Corrects incorrect usage of contraction for 'it is', when possessive 'its' was required. Differential Revision: https://developer.blender.org/D9250 Reviewed by Campbell Barton
1812 lines
48 KiB
C
1812 lines
48 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup bmesh
|
|
*
|
|
* This file contains code for dealing
|
|
* with polygons (normal/area calculation,
|
|
* tessellation, etc)
|
|
*/
|
|
|
|
#include "DNA_listBase.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_modifier_types.h"
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_alloca.h"
|
|
#include "BLI_heap.h"
|
|
#include "BLI_linklist.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_memarena.h"
|
|
#include "BLI_polyfill_2d.h"
|
|
#include "BLI_polyfill_2d_beautify.h"
|
|
|
|
#include "bmesh.h"
|
|
#include "bmesh_tools.h"
|
|
|
|
#include "BKE_customdata.h"
|
|
|
|
#include "intern/bmesh_private.h"
|
|
|
|
/**
|
|
* \brief COMPUTE POLY NORMAL (BMFace)
|
|
*
|
|
* Same as #normal_poly_v3 but operates directly on a bmesh face.
|
|
*/
|
|
static float bm_face_calc_poly_normal(const BMFace *f, float n[3])
|
|
{
|
|
BMLoop *l_first = BM_FACE_FIRST_LOOP(f);
|
|
BMLoop *l_iter = l_first;
|
|
const float *v_prev = l_first->prev->v->co;
|
|
const float *v_curr = l_first->v->co;
|
|
|
|
zero_v3(n);
|
|
|
|
/* Newell's Method */
|
|
do {
|
|
add_newell_cross_v3_v3v3(n, v_prev, v_curr);
|
|
|
|
l_iter = l_iter->next;
|
|
v_prev = v_curr;
|
|
v_curr = l_iter->v->co;
|
|
|
|
} while (l_iter != l_first);
|
|
|
|
return normalize_v3(n);
|
|
}
|
|
|
|
/**
|
|
* \brief COMPUTE POLY NORMAL (BMFace)
|
|
*
|
|
* Same as #bm_face_calc_poly_normal
|
|
* but takes an array of vertex locations.
|
|
*/
|
|
static float bm_face_calc_poly_normal_vertex_cos(const BMFace *f,
|
|
float r_no[3],
|
|
float const (*vertexCos)[3])
|
|
{
|
|
BMLoop *l_first = BM_FACE_FIRST_LOOP(f);
|
|
BMLoop *l_iter = l_first;
|
|
const float *v_prev = vertexCos[BM_elem_index_get(l_first->prev->v)];
|
|
const float *v_curr = vertexCos[BM_elem_index_get(l_first->v)];
|
|
|
|
zero_v3(r_no);
|
|
|
|
/* Newell's Method */
|
|
do {
|
|
add_newell_cross_v3_v3v3(r_no, v_prev, v_curr);
|
|
|
|
l_iter = l_iter->next;
|
|
v_prev = v_curr;
|
|
v_curr = vertexCos[BM_elem_index_get(l_iter->v)];
|
|
} while (l_iter != l_first);
|
|
|
|
return normalize_v3(r_no);
|
|
}
|
|
|
|
/**
|
|
* \brief COMPUTE POLY CENTER (BMFace)
|
|
*/
|
|
static void bm_face_calc_poly_center_median_vertex_cos(const BMFace *f,
|
|
float r_cent[3],
|
|
float const (*vertexCos)[3])
|
|
{
|
|
const BMLoop *l_first, *l_iter;
|
|
|
|
zero_v3(r_cent);
|
|
|
|
/* Newell's Method */
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
add_v3_v3(r_cent, vertexCos[BM_elem_index_get(l_iter->v)]);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
mul_v3_fl(r_cent, 1.0f / f->len);
|
|
}
|
|
|
|
/**
|
|
* For tools that insist on using triangles, ideally we would cache this data.
|
|
*
|
|
* \param use_fixed_quad: When true,
|
|
* always split quad along (0 -> 2) regardless of concave corners,
|
|
* (as done in #BM_mesh_calc_tessellation).
|
|
* \param r_loops: Store face loop pointers, (f->len)
|
|
* \param r_index: Store triangle triples, indices into \a r_loops, `((f->len - 2) * 3)`
|
|
*/
|
|
void BM_face_calc_tessellation(const BMFace *f,
|
|
const bool use_fixed_quad,
|
|
BMLoop **r_loops,
|
|
uint (*r_index)[3])
|
|
{
|
|
BMLoop *l_first = BM_FACE_FIRST_LOOP(f);
|
|
BMLoop *l_iter;
|
|
|
|
if (f->len == 3) {
|
|
*r_loops++ = (l_iter = l_first);
|
|
*r_loops++ = (l_iter = l_iter->next);
|
|
*r_loops++ = (l_iter->next);
|
|
|
|
r_index[0][0] = 0;
|
|
r_index[0][1] = 1;
|
|
r_index[0][2] = 2;
|
|
}
|
|
else if (f->len == 4 && use_fixed_quad) {
|
|
*r_loops++ = (l_iter = l_first);
|
|
*r_loops++ = (l_iter = l_iter->next);
|
|
*r_loops++ = (l_iter = l_iter->next);
|
|
*r_loops++ = (l_iter->next);
|
|
|
|
r_index[0][0] = 0;
|
|
r_index[0][1] = 1;
|
|
r_index[0][2] = 2;
|
|
|
|
r_index[1][0] = 0;
|
|
r_index[1][1] = 2;
|
|
r_index[1][2] = 3;
|
|
}
|
|
else {
|
|
float axis_mat[3][3];
|
|
float(*projverts)[2] = BLI_array_alloca(projverts, f->len);
|
|
int j;
|
|
|
|
axis_dominant_v3_to_m3_negate(axis_mat, f->no);
|
|
|
|
j = 0;
|
|
l_iter = l_first;
|
|
do {
|
|
mul_v2_m3v3(projverts[j], axis_mat, l_iter->v->co);
|
|
r_loops[j] = l_iter;
|
|
j++;
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
/* complete the loop */
|
|
BLI_polyfill_calc(projverts, f->len, 1, r_index);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return a point inside the face.
