This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/draw/engines/eevee/shaders/bsdf_common_lib.glsl

207 lines
5.9 KiB
GLSL

#pragma BLENDER_REQUIRE(common_math_lib.glsl)
vec3 diffuse_dominant_dir(vec3 bent_normal)
{
return bent_normal;
}
vec3 specular_dominant_dir(vec3 N, vec3 V, float roughness)
{
vec3 R = -reflect(V, N);
float smoothness = 1.0 - roughness;
float fac = smoothness * (sqrt(smoothness) + roughness);
return normalize(mix(N, R, fac));
}
float ior_from_f0(float f0)
{
float f = sqrt(f0);
return (-f - 1.0) / (f - 1.0);
}
/* Simplified form of F_eta(eta, 1.0). */
float f0_from_ior(float eta)
{
float A = (eta - 1.0) / (eta + 1.0);
return A * A;
}
vec3 refraction_dominant_dir(vec3 N, vec3 V, float roughness, float ior)
{
/* TODO: This a bad approximation. Better approximation should fit
* the refracted vector and roughness into the best prefiltered reflection
* lobe. */
/* Correct the IOR for ior < 1.0 to not see the abrupt delimitation or the TIR */
ior = (ior < 1.0) ? mix(ior, 1.0, roughness) : ior;
float eta = 1.0 / ior;
float NV = dot(N, -V);
/* Custom Refraction. */
float k = 1.0 - eta * eta * (1.0 - NV * NV);
k = max(0.0, k); /* Only this changes. */
vec3 R = eta * -V - (eta * NV + sqrt(k)) * N;
return R;
}
/* Fresnel monochromatic, perfect mirror */
float F_eta(float eta, float cos_theta)
{
/* compute fresnel reflectance without explicitly computing
* the refracted direction */
float c = abs(cos_theta);
float g = eta * eta - 1.0 + c * c;
if (g > 0.0) {
g = sqrt(g);
float A = (g - c) / (g + c);
float B = (c * (g + c) - 1.0) / (c * (g - c) + 1.0);
return 0.5 * A * A * (1.0 + B * B);
}
/* Total internal reflections. */
return 1.0;
}
/* Fresnel color blend base on fresnel factor */
vec3 F_color_blend(float eta, float fresnel, vec3 f0_color)
{
float f0 = f0_from_ior(eta);
float fac = saturate((fresnel - f0) / (1.0 - f0));
return mix(f0_color, vec3(1.0), fac);
}
/* Fresnel split-sum approximation. */
vec3 F_brdf_single_scatter(vec3 f0, vec3 f90, vec2 lut)
{
/* Unreal specular matching : if specular color is below 2% intensity,
* treat as shadowning */
return lut.y * f90 + lut.x * f0;
}
/* Multi-scattering brdf approximation from :
* "A Multiple-Scattering Microfacet Model for Real-Time Image-based Lighting"
* by Carmelo J. Fdez-Agüera. */
vec3 F_brdf_multi_scatter(vec3 f0, vec3 f90, vec2 lut)
{
vec3 FssEss = lut.y * f90 + lut.x * f0;
float Ess = lut.x + lut.y;
float Ems = 1.0 - Ess;
vec3 Favg = f0 + (1.0 - f0) / 21.0;
vec3 Fms = FssEss * Favg / (1.0 - (1.0 - Ess) * Favg);
/* We don't do anything special for diffuse surfaces because the principle bsdf
* does not care about energy conservation of the specular layer for dielectrics. */
return FssEss + Fms * Ems;
}
/* GGX */
float D_ggx_opti(float NH, float a2)
{
float tmp = (NH * a2 - NH) * NH + 1.0;
return M_PI * tmp * tmp; /* Doing RCP and mul a2 at the end */
}
float G1_Smith_GGX_opti(float NX, float a2)
