This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/geometry/intern/add_curves_on_mesh.cc
Jacques Lucke 133095fff4 Curves: refactor Add brush
This splits out the code that samples points on a surface and the
code that initializes new curves. This code will be reused by D15134.

Differential Revision: https://developer.blender.org/D15216
2022-06-17 15:31:21 +02:00

355 lines
15 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#include "BKE_mesh_sample.hh"
#include "BKE_spline.hh"
#include "GEO_add_curves_on_mesh.hh"
/**
* The code below uses a suffix naming convention to indicate the coordinate space:
* cu: Local space of the curves object that is being edited.
* su: Local space of the surface object.
*/
namespace blender::geometry {
using bke::CurvesGeometry;
struct NeighborCurve {
/* Curve index of the neighbor. */
int index;
/* The weights of all neighbors of a new curve add up to 1. */
float weight;
};
static constexpr int max_neighbors = 5;
using NeighborCurves = Vector<NeighborCurve, max_neighbors>;
static float3 compute_surface_point_normal(const MLoopTri &looptri,
const float3 &bary_coord,
const Span<float3> corner_normals)
{
const int l0 = looptri.tri[0];
const int l1 = looptri.tri[1];
const int l2 = looptri.tri[2];
const float3 &l0_normal = corner_normals[l0];
const float3 &l1_normal = corner_normals[l1];
const float3 &l2_normal = corner_normals[l2];
const float3 normal = math::normalize(
attribute_math::mix3(bary_coord, l0_normal, l1_normal, l2_normal));
return normal;
}
static void initialize_straight_curve_positions(const float3 &p1,
const float3 &p2,
MutableSpan<float3> r_positions)
{
const float step = 1.0f / (float)(r_positions.size() - 1);
for (const int i : r_positions.index_range()) {
r_positions[i] = math::interpolate(p1, p2, i * step);
}
}
static Array<NeighborCurves> find_curve_neighbors(const Span<float3> root_positions,
const KDTree_3d &old_roots_kdtree)
{
const int tot_added_curves = root_positions.size();
Array<NeighborCurves> neighbors_per_curve(tot_added_curves);
threading::parallel_for(IndexRange(tot_added_curves), 128, [&](const IndexRange range) {
for (const int i : range) {
const float3 root = root_positions[i];
std::array<KDTreeNearest_3d, max_neighbors> nearest_n;
const int found_neighbors = BLI_kdtree_3d_find_nearest_n(
&old_roots_kdtree, root, nearest_n.data(), max_neighbors);
float tot_weight = 0.0f;
for (const int neighbor_i : IndexRange(found_neighbors)) {
KDTreeNearest_3d &nearest = nearest_n[neighbor_i];
const float weight = 1.0f / std::max(nearest.dist, 0.00001f);
tot_weight += weight;
neighbors_per_curve[i].append({nearest.index, weight});
}
/* Normalize weights. */
for (NeighborCurve &neighbor : neighbors_per_curve[i]) {
neighbor.weight /= tot_weight;
}
}
});
return neighbors_per_curve;
}
template<typename T, typename GetValueF>
void interpolate_from_neighbors(const Span<NeighborCurves> neighbors_per_curve,
const T &fallback,
const GetValueF &get_value_from_neighbor,
MutableSpan<T> r_interpolated_values)
{
attribute_math::DefaultMixer<T> mixer{r_interpolated_values};
threading::parallel_for(r_interpolated_values.index_range(), 512, [&](const IndexRange range) {
for (const int i : range) {
const NeighborCurves &neighbors = neighbors_per_curve[i];
if (neighbors.is_empty()) {
mixer.mix_in(i, fallback, 1.0f);
}
else {
for (const NeighborCurve &neighbor : neighbors) {
const T neighbor_value = get_value_from_neighbor(neighbor.index);
mixer.mix_in(i, neighbor_value, neighbor.weight);
}
}
}
});
mixer.finalize();
}
static void interpolate_position_without_interpolation(
CurvesGeometry &curves,
const int old_curves_num,
const Span<float3> root_positions_cu,
const Span<float> new_lengths_cu,
const Span<float3> new_normals_su,
const float4x4 &surface_to_curves_normal_mat)
{
const int added_curves_num = root_positions_cu.size();
MutableSpan<float3> positions_cu = curves.positions_for_write();
threading::parallel_for(IndexRange(added_curves_num), 256, [&](const IndexRange range) {
for (const int i : range) {
const int curve_i = old_curves_num + i;
const IndexRange points = curves.points_for_curve(curve_i);
const float3 &root_cu = root_positions_cu[i];