|
|
*/
|
|
void BM_face_calc_point_in_face(const BMFace *f, float r_co[3])
|
|
{
|
|
const BMLoop *l_tri[3];
|
|
|
|
if (f->len == 3) {
|
|
const BMLoop *l = BM_FACE_FIRST_LOOP(f);
|
|
ARRAY_SET_ITEMS(l_tri, l, l->next, l->prev);
|
|
}
|
|
else {
|
|
/* tessellation here seems overkill when in many cases this will be the center,
|
|
* but without this we can't be sure the point is inside a concave face. */
|
|
const int tottri = f->len - 2;
|
|
BMLoop **loops = BLI_array_alloca(loops, f->len);
|
|
uint(*index)[3] = BLI_array_alloca(index, tottri);
|
|
int j;
|
|
int j_best = 0; /* use as fallback when unset */
|
|
float area_best = -1.0f;
|
|
|
|
BM_face_calc_tessellation(f, false, loops, index);
|
|
|
|
for (j = 0; j < tottri; j++) {
|
|
const float *p1 = loops[index[j][0]]->v->co;
|
|
const float *p2 = loops[index[j][1]]->v->co;
|
|
const float *p3 = loops[index[j][2]]->v->co;
|
|
const float area = area_squared_tri_v3(p1, p2, p3);
|
|
if (area > area_best) {
|
|
j_best = j;
|
|
area_best = area;
|
|
}
|
|
}
|
|
|
|
ARRAY_SET_ITEMS(
|
|
l_tri, loops[index[j_best][0]], loops[index[j_best][1]], loops[index[j_best][2]]);
|
|
}
|
|
|
|
mid_v3_v3v3v3(r_co, l_tri[0]->v->co, l_tri[1]->v->co, l_tri[2]->v->co);
|
|
}
|
|
|
|
/**
|
|
* get the area of the face
|
|
*/
|
|
float BM_face_calc_area(const BMFace *f)
|
|
{
|
|
/* inline 'area_poly_v3' logic, avoid creating a temp array */
|
|
const BMLoop *l_iter, *l_first;
|
|
float n[3];
|
|
|
|
zero_v3(n);
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
add_newell_cross_v3_v3v3(n, l_iter->v->co, l_iter->next->v->co);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
return len_v3(n) * 0.5f;
|
|
}
|
|
|
|
/**
|
|
* Get the area of the face in world space.
|
|
*/
|
|
float BM_face_calc_area_with_mat3(const BMFace *f, const float mat3[3][3])
|
|
{
|
|
/* inline 'area_poly_v3' logic, avoid creating a temp array */
|
|
const BMLoop *l_iter, *l_first;
|
|
float co[3];
|
|
float n[3];
|
|
|
|
zero_v3(n);
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
mul_v3_m3v3(co, mat3, l_iter->v->co);
|
|
do {
|
|
float co_next[3];
|
|
mul_v3_m3v3(co_next, mat3, l_iter->next->v->co);
|
|
add_newell_cross_v3_v3v3(n, co, co_next);
|
|
copy_v3_v3(co, co_next);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
return len_v3(n) * 0.5f;
|
|
}
|
|
|
|
/**
|
|
* get the area of UV face
|
|
*/
|
|
float BM_face_calc_area_uv(const BMFace *f, int cd_loop_uv_offset)
|
|
{
|
|
/* inline 'area_poly_v2' logic, avoid creating a temp array */
|
|
const BMLoop *l_iter, *l_first;
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
/* The Trapezium Area Rule */
|
|
float cross = 0.0f;
|
|
do {
|
|
const MLoopUV *luv = BM_ELEM_CD_GET_VOID_P(l_iter, cd_loop_uv_offset);
|
|
const MLoopUV *luv_next = BM_ELEM_CD_GET_VOID_P(l_iter->next, cd_loop_uv_offset);
|
|
cross += (luv_next->uv[0] - luv->uv[0]) * (luv_next->uv[1] + luv->uv[1]);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
return fabsf(cross * 0.5f);
|
|
}
|
|
|
|
/**
|
|
* compute the perimeter of an ngon
|
|
*/
|
|
float BM_face_calc_perimeter(const BMFace *f)
|
|
{
|
|
const BMLoop *l_iter, *l_first;
|
|
float perimeter = 0.0f;
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
perimeter += len_v3v3(l_iter->v->co, l_iter->next->v->co);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
return perimeter;
|
|
}
|
|
|
|
/**
|
|
* Calculate the perimeter of a ngon in world space.
|
|
*/
|
|
float BM_face_calc_perimeter_with_mat3(const BMFace *f, const float mat3[3][3])
|
|
{
|
|
const BMLoop *l_iter, *l_first;
|
|
float co[3];
|
|
float perimeter = 0.0f;
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
mul_v3_m3v3(co, mat3, l_iter->v->co);
|
|
do {
|
|
float co_next[3];
|
|
mul_v3_m3v3(co_next, mat3, l_iter->next->v->co);
|
|
perimeter += len_v3v3(co, co_next);
|
|
copy_v3_v3(co, co_next);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
return perimeter;
|
|
}
|
|
|
|
/**
|
|
* Utility function to calculate the edge which is most different from the other two.
|
|
*
|
|
* \return The first edge index, where the second vertex is ``(index + 1) % 3``.
|
|
*/
|
|
static int bm_vert_tri_find_unique_edge(BMVert *verts[3])
|
|
{
|
|
/* find the most 'unique' loop, (greatest difference to others) */
|
|
#if 1
|
|
/* optimized version that avoids sqrt */
|
|
float difs[3];
|
|
for (int i_prev = 1, i_curr = 2, i_next = 0; i_next < 3; i_prev = i_curr, i_curr = i_next++) {
|
|
const float *co = verts[i_curr]->co;
|
|
const float *co_other[2] = {verts[i_prev]->co, verts[i_next]->co};
|
|
float proj_dir[3];
|
|
mid_v3_v3v3(proj_dir, co_other[0], co_other[1]);
|
|
sub_v3_v3(proj_dir, co);
|
|
|
|
float proj_pair[2][3];
|
|
project_v3_v3v3(proj_pair[0], co_other[0], proj_dir);
|
|
project_v3_v3v3(proj_pair[1], co_other[1], proj_dir);
|
|
difs[i_next] = len_squared_v3v3(proj_pair[0], proj_pair[1]);
|
|
}
|
|
#else
|
|
const float lens[3] = {
|
|
len_v3v3(verts[0]->co, verts[1]->co),
|
|
len_v3v3(verts[1]->co, verts[2]->co),
|
|
len_v3v3(verts[2]->co, verts[0]->co),
|
|
};
|
|
const float difs[3] = {
|
|
fabsf(lens[1] - lens[2]),
|
|
fabsf(lens[2] - lens[0]),
|
|
fabsf(lens[0] - lens[1]),
|
|
};
|
|
#endif
|
|
|
|
int order[3] = {0, 1, 2};
|
|
axis_sort_v3(difs, order);
|
|
|
|
return order[0];
|
|
}
|
|
|
|
/**
|
|
* Calculate a tangent from any 3 vertices.
