This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/draw/engines/eevee/eevee_cryptomatte.c

725 lines
30 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2020, Blender Foundation.
*/
/** \file
* \ingroup EEVEE
*
* This file implements Cryptomatte for EEVEE. Cryptomatte is used to extract mattes using
* information already available at render time. See
* https://raw.githubusercontent.com/Psyop/Cryptomatte/master/specification/IDmattes_poster.pdf
* for reference to the cryptomatte specification.
*
* The challenge with cryptomatte in EEVEE is the merging and sorting of the samples.
* User can enable up to 3 cryptomatte layers (Object, Material and Asset).
*
* Process
*
* - Cryptomatte sample: Rendering of a cryptomatte sample is stored in a GPUBuffer. The buffer
* holds a single float per pixel per number of active cryptomatte layers. The float is the
* cryptomatte hash of each layer. After drawing the cryptomatte sample the intermediate result is
* downloaded to a CPU buffer (`cryptomatte_download_buffer`).
*
* Accurate mode
*
* There are two accuracy modes. The difference between the two is the number of render samples
* they take into account to create the render passes. When accurate mode is off the number of
* levels is used as the number of cryptomatte samples to take. When accuracy mode is on the number
* of render samples is used.
*
*/
#include "DRW_engine.h"
#include "DRW_render.h"
#include "BKE_cryptomatte.h"
#include "GPU_batch.h"
#include "RE_pipeline.h"
#include "BLI_alloca.h"
#include "BLI_math_bits.h"
#include "BLI_rect.h"
#include "DNA_hair_types.h"
#include "DNA_mesh_types.h"
#include "DNA_modifier_types.h"
#include "DNA_particle_types.h"
#include "eevee_private.h"
/* -------------------------------------------------------------------- */
/** \name Data Management cryptomatte accum buffer
* \{ */
BLI_INLINE eViewLayerCryptomatteFlags eevee_cryptomatte_active_layers(const ViewLayer *view_layer)
{
const eViewLayerCryptomatteFlags cryptomatte_layers = view_layer->cryptomatte_flag &
VIEW_LAYER_CRYPTOMATTE_ALL;
return cryptomatte_layers;
}
/* The number of cryptomatte layers that are enabled */
BLI_INLINE int eevee_cryptomatte_layers_count(const ViewLayer *view_layer)
{
const eViewLayerCryptomatteFlags cryptomatte_layers = eevee_cryptomatte_active_layers(
view_layer);
return count_bits_i(cryptomatte_layers);
}
/* The number of render result passes are needed to store a single cryptomatte layer. Per
* renderpass 2 cryptomatte samples can be stored. */
BLI_INLINE int eevee_cryptomatte_passes_per_layer(const ViewLayer *view_layer)
{
const int num_cryptomatte_levels = view_layer->cryptomatte_levels;
const int num_cryptomatte_passes = (num_cryptomatte_levels + 1) / 2;
return num_cryptomatte_passes;
}
BLI_INLINE int eevee_cryptomatte_layer_stride(const ViewLayer *view_layer)
{
return view_layer->cryptomatte_levels;
}
BLI_INLINE int eevee_cryptomatte_layer_offset(const ViewLayer *view_layer, const int layer)
{
return view_layer->cryptomatte_levels * layer;
}
BLI_INLINE int eevee_cryptomatte_pixel_stride(const ViewLayer *view_layer)
{
return eevee_cryptomatte_layer_stride(view_layer) * eevee_cryptomatte_layers_count(view_layer);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Init Renderpasses