const float length = new_lengths_cu[i];
const float3 &normal_su = new_normals_su[i];
const float3 normal_cu = math::normalize(surface_to_curves_normal_mat * normal_su);
const float3 tip_cu = root_cu + length * normal_cu;
initialize_straight_curve_positions(root_cu, tip_cu, positions_cu.slice(points));
}
});
}
static void interpolate_position_with_interpolation(CurvesGeometry &curves,
const Span<float3> root_positions_cu,
const Span<NeighborCurves> neighbors_per_curve,
const int old_curves_num,
const Span<float> new_lengths_cu,
const Span<float3> new_normals_su,
const float4x4 &surface_to_curves_normal_mat,
const float4x4 &curves_to_surface_mat,
const BVHTreeFromMesh &surface_bvh,
const Span<MLoopTri> surface_looptris,
const Mesh &surface,
const Span<float3> corner_normals_su)
{
MutableSpan<float3> positions_cu = curves.positions_for_write();
const int added_curves_num = root_positions_cu.size();
threading::parallel_for(IndexRange(added_curves_num), 256, [&](const IndexRange range) {
for (const int i : range) {
const NeighborCurves &neighbors = neighbors_per_curve[i];
const int curve_i = old_curves_num + i;
const IndexRange points = curves.points_for_curve(curve_i);
const float length_cu = new_lengths_cu[i];
const float3 &normal_su = new_normals_su[i];
const float3 normal_cu = math::normalize(surface_to_curves_normal_mat * normal_su);
const float3 &root_cu = root_positions_cu[i];
if (neighbors.is_empty()) {
/* If there are no neighbors, just make a straight line. */
const float3 tip_cu = root_cu + length_cu * normal_cu;
initialize_straight_curve_positions(root_cu, tip_cu, positions_cu.slice(points));
continue;
}
positions_cu.slice(points).fill(root_cu);
for (const NeighborCurve &neighbor : neighbors) {
const int neighbor_curve_i = neighbor.index;
const float3 &neighbor_first_pos_cu = positions_cu[curves.offsets()[neighbor_curve_i]];
const float3 neighbor_first_pos_su = curves_to_surface_mat * neighbor_first_pos_cu;
BVHTreeNearest nearest;
nearest.dist_sq = FLT_MAX;
BLI_bvhtree_find_nearest(surface_bvh.tree,
neighbor_first_pos_su,
&nearest,
surface_bvh.nearest_callback,
const_cast<BVHTreeFromMesh *>(&surface_bvh));
const int neighbor_looptri_index = nearest.index;
const MLoopTri &neighbor_looptri = surface_looptris[neighbor_looptri_index];
const float3 neighbor_bary_coord =
bke::mesh_surface_sample::compute_bary_coord_in_triangle(
surface, neighbor_looptri, nearest.co);
const float3 neighbor_normal_su = compute_surface_point_normal(
surface_looptris[neighbor_looptri_index], neighbor_bary_coord, corner_normals_su);
const float3 neighbor_normal_cu = math::normalize(surface_to_curves_normal_mat *
neighbor_normal_su);
/* The rotation matrix used to transform relative coordinates of the neighbor curve
* to the new curve. */
float normal_rotation_cu[3][3];
rotation_between_vecs_to_mat3(normal_rotation_cu, neighbor_normal_cu, normal_cu);
const IndexRange neighbor_points = curves.points_for_curve(neighbor_curve_i);
const float3 &neighbor_root_cu = positions_cu[neighbor_points[0]];
/* Use a temporary #PolySpline, because that's the easiest way to resample an
* existing curve right now. Resampling is necessary if the length of the new curve
* does not match the length of the neighbors or the number of handle points is
* different. */
PolySpline neighbor_spline;
neighbor_spline.resize(neighbor_points.size());
neighbor_spline.positions().copy_from(positions_cu.slice(neighbor_points));
neighbor_spline.mark_cache_invalid();
const float neighbor_length_cu = neighbor_spline.length();
const float length_factor = std::min(1.0f, length_cu / neighbor_length_cu);
const float resample_factor = (1.0f / (points.size() - 1.0f)) * length_factor;
for (const int j : IndexRange(points.size())) {
const Spline::LookupResult lookup = neighbor_spline.lookup_evaluated_factor(
j * resample_factor);
const float index_factor = lookup.evaluated_index + lookup.factor;
float3 p;
neighbor_spline.sample_with_index_factors<float3>(
neighbor_spline.positions(), {&index_factor, 1}, {&p, 1});
const float3 relative_coord = p - neighbor_root_cu;
float3 rotated_relative_coord = relative_coord;
mul_m3_v3(normal_rotation_cu, rotated_relative_coord);