{
/* Using Brian Karis approach and refactoring by NX/NX
* this way the (2*NL)*(2*NV) in G = G1(V) * G1(L) gets canceled by the brdf denominator 4*NL*NV
* Rcp is done on the whole G later
* Note that this is not convenient for the transmission formula */
return NX + sqrt(NX * (NX - NX * a2) + a2);
/* return 2 / (1 + sqrt(1 + a2 * (1 - NX*NX) / (NX*NX) ) ); /* Reference function */
}
float bsdf_ggx(vec3 N, vec3 L, vec3 V, float roughness)
{
float a = roughness;
float a2 = a * a;
vec3 H = normalize(L + V);
float NH = max(dot(N, H), 1e-8);
float NL = max(dot(N, L), 1e-8);
float NV = max(dot(N, V), 1e-8);
float G = G1_Smith_GGX_opti(NV, a2) * G1_Smith_GGX_opti(NL, a2); /* Doing RCP at the end */
float D = D_ggx_opti(NH, a2);
/* Denominator is canceled by G1_Smith */
/* bsdf = D * G / (4.0 * NL * NV); /* Reference function */
return NL * a2 / (D * G); /* NL to Fit cycles Equation : line. 345 in bsdf_microfacet.h */
}
void accumulate_light(vec3 light, float fac, inout vec4 accum)
{
accum += vec4(light, 1.0) * min(fac, (1.0 - accum.a));
}
/* Same thing as Cycles without the comments to make it shorter. */
vec3 ensure_valid_reflection(vec3 Ng, vec3 I, vec3 N)
{
vec3 R = -reflect(I, N);
/* Reflection rays may always be at least as shallow as the incoming ray. */
float threshold = min(0.9 * dot(Ng, I), 0.025);
if (dot(Ng, R) >= threshold) {
return N;
}
float NdotNg = dot(N, Ng);
vec3 X = normalize(N - NdotNg * Ng);
float Ix = dot(I, X), Iz = dot(I, Ng);
float Ix2 = sqr(Ix), Iz2 = sqr(Iz);
float a = Ix2 + Iz2;
float b = sqrt(Ix2 * (a - sqr(threshold)));
float c = Iz * threshold + a;
float fac = 0.5 / a;
float N1_z2 = fac * (b + c), N2_z2 = fac * (-b + c);
bool valid1 = (N1_z2 > 1e-5) && (N1_z2 <= (1.0 + 1e-5));
bool valid2 = (N2_z2 > 1e-5) && (N2_z2 <= (1.0 + 1e-5));
vec2 N_new;
if (valid1 && valid2) {
/* If both are possible, do the expensive reflection-based check. */
vec2 N1 = vec2(safe_sqrt(1.0 - N1_z2), safe_sqrt(N1_z2));
vec2 N2 = vec2(safe_sqrt(1.0 - N2_z2), safe_sqrt(N2_z2));
float R1 = 2.0 * (N1.x * Ix + N1.y * Iz) * N1.y - Iz;
float R2 = 2.0 * (N2.x * Ix + N2.y * Iz) * N2.y - Iz;
valid1 = (R1 >= 1e-5);
valid2 = (R2 >= 1e-5);
if (valid1 && valid2) {
N_new = (R1 < R2) ? N1 : N2;
}
else {
N_new = (R1 > R2) ? N1 : N2;
}
}
else if (valid1 || valid2) {
float Nz2 = valid1 ? N1_z2 : N2_z2;
N_new = vec2(safe_sqrt(1.0 - Nz2), safe_sqrt(Nz2));
}
else {
return Ng;
}
return N_new.x * X + N_new.y * Ng;
}
/* ----------- Cone angle Approximation --------- */
/* Return a fitted cone angle given the input roughness */
float cone_cosine(float r)
{
/* Using phong gloss
* roughness = sqrt(2/(gloss+2)) */
float gloss = -2 + 2 / (r * r);
/* Drobot 2014 in GPUPro5 */
// return cos(2.0 * sqrt(2.0 / (gloss + 2)));
/* Uludag 2014 in GPUPro5 */
// return pow(0.244, 1 / (gloss + 1));
/* Jimenez 2016 in Practical Realtime Strategies for Accurate Indirect Occlusion. */
return exp2(-3.32193 * r * r);
}