|
|
*
|
|
* The tangent aligns to the most *unique* edge
|
|
* (the edge most unlike the other two).
|
|
*
|
|
* \param r_tangent: Calculated unit length tangent (return value).
|
|
*/
|
|
void BM_vert_tri_calc_tangent_edge(BMVert *verts[3], float r_tangent[3])
|
|
{
|
|
const int index = bm_vert_tri_find_unique_edge(verts);
|
|
|
|
sub_v3_v3v3(r_tangent, verts[index]->co, verts[(index + 1) % 3]->co);
|
|
|
|
normalize_v3(r_tangent);
|
|
}
|
|
|
|
/**
|
|
* Calculate a tangent from any 3 vertices,
|
|
*
|
|
* The tangent follows the center-line formed by the most unique edges center
|
|
* and the opposite vertex.
|
|
*
|
|
* \param r_tangent: Calculated unit length tangent (return value).
|
|
*/
|
|
void BM_vert_tri_calc_tangent_edge_pair(BMVert *verts[3], float r_tangent[3])
|
|
{
|
|
const int index = bm_vert_tri_find_unique_edge(verts);
|
|
|
|
const float *v_a = verts[index]->co;
|
|
const float *v_b = verts[(index + 1) % 3]->co;
|
|
const float *v_other = verts[(index + 2) % 3]->co;
|
|
|
|
mid_v3_v3v3(r_tangent, v_a, v_b);
|
|
sub_v3_v3v3(r_tangent, v_other, r_tangent);
|
|
|
|
normalize_v3(r_tangent);
|
|
}
|
|
|
|
/**
|
|
* Compute the tangent of the face, using the longest edge.
|
|
*/
|
|
void BM_face_calc_tangent_edge(const BMFace *f, float r_tangent[3])
|
|
{
|
|
const BMLoop *l_long = BM_face_find_longest_loop((BMFace *)f);
|
|
|
|
sub_v3_v3v3(r_tangent, l_long->v->co, l_long->next->v->co);
|
|
|
|
normalize_v3(r_tangent);
|
|
}
|
|
|
|
/**
|
|
* Compute the tangent of the face, using the two longest disconnected edges.
|
|
*
|
|
* \param r_tangent: Calculated unit length tangent (return value).
|
|
*/
|
|
void BM_face_calc_tangent_edge_pair(const BMFace *f, float r_tangent[3])
|
|
{
|
|
if (f->len == 3) {
|
|
BMVert *verts[3];
|
|
|
|
BM_face_as_array_vert_tri((BMFace *)f, verts);
|
|
|
|
BM_vert_tri_calc_tangent_edge_pair(verts, r_tangent);
|
|
}
|
|
else if (f->len == 4) {
|
|
/* Use longest edge pair */
|
|
BMVert *verts[4];
|
|
float vec[3], vec_a[3], vec_b[3];
|
|
|
|
BM_face_as_array_vert_quad((BMFace *)f, verts);
|
|
|
|
sub_v3_v3v3(vec_a, verts[3]->co, verts[2]->co);
|
|
sub_v3_v3v3(vec_b, verts[0]->co, verts[1]->co);
|
|
add_v3_v3v3(r_tangent, vec_a, vec_b);
|
|
|
|
sub_v3_v3v3(vec_a, verts[0]->co, verts[3]->co);
|
|
sub_v3_v3v3(vec_b, verts[1]->co, verts[2]->co);
|
|
add_v3_v3v3(vec, vec_a, vec_b);
|
|
/* use the longest edge length */
|
|
if (len_squared_v3(r_tangent) < len_squared_v3(vec)) {
|
|
copy_v3_v3(r_tangent, vec);
|
|
}
|
|
}
|
|
else {
|
|
/* For ngons use two longest disconnected edges */
|
|
BMLoop *l_long = BM_face_find_longest_loop((BMFace *)f);
|
|
BMLoop *l_long_other = NULL;
|
|
|
|
float len_max_sq = 0.0f;
|
|
float vec_a[3], vec_b[3];
|
|
|
|
BMLoop *l_iter = l_long->prev->prev;
|
|
BMLoop *l_last = l_long->next;
|
|
|
|
do {
|
|
const float len_sq = len_squared_v3v3(l_iter->v->co, l_iter->next->v->co);
|
|
if (len_sq >= len_max_sq) {
|
|
l_long_other = l_iter;
|
|
len_max_sq = len_sq;
|
|
}
|
|
} while ((l_iter = l_iter->prev) != l_last);
|
|
|
|
sub_v3_v3v3(vec_a, l_long->next->v->co, l_long->v->co);
|
|
sub_v3_v3v3(vec_b, l_long_other->v->co, l_long_other->next->v->co);
|
|
add_v3_v3v3(r_tangent, vec_a, vec_b);
|
|
|
|
/* Edges may not be opposite side of the ngon,
|
|
* this could cause problems for ngons with multiple-aligned edges of the same length.
|
|
* Fallback to longest edge. */
|
|
if (UNLIKELY(normalize_v3(r_tangent) == 0.0f)) {
|
|
normalize_v3_v3(r_tangent, vec_a);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute the tangent of the face, using the edge farthest away from any vertex in the face.
|
|
*
|
|
* \param r_tangent: Calculated unit length tangent (return value).
|
|
*/
|
|
void BM_face_calc_tangent_edge_diagonal(const BMFace *f, float r_tangent[3])
|
|
{
|
|
BMLoop *l_iter, *l_first;
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
|
|
/* In case of degenerate faces. */
|
|
zero_v3(r_tangent);
|
|
|
|
/* warning: O(n^2) loop here, take care! */
|
|
float dist_max_sq = 0.0f;
|
|
do {
|
|
BMLoop *l_iter_other = l_iter->next;
|
|
BMLoop *l_iter_last = l_iter->prev;
|
|
do {
|
|
BLI_assert(!ELEM(l_iter->v->co, l_iter_other->v->co, l_iter_other->next->v->co));
|
|
float co_other[3], vec[3];
|
|
closest_to_line_segment_v3(
|
|
co_other, l_iter->v->co, l_iter_other->v->co, l_iter_other->next->v->co);
|
|
sub_v3_v3v3(vec, l_iter->v->co, co_other);
|
|
|
|
const float dist_sq = len_squared_v3(vec);
|
|
if (dist_sq > dist_max_sq) {
|
|
dist_max_sq = dist_sq;
|
|
copy_v3_v3(r_tangent, vec);
|
|
}
|
|
} while ((l_iter_other = l_iter_other->next) != l_iter_last);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
normalize_v3(r_tangent);
|
|
}
|
|
|
|
/**
|
|
* Compute the tangent of the face, using longest distance between vertices on the face.