positions_cu[points[j]] += neighbor.weight * rotated_relative_coord;
}
}
}
});
}
void add_curves_on_mesh(CurvesGeometry &curves, const AddCurvesOnMeshInputs &inputs)
{
const bool use_interpolation = inputs.interpolate_length || inputs.interpolate_point_count ||
inputs.interpolate_shape;
Array<NeighborCurves> neighbors_per_curve;
if (use_interpolation) {
BLI_assert(inputs.old_roots_kdtree != nullptr);
neighbors_per_curve = find_curve_neighbors(inputs.root_positions_cu, *inputs.old_roots_kdtree);
}
const int added_curves_num = inputs.root_positions_cu.size();
const int old_points_num = curves.points_num();
const int old_curves_num = curves.curves_num();
const int new_curves_num = old_curves_num + added_curves_num;
/* Grow number of curves first, so that the offsets array can be filled. */
curves.resize(old_points_num, new_curves_num);
/* Compute new curve offsets. */
MutableSpan<int> curve_offsets = curves.offsets_for_write();
MutableSpan<int> new_point_counts_per_curve = curve_offsets.take_back(added_curves_num);
if (inputs.interpolate_point_count) {
interpolate_from_neighbors<int>(
neighbors_per_curve,
inputs.fallback_point_count,
[&](const int curve_i) { return curves.points_for_curve(curve_i).size(); },
new_point_counts_per_curve);
}
else {
new_point_counts_per_curve.fill(inputs.fallback_point_count);
}
for (const int i : IndexRange(added_curves_num)) {
curve_offsets[old_curves_num + i + 1] += curve_offsets[old_curves_num + i];
}
const int new_points_num = curves.offsets().last();
curves.resize(new_points_num, new_curves_num);
MutableSpan<float3> positions_cu = curves.positions_for_write();
/* Determine length of new curves. */
Array<float> new_lengths_cu(added_curves_num);
if (inputs.interpolate_length) {
interpolate_from_neighbors<float>(
neighbors_per_curve,
inputs.fallback_curve_length,
[&](const int curve_i) {
const IndexRange points = curves.points_for_curve(curve_i);
float length = 0.0f;
for (const int segment_i : points.drop_back(1)) {
const float3 &p1 = positions_cu[segment_i];
const float3 &p2 = positions_cu[segment_i + 1];
length += math::distance(p1, p2);
}
return length;
},
new_lengths_cu);
}
else {
new_lengths_cu.fill(inputs.fallback_curve_length);
}
/* Find surface normal at root points. */
Array<float3> new_normals_su(added_curves_num);
threading::parallel_for(IndexRange(added_curves_num), 256, [&](const IndexRange range) {
for (const int i : range) {
const int looptri_index = inputs.looptri_indices[i];
const float3 &bary_coord = inputs.bary_coords[i];
new_normals_su[i] = compute_surface_point_normal(
inputs.surface_looptris[looptri_index], bary_coord, inputs.corner_normals_su);
}
});
/* Propagate attachment information. */
if (!inputs.surface_uv_map.is_empty()) {
MutableSpan<float2> surface_uv_coords = curves.surface_uv_coords_for_write();
bke::mesh_surface_sample::sample_corner_attribute(
*inputs.surface,
inputs.looptri_indices,
inputs.bary_coords,
GVArray::ForSpan(inputs.surface_uv_map),
IndexRange(added_curves_num),
surface_uv_coords.take_back(added_curves_num));
}
/* Update selection arrays when available. */
const VArray<float> points_selection = curves.selection_point_float();
if (points_selection.is_span()) {
MutableSpan<float> points_selection_span = curves.selection_point_float_for_write();
points_selection_span.drop_front(old_points_num).fill(1.0f);
}
const VArray<float> curves_selection = curves.selection_curve_float();
if (curves_selection.is_span()) {
MutableSpan<float> curves_selection_span = curves.selection_curve_float_for_write();
curves_selection_span.drop_front(old_curves_num).fill(1.0f);
}
/* Initialize position attribute. */
if (inputs.interpolate_shape) {
interpolate_position_with_interpolation(curves,
inputs.root_positions_cu,
neighbors_per_curve,
old_curves_num,
new_lengths_cu,
new_normals_su,
inputs.surface_to_curves_normal_mat,
inputs.curves_to_surface_mat,
*inputs.surface_bvh,
inputs.surface_looptris,
*inputs.surface,
inputs.corner_normals_su);
}
else {
interpolate_position_without_interpolation(curves,
old_curves_num,
inputs.root_positions_cu,
new_lengths_cu,
new_normals_su,
inputs.surface_to_curves_normal_mat);
}
curves.update_curve_types();
}
} // namespace blender::geometry