* \{ */
void EEVEE_cryptomatte_renderpasses_init(EEVEE_Data *vedata)
{
EEVEE_StorageList *stl = vedata->stl;
EEVEE_PrivateData *g_data = stl->g_data;
const DRWContextState *draw_ctx = DRW_context_state_get();
ViewLayer *view_layer = draw_ctx->view_layer;
/* Cryptomatte is only rendered for final image renders */
if (!DRW_state_is_scene_render()) {
return;
}
const eViewLayerCryptomatteFlags active_layers = eevee_cryptomatte_active_layers(view_layer);
if (active_layers) {
struct CryptomatteSession *session = BKE_cryptomatte_init();
if ((active_layers & VIEW_LAYER_CRYPTOMATTE_OBJECT) != 0) {
BKE_cryptomatte_add_layer(session, "CryptoObject");
}
if ((active_layers & VIEW_LAYER_CRYPTOMATTE_MATERIAL) != 0) {
BKE_cryptomatte_add_layer(session, "CryptoMaterial");
}
if ((active_layers & VIEW_LAYER_CRYPTOMATTE_ASSET) != 0) {
BKE_cryptomatte_add_layer(session, "CryptoAsset");
}
g_data->cryptomatte_session = session;
g_data->render_passes |= EEVEE_RENDER_PASS_CRYPTOMATTE | EEVEE_RENDER_PASS_VOLUME_LIGHT;
g_data->cryptomatte_accurate_mode = (view_layer->cryptomatte_flag &
VIEW_LAYER_CRYPTOMATTE_ACCURATE) != 0;
}
}
void EEVEE_cryptomatte_output_init(EEVEE_ViewLayerData *UNUSED(sldata),
EEVEE_Data *vedata,
int UNUSED(tot_samples))
{
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_PrivateData *g_data = stl->g_data;
DefaultTextureList *dtxl = DRW_viewport_texture_list_get();
const DRWContextState *draw_ctx = DRW_context_state_get();
const ViewLayer *view_layer = draw_ctx->view_layer;
const int num_cryptomatte_layers = eevee_cryptomatte_layers_count(view_layer);
eGPUTextureFormat format = (num_cryptomatte_layers == 1) ? GPU_R32F :
(num_cryptomatte_layers == 2) ? GPU_RG32F :
GPU_RGBA32F;
const float *viewport_size = DRW_viewport_size_get();
const int buffer_size = viewport_size[0] * viewport_size[1];
if (g_data->cryptomatte_accum_buffer == NULL) {
g_data->cryptomatte_accum_buffer = MEM_calloc_arrayN(
sizeof(EEVEE_CryptomatteSample),
buffer_size * eevee_cryptomatte_pixel_stride(view_layer),
__func__);
/* Download buffer should store a float per active cryptomatte layer. */
g_data->cryptomatte_download_buffer = MEM_malloc_arrayN(
sizeof(float), buffer_size * num_cryptomatte_layers, __func__);
}
else {
/* During multiview rendering the `cryptomatte_accum_buffer` is deallocated after all views
* have been rendered. Clear it here to be reused by the next view. */
memset(g_data->cryptomatte_accum_buffer,
0,
buffer_size * eevee_cryptomatte_pixel_stride(view_layer) *
sizeof(EEVEE_CryptomatteSample));
}
DRW_texture_ensure_fullscreen_2d(&txl->cryptomatte, format, 0);
GPU_framebuffer_ensure_config(&fbl->cryptomatte_fb,
{
GPU_ATTACHMENT_TEXTURE(dtxl->depth),
GPU_ATTACHMENT_TEXTURE(txl->cryptomatte),
});
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Populate Cache
* \{ */
void EEVEE_cryptomatte_cache_init(EEVEE_ViewLayerData *UNUSED(sldata), EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
if ((vedata->stl->g_data->render_passes & EEVEE_RENDER_PASS_CRYPTOMATTE) != 0) {
DRW_PASS_CREATE(psl->cryptomatte_ps, DRW_STATE_WRITE_COLOR | DRW_STATE_DEPTH_EQUAL);
}
}
static DRWShadingGroup *eevee_cryptomatte_shading_group_create(EEVEE_Data *vedata,
EEVEE_ViewLayerData *UNUSED(sldata),
Object *ob,