|
|
*
|
|
* \note The logic is almost identical to #BM_face_calc_tangent_edge_diagonal
|
|
*/
|
|
void BM_face_calc_tangent_vert_diagonal(const BMFace *f, float r_tangent[3])
|
|
{
|
|
BMLoop *l_iter, *l_first;
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
|
|
/* In case of degenerate faces. */
|
|
zero_v3(r_tangent);
|
|
|
|
/* warning: O(n^2) loop here, take care! */
|
|
float dist_max_sq = 0.0f;
|
|
do {
|
|
BMLoop *l_iter_other = l_iter->next;
|
|
do {
|
|
float vec[3];
|
|
sub_v3_v3v3(vec, l_iter->v->co, l_iter_other->v->co);
|
|
|
|
const float dist_sq = len_squared_v3(vec);
|
|
if (dist_sq > dist_max_sq) {
|
|
dist_max_sq = dist_sq;
|
|
copy_v3_v3(r_tangent, vec);
|
|
}
|
|
} while ((l_iter_other = l_iter_other->next) != l_iter);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
normalize_v3(r_tangent);
|
|
}
|
|
|
|
/**
|
|
* Compute a meaningful direction along the face (use for gizmo axis).
|
|
*
|
|
* \note Callers shouldn't depend on the *exact* method used here.
|
|
*/
|
|
void BM_face_calc_tangent_auto(const BMFace *f, float r_tangent[3])
|
|
{
|
|
if (f->len == 3) {
|
|
/* most 'unique' edge of a triangle */
|
|
BMVert *verts[3];
|
|
BM_face_as_array_vert_tri((BMFace *)f, verts);
|
|
BM_vert_tri_calc_tangent_edge(verts, r_tangent);
|
|
}
|
|
else if (f->len == 4) {
|
|
/* longest edge pair of a quad */
|
|
BM_face_calc_tangent_edge_pair((BMFace *)f, r_tangent);
|
|
}
|
|
else {
|
|
/* longest edge of an ngon */
|
|
BM_face_calc_tangent_edge((BMFace *)f, r_tangent);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* expands bounds (min/max must be initialized).
|
|
*/
|
|
void BM_face_calc_bounds_expand(const BMFace *f, float min[3], float max[3])
|
|
{
|
|
const BMLoop *l_iter, *l_first;
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
minmax_v3v3_v3(min, max, l_iter->v->co);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
}
|
|
|
|
/**
|
|
* computes center of face in 3d. uses center of bounding box.
|
|
*/
|
|
void BM_face_calc_center_bounds(const BMFace *f, float r_cent[3])
|
|
{
|
|
const BMLoop *l_iter, *l_first;
|
|
float min[3], max[3];
|
|
|
|
INIT_MINMAX(min, max);
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
minmax_v3v3_v3(min, max, l_iter->v->co);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
mid_v3_v3v3(r_cent, min, max);
|
|
}
|
|
|
|
/**
|
|
* computes center of face in 3d. uses center of bounding box.
|
|
*/
|
|
void BM_face_calc_center_bounds_vcos(const BMesh *bm,
|
|
const BMFace *f,
|
|
float r_cent[3],
|
|
float const (*vertexCos)[3])
|
|
{
|
|
/* must have valid index data */
|
|
BLI_assert((bm->elem_index_dirty & BM_VERT) == 0);
|
|
(void)bm;
|
|
|
|
const BMLoop *l_iter, *l_first;
|
|
float min[3], max[3];
|
|
|
|
INIT_MINMAX(min, max);
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
minmax_v3v3_v3(min, max, vertexCos[BM_elem_index_get(l_iter->v)]);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
mid_v3_v3v3(r_cent, min, max);
|
|
}
|
|
|
|
/**
|
|
* computes the center of a face, using the mean average
|
|
*/
|
|
void BM_face_calc_center_median(const BMFace *f, float r_cent[3])
|
|
{
|
|
const BMLoop *l_iter, *l_first;
|
|
|
|
zero_v3(r_cent);
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
add_v3_v3(r_cent, l_iter->v->co);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
mul_v3_fl(r_cent, 1.0f / (float)f->len);
|
|
}
|
|
|
|
/**
|
|
* computes the center of a face, using the mean average
|
|
* weighted by edge length
|
|
*/
|
|
void BM_face_calc_center_median_weighted(const BMFace *f, float r_cent[3])
|
|
{
|
|
const BMLoop *l_iter;
|
|
const BMLoop *l_first;
|
|
float totw = 0.0f;
|
|
float w_prev;
|
|
|
|
zero_v3(r_cent);
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
w_prev = BM_edge_calc_length(l_iter->prev->e);
|
|
do {
|
|
const float w_curr = BM_edge_calc_length(l_iter->e);
|
|
const float w = (w_curr + w_prev);
|
|
madd_v3_v3fl(r_cent, l_iter->v->co, w);
|
|
totw += w;
|
|
w_prev = w_curr;
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
if (totw != 0.0f) {
|
|
mul_v3_fl(r_cent, 1.0f / (float)totw);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief POLY ROTATE PLANE
|
|
*
|
|
* Rotates a polygon so that its
|
|
* normal is pointing towards the mesh Z axis
|
|
*/
|
|
void poly_rotate_plane(const float normal[3], float (*verts)[3], const uint nverts)
|
|
{
|
|
float mat[3][3];
|
|
float co[3];
|
|
uint i;
|
|
|
|
co[2] = 0.0f;
|
|
|
|
axis_dominant_v3_to_m3(mat, normal);
|
|
for (i = 0; i < nverts; i++) {
|
|
mul_v2_m3v3(co, mat, verts[i]);
|
|
copy_v3_v3(verts[i], co);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* updates face and vertex normals incident on an edge
|
|
*/
|
|
void BM_edge_normals_update(BMEdge *e)
|
|
{
|
|
BMIter iter;
|
|
