);
TaskPool pool;
for (int j = 0; j < num_sequences; ++j) {
float2 *sequence = directions + j * sequence_size;
pool.push(
function_bind(&progressive_multi_jitter_02_generate_2D, sequence, sequence_size, j));
}
pool.wait_work();
dscene->sample_pattern_lut.copy_to_device();
}
clear_modified();
}
void Integrator::device_free(Device *, DeviceScene *dscene)
{
dscene->sample_pattern_lut.free();
}
void Integrator::tag_update(Scene *scene)
{
foreach (Shader *shader, scene->shaders) {
if (shader->has_integrator_dependency) {
scene->shader_manager->need_update = true;
break;
}
}
tag_modified();
}
CCL_NAMESPACE_END