Material *material,
bool is_hair)
{
const DRWContextState *draw_ctx = DRW_context_state_get();
const ViewLayer *view_layer = draw_ctx->view_layer;
const eViewLayerCryptomatteFlags cryptomatte_layers = eevee_cryptomatte_active_layers(
view_layer);
EEVEE_PrivateData *g_data = vedata->stl->g_data;
float cryptohash[4] = {0.0f};
EEVEE_PassList *psl = vedata->psl;
int layer_offset = 0;
if ((cryptomatte_layers & VIEW_LAYER_CRYPTOMATTE_OBJECT) != 0) {
uint32_t cryptomatte_hash = BKE_cryptomatte_object_hash(
g_data->cryptomatte_session, "CryptoObject", ob);
float cryptomatte_color_value = BKE_cryptomatte_hash_to_float(cryptomatte_hash);
cryptohash[layer_offset] = cryptomatte_color_value;
layer_offset++;
}
if ((cryptomatte_layers & VIEW_LAYER_CRYPTOMATTE_MATERIAL) != 0) {
uint32_t cryptomatte_hash = BKE_cryptomatte_material_hash(
g_data->cryptomatte_session, "CryptoMaterial", material);
float cryptomatte_color_value = BKE_cryptomatte_hash_to_float(cryptomatte_hash);
cryptohash[layer_offset] = cryptomatte_color_value;
layer_offset++;
}
if ((cryptomatte_layers & VIEW_LAYER_CRYPTOMATTE_ASSET) != 0) {
uint32_t cryptomatte_hash = BKE_cryptomatte_asset_hash(
g_data->cryptomatte_session, "CryptoAsset", ob);
float cryptomatte_color_value = BKE_cryptomatte_hash_to_float(cryptomatte_hash);
cryptohash[layer_offset] = cryptomatte_color_value;
layer_offset++;
}
DRWShadingGroup *grp = DRW_shgroup_create(EEVEE_shaders_cryptomatte_sh_get(is_hair),
psl->cryptomatte_ps);
DRW_shgroup_uniform_vec4_copy(grp, "cryptohash", cryptohash);
return grp;
}
static void eevee_cryptomatte_hair_cache_populate(EEVEE_Data *vedata,
EEVEE_ViewLayerData *sldata,
Object *ob,
ParticleSystem *psys,
ModifierData *md,
Material *material)
{
DRWShadingGroup *grp = eevee_cryptomatte_shading_group_create(
vedata, sldata, ob, material, true);
DRW_shgroup_hair_create_sub(ob, psys, md, grp);
}
void EEVEE_cryptomatte_object_hair_cache_populate(EEVEE_Data *vedata,
EEVEE_ViewLayerData *sldata,
Object *ob)
{
BLI_assert(ob->type == OB_HAIR);
Material *material = BKE_object_material_get_eval(ob, HAIR_MATERIAL_NR);
eevee_cryptomatte_hair_cache_populate(vedata, sldata, ob, NULL, NULL, material);
}
void EEVEE_cryptomatte_particle_hair_cache_populate(EEVEE_Data *vedata,
EEVEE_ViewLayerData *sldata,
Object *ob)
{
const DRWContextState *draw_ctx = DRW_context_state_get();
if (ob->type == OB_MESH) {
if (ob != draw_ctx->object_edit) {
LISTBASE_FOREACH (ModifierData *, md, &ob->modifiers) {
if (md->type != eModifierType_ParticleSystem) {
continue;
}
ParticleSystem *psys = ((ParticleSystemModifierData *)md)->psys;
if (!DRW_object_is_visible_psys_in_active_context(ob, psys)) {
continue;
}
ParticleSettings *part = psys->part;
const int draw_as = (part->draw_as == PART_DRAW_REND) ? part->ren_as : part->draw_as;
if (draw_as != PART_DRAW_PATH) {
continue;
}
Material *material = BKE_object_material_get_eval(ob, part->omat);
eevee_cryptomatte_hair_cache_populate(vedata, sldata, ob, psys, md, material);
}
}
}
}
void EEVEE_cryptomatte_cache_populate(EEVEE_Data *vedata, EEVEE_ViewLayerData *sldata, Object *ob)
{
const DRWContextState *draw_ctx = DRW_context_state_get();
const ViewLayer *view_layer = draw_ctx->view_layer;
const eViewLayerCryptomatteFlags cryptomatte_layers = eevee_cryptomatte_active_layers(