BMFace *f;
|
|
|
|
BM_ITER_ELEM (f, &iter, e, BM_FACES_OF_EDGE) {
|
|
BM_face_normal_update(f);
|
|
}
|
|
|
|
BM_vert_normal_update(e->v1);
|
|
BM_vert_normal_update(e->v2);
|
|
}
|
|
|
|
static void bm_loop_normal_accum(const BMLoop *l, float no[3])
|
|
{
|
|
float vec1[3], vec2[3], fac;
|
|
|
|
/* Same calculation used in BM_mesh_normals_update */
|
|
sub_v3_v3v3(vec1, l->v->co, l->prev->v->co);
|
|
sub_v3_v3v3(vec2, l->next->v->co, l->v->co);
|
|
normalize_v3(vec1);
|
|
normalize_v3(vec2);
|
|
|
|
fac = saacos(-dot_v3v3(vec1, vec2));
|
|
|
|
madd_v3_v3fl(no, l->f->no, fac);
|
|
}
|
|
|
|
bool BM_vert_calc_normal_ex(const BMVert *v, const char hflag, float r_no[3])
|
|
{
|
|
int len = 0;
|
|
|
|
zero_v3(r_no);
|
|
|
|
if (v->e) {
|
|
const BMEdge *e = v->e;
|
|
do {
|
|
if (e->l) {
|
|
const BMLoop *l = e->l;
|
|
do {
|
|
if (l->v == v) {
|
|
if (BM_elem_flag_test(l->f, hflag)) {
|
|
bm_loop_normal_accum(l, r_no);
|
|
len++;
|
|
}
|
|
}
|
|
} while ((l = l->radial_next) != e->l);
|
|
}
|
|
} while ((e = bmesh_disk_edge_next(e, v)) != v->e);
|
|
}
|
|
|
|
if (len) {
|
|
normalize_v3(r_no);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool BM_vert_calc_normal(const BMVert *v, float r_no[3])
|
|
{
|
|
int len = 0;
|
|
|
|
zero_v3(r_no);
|
|
|
|
if (v->e) {
|
|
const BMEdge *e = v->e;
|
|
do {
|
|
if (e->l) {
|
|
const BMLoop *l = e->l;
|
|
do {
|
|
if (l->v == v) {
|
|
bm_loop_normal_accum(l, r_no);
|
|
len++;
|
|
}
|
|
} while ((l = l->radial_next) != e->l);
|
|
}
|
|
} while ((e = bmesh_disk_edge_next(e, v)) != v->e);
|
|
}
|
|
|
|
if (len) {
|
|
normalize_v3(r_no);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void BM_vert_normal_update_all(BMVert *v)
|
|
{
|
|
int len = 0;
|
|
|
|
zero_v3(v->no);
|
|
|
|
if (v->e) {
|
|
const BMEdge *e = v->e;
|
|
do {
|
|
if (e->l) {
|
|
const BMLoop *l = e->l;
|
|
do {
|
|
if (l->v == v) {
|
|
BM_face_normal_update(l->f);
|
|
bm_loop_normal_accum(l, v->no);
|
|
len++;
|
|
}
|
|
} while ((l = l->radial_next) != e->l);
|
|
}
|
|
} while ((e = bmesh_disk_edge_next(e, v)) != v->e);
|
|
}
|
|
|
|
if (len) {
|
|
normalize_v3(v->no);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* update a vert normal (but not the faces incident on it)
|
|
*/
|
|
void BM_vert_normal_update(BMVert *v)
|
|
{
|
|
BM_vert_calc_normal(v, v->no);
|
|
}
|
|
|
|
/**
|
|
* \brief BMESH UPDATE FACE NORMAL
|
|
*
|
|
* Updates the stored normal for the
|
|
* given face. Requires that a buffer
|
|
* of sufficient length to store projected
|
|
* coordinates for all of the face's vertices
|
|
* is passed in as well.
|
|
*/
|
|
|
|
float BM_face_calc_normal(const BMFace *f, float r_no[3])
|
|
{
|
|
BMLoop *l;
|
|
|
|
/* common cases first */
|
|
switch (f->len) {
|
|
case 4: {
|
|
const float *co1 = (l = BM_FACE_FIRST_LOOP(f))->v->co;
|
|
const float *co2 = (l = l->next)->v->co;
|
|
const float *co3 = (l = l->next)->v->co;
|
|
const float *co4 = (l->next)->v->co;
|
|
|
|
return normal_quad_v3(r_no, co1, co2, co3, co4);
|
|
}
|
|
case 3: {
|
|
const float *co1 = (l = BM_FACE_FIRST_LOOP(f))->v->co;
|
|
const float *co2 = (l = l->next)->v->co;
|
|
const float *co3 = (l->next)->v->co;
|
|
|
|
return normal_tri_v3(r_no, co1, co2, co3);
|
|
}
|
|
default: {
|
|
return bm_face_calc_poly_normal(f, r_no);
|
|
}
|
|
}
|
|
}
|
|
void BM_face_normal_update(BMFace *f)
|
|
{
|
|
BM_face_calc_normal(f, f->no);
|
|
}
|
|
|
|
/* exact same as 'BM_face_calc_normal' but accepts vertex coords */
|
|
float BM_face_calc_normal_vcos(const BMesh *bm,
|
|
const BMFace *f,
|
|
float r_no[3],
|
|
float const (*vertexCos)[3])
|
|
{
|
|
BMLoop *l;
|
|
|
|
/* must have valid index data */
|
|
BLI_assert((bm->elem_index_dirty & BM_VERT) == 0);
|
|
(void)bm;
|
|
|
|
/* common cases first */
|
|
switch (f->len) {
|
|
case 4: {
|
|
const float *co1 = vertexCos[BM_elem_index_get((l = BM_FACE_FIRST_LOOP(f))->v)];
|
|
const float *co2 = vertexCos[BM_elem_index_get((l = l->next)->v)];
|
|
const float *co3 = vertexCos[BM_elem_index_get((l = l->next)->v)];
|
|
const float *co4 = vertexCos[BM_elem_index_get((l->next)->v)];
|
|
|
|
return normal_quad_v3(r_no, co1, co2, co3, co4);
|
|
}
|
|
case 3: {
|
|
const float *co1 = vertexCos[BM_elem_index_get((l = BM_FACE_FIRST_LOOP(f))->v)];
|
|
const float *co2 = vertexCos[BM_elem_index_get((l = l->next)->v)];
|
|
const float *co3 = vertexCos[BM_elem_index_get((l->next)->v)];
|
|
|
|
return normal_tri_v3(r_no, co1, co2, co3);
|
|
}
|
|
default: {
|
|
return bm_face_calc_poly_normal_vertex_cos(f, r_no, vertexCos);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate a normal from a vertex cloud.
|
|
*
|
|
* \note We could make a higher quality version that takes all vertices into account.
|
|
* Currently it finds 4 outer most points returning its normal.