view_layer);
if ((cryptomatte_layers & VIEW_LAYER_CRYPTOMATTE_MATERIAL) != 0) {
const int materials_len = DRW_cache_object_material_count_get(ob);
struct GPUMaterial **gpumat_array = BLI_array_alloca(gpumat_array, materials_len);
memset(gpumat_array, 0, sizeof(*gpumat_array) * materials_len);
struct GPUBatch **geoms = DRW_cache_object_surface_material_get(
ob, gpumat_array, materials_len);
if (geoms) {
for (int i = 0; i < materials_len; i++) {
struct GPUBatch *geom = geoms[i];
if (geom == NULL) {
continue;
}
Material *material = BKE_object_material_get_eval(ob, i + 1);
DRWShadingGroup *grp = eevee_cryptomatte_shading_group_create(
vedata, sldata, ob, material, false);
DRW_shgroup_call(grp, geom, ob);
}
}
}
else {
GPUBatch *geom = DRW_cache_object_surface_get(ob);
if (geom) {
DRWShadingGroup *grp = eevee_cryptomatte_shading_group_create(
vedata, sldata, ob, NULL, false);
DRW_shgroup_call(grp, geom, ob);
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Accumulate Samples
* \{ */
/* Downloads cryptomatte sample buffer from the GPU and integrate the samples with the accumulated
* cryptomatte samples. */
static void eevee_cryptomatte_download_buffer(EEVEE_Data *vedata, GPUFrameBuffer *framebuffer)
{
EEVEE_StorageList *stl = vedata->stl;
EEVEE_PrivateData *g_data = stl->g_data;
const DRWContextState *draw_ctx = DRW_context_state_get();
const ViewLayer *view_layer = draw_ctx->view_layer;
const int num_cryptomatte_layers = eevee_cryptomatte_layers_count(view_layer);
const int num_levels = view_layer->cryptomatte_levels;
const float *viewport_size = DRW_viewport_size_get();
const int buffer_size = viewport_size[0] * viewport_size[1];
EEVEE_CryptomatteSample *accum_buffer = g_data->cryptomatte_accum_buffer;
float *download_buffer = g_data->cryptomatte_download_buffer;
BLI_assert(accum_buffer);
BLI_assert(download_buffer);
GPU_framebuffer_read_color(framebuffer,
0,
0,
viewport_size[0],
viewport_size[1],
num_cryptomatte_layers,
0,
GPU_DATA_FLOAT,
download_buffer);
/* Integrate download buffer into the accum buffer.
* The download buffer contains up to 3 floats per pixel (one float per cryptomatte layer.
*
* NOTE: here we deviate from the cryptomatte standard. During integration the standard always
* sort the samples by its weight to make sure that samples with the lowest weight
* are discarded first. In our case the weight of each sample is always 1 as we don't have
* subsamples and apply the coverage during the post processing. When there is no room for new
* samples the new samples has a weight of 1 and will always be discarded. */
int download_pixel_index = 0;
int accum_pixel_index = 0;
int accum_pixel_stride = eevee_cryptomatte_pixel_stride(view_layer);
for (int pixel_index = 0; pixel_index < buffer_size; pixel_index++) {
for (int layer = 0; layer < num_cryptomatte_layers; layer++) {
const int layer_offset = eevee_cryptomatte_layer_offset(view_layer, layer);
float download_hash = download_buffer[download_pixel_index++];
for (int level = 0; level < num_levels; level++) {
EEVEE_CryptomatteSample *sample = &accum_buffer[accum_pixel_index + layer_offset + level];
if (sample->hash == download_hash) {
sample->weight += 1.0f;
break;
}
/* We test against weight as hash 0.0f is used for samples hitting the world background. */
if (sample->weight == 0.0f) {
sample->hash = download_hash;
sample->weight = 1.0f;
break;
}
}
}
accum_pixel_index += accum_pixel_stride;
}
}
void EEVEE_cryptomatte_output_accumulate(EEVEE_ViewLayerData *UNUSED(sldata), EEVEE_Data *vedata)
{
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_PrivateData *g_data = stl->g_data;
EEVEE_EffectsInfo *effects = stl->effects;
EEVEE_PassList *psl = vedata->psl;
const DRWContextState *draw_ctx = DRW_context_state_get();
const ViewLayer *view_layer = draw_ctx->view_layer;
const int cryptomatte_levels = view_layer->cryptomatte_levels;
const int current_sample = effects->taa_current_sample;
/* In accurate mode all render samples are evaluated. In inaccurate mode this is limited to the
* number of cryptomatte levels. This will reduce the overhead of downloading the GPU buffer and
* integrating it into the accum buffer. */
if (g_data->cryptomatte_accurate_mode || current_sample < cryptomatte_levels) {
static float clear_color[4] = {0.0};
GPU_framebuffer_bind(fbl->cryptomatte_fb);
GPU_framebuffer_clear_color(fbl->cryptomatte_fb, clear_color);
DRW_draw_pass(psl->cryptomatte_ps);
eevee_cryptomatte_download_buffer(vedata, fbl->cryptomatte_fb);
/* Restore */
GPU_framebuffer_bind(fbl->main_fb);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Update Render Passes
* \{ */
/* Register the render passes needed for cryptomatte
* normally this is done in `EEVEE_render_update_passes`, but it has been placed here to keep
* related code side-by-side for clarity. */
void EEVEE_cryptomatte_update_passes(RenderEngine *engine, Scene *scene, ViewLayer *view_layer)
{
char cryptomatte_pass_name[MAX_NAME];
const short num_passes = eevee_cryptomatte_passes_per_layer(view_layer);
if ((view_layer->cryptomatte_flag & VIEW_LAYER_CRYPTOMATTE_OBJECT) != 0) {
for (short pass = 0; pass < num_passes; pass++) {
BLI_snprintf_rlen(cryptomatte_pass_name, MAX_NAME, "CryptoObject%02d", pass);
RE_engine_register_pass(
engine, scene, view_layer, cryptomatte_pass_name, 4, "RGBA", SOCK_RGBA);
}
}
if ((view_layer->cryptomatte_flag & VIEW_LAYER_CRYPTOMATTE_MATERIAL) != 0) {
for (short pass = 0; pass < num_passes; pass++) {
BLI_snprintf_rlen(cryptomatte_pass_name, MAX_NAME, "CryptoMaterial%02d", pass);
RE_engine_register_pass(
engine, scene, view_layer, cryptomatte_pass_name, 4, "RGBA", SOCK_RGBA);
}
}
if ((view_layer->cryptomatte_flag & VIEW_LAYER_CRYPTOMATTE_ASSET) != 0) {
for (short pass = 0; pass < num_passes; pass++) {
BLI_snprintf_rlen(cryptomatte_pass_name, MAX_NAME, "CryptoAsset%02d", pass);
RE_engine_register_pass(
engine, scene, view_layer, cryptomatte_pass_name, 4, "RGBA", SOCK_RGBA);
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Construct Render Result
* \{ */
/* Compare function for cryptomatte samples. Samples with the highest weight will be at the
* beginning of the list. */
static int eevee_cryptomatte_sample_cmp_reverse(const void *a_, const void *b_)
{
const EEVEE_CryptomatteSample *a = a_;
const EEVEE_CryptomatteSample *b = b_;
if (a->weight < b->weight) {
return 1;
}
if (a->weight > b->weight) {
return -1;
}
return 0;
}
/* Post process the weights. The accumulated weights buffer adds one to each weight per sample.