|
|
*/
|
|
void BM_verts_calc_normal_from_cloud_ex(
|
|
BMVert **varr, int varr_len, float r_normal[3], float r_center[3], int *r_index_tangent)
|
|
{
|
|
const float varr_len_inv = 1.0f / (float)varr_len;
|
|
|
|
/* Get the center point and collect vector array since we loop over these a lot. */
|
|
float center[3] = {0.0f, 0.0f, 0.0f};
|
|
for (int i = 0; i < varr_len; i++) {
|
|
madd_v3_v3fl(center, varr[i]->co, varr_len_inv);
|
|
}
|
|
|
|
/* Find the 'co_a' point from center. */
|
|
int co_a_index = 0;
|
|
const float *co_a = NULL;
|
|
{
|
|
float dist_sq_max = -1.0f;
|
|
for (int i = 0; i < varr_len; i++) {
|
|
const float dist_sq_test = len_squared_v3v3(varr[i]->co, center);
|
|
if (!(dist_sq_test <= dist_sq_max)) {
|
|
co_a = varr[i]->co;
|
|
co_a_index = i;
|
|
dist_sq_max = dist_sq_test;
|
|
}
|
|
}
|
|
}
|
|
|
|
float dir_a[3];
|
|
sub_v3_v3v3(dir_a, co_a, center);
|
|
normalize_v3(dir_a);
|
|
|
|
const float *co_b = NULL;
|
|
float dir_b[3] = {0.0f, 0.0f, 0.0f};
|
|
{
|
|
float dist_sq_max = -1.0f;
|
|
for (int i = 0; i < varr_len; i++) {
|
|
if (varr[i]->co == co_a) {
|
|
continue;
|
|
}
|
|
float dir_test[3];
|
|
sub_v3_v3v3(dir_test, varr[i]->co, center);
|
|
project_plane_normalized_v3_v3v3(dir_test, dir_test, dir_a);
|
|
const float dist_sq_test = len_squared_v3(dir_test);
|
|
if (!(dist_sq_test <= dist_sq_max)) {
|
|
co_b = varr[i]->co;
|
|
dist_sq_max = dist_sq_test;
|
|
copy_v3_v3(dir_b, dir_test);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (varr_len <= 3) {
|
|
normal_tri_v3(r_normal, center, co_a, co_b);
|
|
goto finally;
|
|
}
|
|
|
|
normalize_v3(dir_b);
|
|
|
|
const float *co_a_opposite = NULL;
|
|
const float *co_b_opposite = NULL;
|
|
|
|
{
|
|
float dot_a_min = FLT_MAX;
|
|
float dot_b_min = FLT_MAX;
|
|
for (int i = 0; i < varr_len; i++) {
|
|
const float *co_test = varr[i]->co;
|
|
float dot_test;
|
|
|
|
if (co_test != co_a) {
|
|
dot_test = dot_v3v3(dir_a, co_test);
|
|
if (dot_test < dot_a_min) {
|
|
dot_a_min = dot_test;
|
|
co_a_opposite = co_test;
|
|
}
|
|
}
|
|
|
|
if (co_test != co_b) {
|
|
dot_test = dot_v3v3(dir_b, co_test);
|
|
if (dot_test < dot_b_min) {
|
|
dot_b_min = dot_test;
|
|
co_b_opposite = co_test;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
normal_quad_v3(r_normal, co_a, co_b, co_a_opposite, co_b_opposite);
|
|
|
|
finally:
|
|
if (r_center != NULL) {
|
|
copy_v3_v3(r_center, center);
|
|
}
|
|
if (r_index_tangent != NULL) {
|
|
*r_index_tangent = co_a_index;
|
|
}
|
|
}
|
|
|
|
void BM_verts_calc_normal_from_cloud(BMVert **varr, int varr_len, float r_normal[3])
|
|
{
|
|
BM_verts_calc_normal_from_cloud_ex(varr, varr_len, r_normal, NULL, NULL);
|
|
}
|
|
|
|
/**
|
|
* Calculates the face subset normal.
|
|
*/
|
|
float BM_face_calc_normal_subset(const BMLoop *l_first, const BMLoop *l_last, float r_no[3])
|
|
{
|
|
const float *v_prev, *v_curr;
|
|
|
|
/* Newell's Method */
|
|
const BMLoop *l_iter = l_first;
|
|
const BMLoop *l_term = l_last->next;
|
|
|
|
zero_v3(r_no);
|
|
|
|
v_prev = l_last->v->co;
|
|
do {
|
|
v_curr = l_iter->v->co;
|
|
add_newell_cross_v3_v3v3(r_no, v_prev, v_curr);
|
|
v_prev = v_curr;
|
|
} while ((l_iter = l_iter->next) != l_term);
|
|
|
|
return normalize_v3(r_no);
|
|
}
|
|
|
|
/* exact same as 'BM_face_calc_normal' but accepts vertex coords */
|
|
void BM_face_calc_center_median_vcos(const BMesh *bm,
|
|
const BMFace *f,
|
|
float r_cent[3],
|
|
float const (*vertexCos)[3])
|
|
{
|
|
/* must have valid index data */
|
|
BLI_assert((bm->elem_index_dirty & BM_VERT) == 0);
|
|
(void)bm;
|
|
|
|
bm_face_calc_poly_center_median_vertex_cos(f, r_cent, vertexCos);
|
|
}
|
|
|
|
/**
|
|
* \brief Face Flip Normal
|
|
*
|
|
* Reverses the winding of a face.
|
|
* \note This updates the calculated normal.
|
|
*/
|
|
void BM_face_normal_flip_ex(BMesh *bm,
|
|
BMFace *f,
|
|
const int cd_loop_mdisp_offset,
|
|
const bool use_loop_mdisp_flip)
|
|
{
|
|
bmesh_kernel_loop_reverse(bm, f, cd_loop_mdisp_offset, use_loop_mdisp_flip);
|
|
negate_v3(f->no);
|
|
}
|
|
|
|
void BM_face_normal_flip(BMesh *bm, BMFace *f)
|
|
{
|
|
const int cd_loop_mdisp_offset = CustomData_get_offset(&bm->ldata, CD_MDISPS);
|
|
BM_face_normal_flip_ex(bm, f, cd_loop_mdisp_offset, true);
|
|
}
|
|
|
|
/**
|
|
* BM POINT IN FACE
|
|
*
|
|
* Projects co onto face f, and returns true if it is inside
|
|
* the face bounds.
|
|
*
|
|
* \note this uses a best-axis projection test,
|
|
* instead of projecting co directly into f's orientation space,
|
|
* so there might be accuracy issues.
|
|
*/
|
|
bool BM_face_point_inside_test(const BMFace *f, const float co[3])
|
|
{
|
|
float axis_mat[3][3];
|
|
float(*projverts)[2] = BLI_array_alloca(projverts, f->len);
|
|
|
|
float co_2d[2];
|
|
BMLoop *l_iter;
|
|
int i;
|
|
|
|
BLI_assert(BM_face_is_normal_valid(f));
|
|
|
|
axis_dominant_v3_to_m3(axis_mat, f->no);
|
|
|
|
mul_v2_m3v3(co_2d, axis_mat, co);
|
|
|
|
for (i = 0, l_iter = BM_FACE_FIRST_LOOP(f); i < f->len; i++, l_iter = l_iter->next) {
|
|
mul_v2_m3v3(projverts[i], axis_mat, l_iter->v->co);
|
|
}
|
|
|
|
return isect_point_poly_v2(co_2d, projverts, f->len, false);
|
|
}
|
|
|
|
/**
|
|
* \brief BMESH TRIANGULATE FACE
|
|
*
|
|
* Breaks all quads and ngons down to triangles.
|
|
* It uses polyfill for the ngons splitting, and
|
|
* the beautify operator when use_beauty is true.
|
|
*
|
|
* \param r_faces_new: if non-null, must be an array of BMFace pointers,
|
|
* with a length equal to (f->len - 3). It will be filled with the new
|
|
* triangles (not including the original triangle).
|
|
*
|
|
* \param r_faces_double: When newly created faces are duplicates of existing faces,
|
|
* they're added to this list. Caller must handle de-duplication.
|
|
* This is done because its possible _all_ faces exist already,
|
|
* and in that case we would have to remove all faces including the one passed,
|
|
* which causes complications adding/removing faces while looking over them.
|
|
*
|
|
* \note The number of faces is _almost_ always (f->len - 3),
|
|
* However there may be faces that already occupying the
|
|
* triangles we would make, so the caller must check \a r_faces_new_tot.
|
|
*
|
|
* \note use_tag tags new flags and edges.
|
|
*/
|
|
void BM_face_triangulate(BMesh *bm,
|
|
BMFace *f,
|
|
BMFace **r_faces_new,
|
|
int *r_faces_new_tot,
|
|
BMEdge **r_edges_new,
|
|
int *r_edges_new_tot,
|
|
LinkNode **r_faces_double,
|
|
const int quad_method,
|
|
const int ngon_method,
|
|
const bool use_tag,
|
|
/* use for ngons only! */
|
|
MemArena *pf_arena,
|
|
|
|
/* use for MOD_TRIANGULATE_NGON_BEAUTY only! */
|
|
struct Heap *pf_heap)
|
|
{
|
|
const int cd_loop_mdisp_offset = CustomData_get_offset(&bm->ldata, CD_MDISPS);
|
|
const bool use_beauty = (ngon_method == MOD_TRIANGULATE_NGON_BEAUTY);
|
|
BMLoop *l_first, *l_new;
|
|
BMFace *f_new;
|
|
int nf_i = 0;
|
|
int ne_i = 0;
|
|
|
|
BLI_assert(BM_face_is_normal_valid(f));
|
|
|
|
/* ensure both are valid or NULL */
|
|
BLI_assert((r_faces_new == NULL) == (r_faces_new_tot == NULL));
|
|
|
|
BLI_assert(f->len > 3);
|
|
|
|
{
|
|
BMLoop **loops = BLI_array_alloca(loops, f->len);
|
|
uint(*tris)[3] = BLI_array_alloca(tris, f->len);
|
|
const int totfilltri = f->len - 2;
|
|
const int last_tri = f->len - 3;
|
|
int i;
|
|
/* for mdisps */
|
|
float f_center[3];
|
|
|
|
if (f->len == 4) {
|
|
/* even though we're not using BLI_polyfill, fill in 'tris' and 'loops'
|
|
* so we can share code to handle face creation afterwards. */
|
|
BMLoop *l_v1, *l_v2;
|
|
|
|
l_first = BM_FACE_FIRST_LOOP(f);
|
|
|
|
switch (quad_method) {
|
|
case MOD_TRIANGULATE_QUAD_FIXED: {
|
|
l_v1 = l_first;
|
|
l_v2 = l_first->next->next;
|
|
break;
|
|
}
|
|
case MOD_TRIANGULATE_QUAD_ALTERNATE: {
|
|
l_v1 = l_first->next;
|
|
l_v2 = l_first->prev;
|
|
break;
|
|
}
|
|
case MOD_TRIANGULATE_QUAD_SHORTEDGE:
|
|
case MOD_TRIANGULATE_QUAD_BEAUTY:
|
|
default: {
|
|
BMLoop *l_v3, *l_v4;
|
|
bool split_24;
|
|
|
|
l_v1 = l_first->next;
|
|
l_v2 = l_first->next->next;
|
|
l_v3 = l_first->prev;
|
|
l_v4 = l_first;
|
|
|
|
if (quad_method == MOD_TRIANGULATE_QUAD_SHORTEDGE) {
|
|
float d1, d2;
|
|
d1 = len_squared_v3v3(l_v4->v->co, l_v2->v->co);
|
|
d2 = len_squared_v3v3(l_v1->v->co, l_v3->v->co);
|
|
split_24 = ((d2 - d1) > 0.0f);
|
|
}
|
|
else {
|
|
/* first check if the quad is concave on either diagonal */
|
|
const int flip_flag = is_quad_flip_v3(
|
|
l_v1->v->co, l_v2->v->co, l_v3->v->co, l_v4->v->co);
|
|
if (UNLIKELY(flip_flag & (1 << 0))) {
|
|
split_24 = true;
|
|
}
|
|
else if (UNLIKELY(flip_flag & (1 << 1))) {
|
|
split_24 = false;
|
|
}
|
|
else {
|
|
split_24 = (BM_verts_calc_rotate_beauty(l_v1->v, l_v2->v, l_v3->v, l_v4->v, 0, 0) >
|
|
0.0f);
|
|
}
|
|
}
|
|
|
|
/* named confusingly, l_v1 is in fact the second vertex */
|
|
if (split_24) {
|
|
l_v1 = l_v4;
|
|
// l_v2 = l_v2;
|
|
}
|
|
else {
|
|
// l_v1 = l_v1;
|
|
l_v2 = l_v3;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
loops[0] = l_v1;
|
|
loops[1] = l_v1->next;
|
|
loops[2] = l_v2;
|
|
loops[3] = l_v2->next;
|
|
|
|
ARRAY_SET_ITEMS(tris[0], 0, 1, 2);
|
|
ARRAY_SET_ITEMS(tris[1], 0, 2, 3);
|
|
}
|
|
else {
|
|
BMLoop *l_iter;
|
|
float axis_mat[3][3];
|
|