* During post processing ensure that the total of weights per sample is between 0 and 1. */
static void eevee_cryptomatte_postprocess_weights(EEVEE_Data *vedata)
{
EEVEE_StorageList *stl = vedata->stl;
EEVEE_PrivateData *g_data = stl->g_data;
EEVEE_EffectsInfo *effects = stl->effects;
EEVEE_TextureList *txl = vedata->txl;
const DRWContextState *draw_ctx = DRW_context_state_get();
const ViewLayer *view_layer = draw_ctx->view_layer;
const int num_cryptomatte_layers = eevee_cryptomatte_layers_count(view_layer);
const int num_levels = view_layer->cryptomatte_levels;
const float *viewport_size = DRW_viewport_size_get();
const int buffer_size = viewport_size[0] * viewport_size[1];
EEVEE_CryptomatteSample *accum_buffer = g_data->cryptomatte_accum_buffer;
BLI_assert(accum_buffer);
float *volumetric_transmittance_buffer = NULL;
if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) {
volumetric_transmittance_buffer = GPU_texture_read(
txl->volume_transmittance_accum, GPU_DATA_FLOAT, 0);
}
const int num_samples = effects->taa_current_sample - 1;
int accum_pixel_index = 0;
int accum_pixel_stride = eevee_cryptomatte_pixel_stride(view_layer);
for (int pixel_index = 0; pixel_index < buffer_size;
pixel_index++, accum_pixel_index += accum_pixel_stride) {
float coverage = 1.0f;
if (volumetric_transmittance_buffer != NULL) {
coverage = (volumetric_transmittance_buffer[pixel_index * 4] +
volumetric_transmittance_buffer[pixel_index * 4 + 1] +
volumetric_transmittance_buffer[pixel_index * 4 + 2]) /
(3.0f * num_samples);
}
for (int layer = 0; layer < num_cryptomatte_layers; layer++) {
const int layer_offset = eevee_cryptomatte_layer_offset(view_layer, layer);
/* Calculate the total weight of the sample. */
float total_weight = 0.0f;
for (int level = 0; level < num_levels; level++) {
EEVEE_CryptomatteSample *sample = &accum_buffer[accum_pixel_index + layer_offset + level];
total_weight += sample->weight;
}
BLI_assert(total_weight > 0.0f);
float total_weight_inv = coverage / total_weight;
if (total_weight_inv > 0.0f) {
for (int level = 0; level < num_levels; level++) {
EEVEE_CryptomatteSample *sample =
&accum_buffer[accum_pixel_index + layer_offset + level];
/* Remove background samples. These samples were used to determine the correct weight
* but won't be part of the final result. */
if (sample->hash == 0.0f) {
sample->weight = 0.0f;
}
sample->weight *= total_weight_inv;
}
/* Sort accum buffer by coverage of each sample. */
qsort(&accum_buffer[accum_pixel_index + layer_offset],
num_levels,
sizeof(EEVEE_CryptomatteSample),
eevee_cryptomatte_sample_cmp_reverse);
}
else {
/* This pixel doesn't have any weight, so clear it fully. */
for (int level = 0; level < num_levels; level++) {
EEVEE_CryptomatteSample *sample =
&accum_buffer[accum_pixel_index + layer_offset + level];
sample->weight = 0.0f;
sample->hash = 0.0f;
}
}
}
}
if (volumetric_transmittance_buffer) {
MEM_freeN(volumetric_transmittance_buffer);
}
}
/* Extract cryptomatte layer from the cryptomatte_accum_buffer to render passes. */
static void eevee_cryptomatte_extract_render_passes(
RenderLayer *rl,
const char *viewname,
const char *render_pass_name_format,
EEVEE_CryptomatteSample *accum_buffer,
/* number of render passes per cryptomatte layer. */
const int num_cryptomatte_passes,
const int num_cryptomatte_levels,
const int accum_pixel_stride,
const int layer_stride,
const int layer_index,
const int rect_width,
const int rect_height,
const int rect_offset_x,
const int rect_offset_y,
const int viewport_width)
{
char cryptomatte_pass_name[MAX_NAME];
/* A pass can store 2 levels. Technically the last pass can have a single level if the number of
* levels is an odd number. This parameter counts the number of levels it has processed. */
int levels_done = 0;
for (int pass = 0; pass < num_cryptomatte_passes; pass++) {
/* Each pass holds 2 cryptomatte samples. */
const int pass_offset = pass * 2;
BLI_snprintf_rlen(cryptomatte_pass_name, MAX_NAME, render_pass_name_format, pass);
RenderPass *rp_object = RE_pass_find_by_name(rl, cryptomatte_pass_name, viewname);
for (int y = 0; y < rect_height; y++) {
for (int x = 0; x < rect_width; x++) {
const int accum_buffer_offset = (rect_offset_x + x +
(rect_offset_y + y) * viewport_width) *
accum_pixel_stride +
layer_index * layer_stride + pass_offset;
const int render_pass_offset = (y * rect_width + x) * 4;
rp_object->rect[render_pass_offset] = accum_buffer[accum_buffer_offset].hash;
rp_object->rect[render_pass_offset + 1] = accum_buffer[accum_buffer_offset].weight;
if (levels_done + 1 < num_cryptomatte_levels) {
rp_object->rect[render_pass_offset + 2] = accum_buffer[accum_buffer_offset + 1].hash;
rp_object->rect[render_pass_offset + 3] = accum_buffer[accum_buffer_offset + 1].weight;
}
else {
rp_object->rect[render_pass_offset + 2] = 0.0f;
rp_object->rect[render_pass_offset + 3] = 0.0f;
}
}
}
levels_done++;
}
}
void EEVEE_cryptomatte_render_result(RenderLayer *rl,
const char *viewname,
const rcti *rect,
EEVEE_Data *vedata,
EEVEE_ViewLayerData *UNUSED(sldata))
{
EEVEE_PrivateData *g_data = vedata->stl->g_data;
const DRWContextState *draw_ctx = DRW_context_state_get();
const ViewLayer *view_layer = draw_ctx->view_layer;
const eViewLayerCryptomatteFlags cryptomatte_layers = view_layer->cryptomatte_flag &
VIEW_LAYER_CRYPTOMATTE_ALL;
eevee_cryptomatte_postprocess_weights(vedata);
const int rect_width = BLI_rcti_size_x(rect);
const int rect_height = BLI_rcti_size_y(rect);
const int rect_offset_x = vedata->stl->g_data->overscan_pixels + rect->xmin;
const int rect_offset_y = vedata->stl->g_data->overscan_pixels + rect->ymin;
const float *viewport_size = DRW_viewport_size_get();
const int viewport_width = viewport_size[0];
EEVEE_CryptomatteSample *accum_buffer = g_data->cryptomatte_accum_buffer;
BLI_assert(accum_buffer);
const int num_cryptomatte_levels = view_layer->cryptomatte_levels;
const int num_cryptomatte_passes = eevee_cryptomatte_passes_per_layer(view_layer);
const int layer_stride = eevee_cryptomatte_layer_stride(view_layer);
const int accum_pixel_stride = eevee_cryptomatte_pixel_stride(view_layer);
int layer_index = 0;
if ((cryptomatte_layers & VIEW_LAYER_CRYPTOMATTE_OBJECT) != 0) {
eevee_cryptomatte_extract_render_passes(rl,
viewname,
"CryptoObject%02d",
accum_buffer,
num_cryptomatte_passes,
num_cryptomatte_levels,
accum_pixel_stride,
layer_stride,
layer_index,
rect_width,
rect_height,
rect_offset_x,
rect_offset_y,
viewport_width);
layer_index++;
}
if ((cryptomatte_layers & VIEW_LAYER_CRYPTOMATTE_MATERIAL) != 0) {
eevee_cryptomatte_extract_render_passes(rl,
viewname,
"CryptoMaterial%02d",
accum_buffer,
num_cryptomatte_passes,
num_cryptomatte_levels,
accum_pixel_stride,
layer_stride,
layer_index,
rect_width,
rect_height,
rect_offset_x,
rect_offset_y,
viewport_width);
layer_index++;
}
if ((cryptomatte_layers & VIEW_LAYER_CRYPTOMATTE_ASSET) != 0) {
eevee_cryptomatte_extract_render_passes(rl,
viewname,
"CryptoAsset%02d",
accum_buffer,
num_cryptomatte_passes,
num_cryptomatte_levels,
accum_pixel_stride,
layer_stride,
layer_index,
rect_width,
rect_height,
rect_offset_x,
rect_offset_y,
viewport_width);
layer_index++;
}
}
void EEVEE_cryptomatte_store_metadata(EEVEE_Data *vedata, RenderResult *render_result)
{
EEVEE_PrivateData *g_data = vedata->stl->g_data;
const DRWContextState *draw_ctx = DRW_context_state_get();
const ViewLayer *view_layer = draw_ctx->view_layer;
BLI_assert(g_data->cryptomatte_session);
BKE_cryptomatte_store_metadata(g_data->cryptomatte_session, render_result, view_layer);
}
/** \} */
void EEVEE_cryptomatte_free(EEVEE_Data *vedata)
{
EEVEE_PrivateData *g_data = vedata->stl->g_data;
MEM_SAFE_FREE(g_data->cryptomatte_accum_buffer);
MEM_SAFE_FREE(g_data->cryptomatte_download_buffer);
if (g_data->cryptomatte_session) {
BKE_cryptomatte_free(g_data->cryptomatte_session);
g_data->cryptomatte_session = NULL;
}
}