float(*projverts)[2] = BLI_array_alloca(projverts, f->len);
|
|
|
|
axis_dominant_v3_to_m3_negate(axis_mat, f->no);
|
|
|
|
for (i = 0, l_iter = BM_FACE_FIRST_LOOP(f); i < f->len; i++, l_iter = l_iter->next) {
|
|
loops[i] = l_iter;
|
|
mul_v2_m3v3(projverts[i], axis_mat, l_iter->v->co);
|
|
}
|
|
|
|
BLI_polyfill_calc_arena(projverts, f->len, 1, tris, pf_arena);
|
|
|
|
if (use_beauty) {
|
|
BLI_polyfill_beautify(projverts, f->len, tris, pf_arena, pf_heap);
|
|
}
|
|
|
|
BLI_memarena_clear(pf_arena);
|
|
}
|
|
|
|
if (cd_loop_mdisp_offset != -1) {
|
|
BM_face_calc_center_median(f, f_center);
|
|
}
|
|
|
|
/* loop over calculated triangles and create new geometry */
|
|
for (i = 0; i < totfilltri; i++) {
|
|
BMLoop *l_tri[3] = {loops[tris[i][0]], loops[tris[i][1]], loops[tris[i][2]]};
|
|
|
|
BMVert *v_tri[3] = {l_tri[0]->v, l_tri[1]->v, l_tri[2]->v};
|
|
|
|
f_new = BM_face_create_verts(bm, v_tri, 3, f, BM_CREATE_NOP, true);
|
|
l_new = BM_FACE_FIRST_LOOP(f_new);
|
|
|
|
BLI_assert(v_tri[0] == l_new->v);
|
|
|
|
/* check for duplicate */
|
|
if (l_new->radial_next != l_new) {
|
|
BMLoop *l_iter = l_new->radial_next;
|
|
do {
|
|
if (UNLIKELY((l_iter->f->len == 3) && (l_new->prev->v == l_iter->prev->v))) {
|
|
/* Check the last tri because we swap last f_new with f at the end... */
|
|
BLI_linklist_prepend(r_faces_double, (i != last_tri) ? f_new : f);
|
|
break;
|
|
}
|
|
} while ((l_iter = l_iter->radial_next) != l_new);
|
|
}
|
|
|
|
/* copy CD data */
|
|
BM_elem_attrs_copy(bm, bm, l_tri[0], l_new);
|
|
BM_elem_attrs_copy(bm, bm, l_tri[1], l_new->next);
|
|
BM_elem_attrs_copy(bm, bm, l_tri[2], l_new->prev);
|
|
|
|
/* add all but the last face which is swapped and removed (below) */
|
|
if (i != last_tri) {
|
|
if (use_tag) {
|
|
BM_elem_flag_enable(f_new, BM_ELEM_TAG);
|
|
}
|
|
if (r_faces_new) {
|
|
r_faces_new[nf_i++] = f_new;
|
|
}
|
|
}
|
|
|
|
if (use_tag || r_edges_new) {
|
|
/* new faces loops */
|
|
BMLoop *l_iter;
|
|
|
|
l_iter = l_first = l_new;
|
|
do {
|
|
BMEdge *e = l_iter->e;
|
|
/* Confusing! if its not a boundary now, we know it will be later since this will be an
|
|
* edge of one of the new faces which we're in the middle of creating. */
|
|
bool is_new_edge = (l_iter == l_iter->radial_next);
|
|
|
|
if (is_new_edge) {
|
|
if (use_tag) {
|
|
BM_elem_flag_enable(e, BM_ELEM_TAG);
|
|
}
|
|
if (r_edges_new) {
|
|
r_edges_new[ne_i++] = e;
|
|
}
|
|
}
|
|
/* note, never disable tag's */
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
}
|
|
|
|
if (cd_loop_mdisp_offset != -1) {
|
|
float f_new_center[3];
|
|
BM_face_calc_center_median(f_new, f_new_center);
|
|
BM_face_interp_multires_ex(bm, f_new, f, f_new_center, f_center, cd_loop_mdisp_offset);
|
|
}
|
|
}
|
|
|
|
{
|
|
/* we can't delete the real face, because some of the callers expect it to remain valid.
|
|
* so swap data and delete the last created tri */
|
|
bmesh_face_swap_data(f, f_new);
|
|
BM_face_kill(bm, f_new);
|
|
}
|
|
}
|
|
bm->elem_index_dirty |= BM_FACE;
|
|
|
|
if (r_faces_new_tot) {
|
|
*r_faces_new_tot = nf_i;
|
|
}
|
|
|
|
if (r_edges_new_tot) {
|
|
*r_edges_new_tot = ne_i;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* each pair of loops defines a new edge, a split. this function goes
|
|
* through and sets pairs that are geometrically invalid to null. a
|
|
* split is invalid, if it forms a concave angle or it intersects other
|
|
* edges in the face, or it intersects another split. in the case of
|
|
* intersecting splits, only the first of the set of intersecting
|
|
* splits survives
|
|
*/
|
|
void BM_face_splits_check_legal(BMesh *bm, BMFace *f, BMLoop *(*loops)[2], int len)
|
|
{
|
|
float out[2] = {-FLT_MAX, -FLT_MAX};
|
|
float center[2] = {0.0f, 0.0f};
|
|
float axis_mat[3][3];
|
|
float(*projverts)[2] = BLI_array_alloca(projverts, f->len);
|
|
const float *(*edgeverts)[2] = BLI_array_alloca(edgeverts, len);
|
|
BMLoop *l;
|
|
int i, i_prev, j;
|
|
|
|
BLI_assert(BM_face_is_normal_valid(f));
|
|
|
|
axis_dominant_v3_to_m3(axis_mat, f->no);
|
|
|
|
for (i = 0, l = BM_FACE_FIRST_LOOP(f); i < f->len; i++, l = l->next) {
|
|
mul_v2_m3v3(projverts[i], axis_mat, l->v->co);
|
|
add_v2_v2(center, projverts[i]);
|
|
}
|
|
|
|
/* first test for completely convex face */
|
|
if (is_poly_convex_v2(projverts, f->len)) {
|
|
return;
|
|
}
|
|
|
|
mul_v2_fl(center, 1.0f / f->len);
|
|
|
|
for (i = 0, l = BM_FACE_FIRST_LOOP(f); i < f->len; i++, l = l->next) {
|
|
BM_elem_index_set(l, i); /* set_dirty */
|
|
|
|
/* center the projection for maximum accuracy */
|
|
sub_v2_v2(projverts[i], center);
|
|
|
|
out[0] = max_ff(out[0], projverts[i][0]);
|
|
out[1] = max_ff(out[1], projverts[i][1]);
|
|
}
|
|
bm->elem_index_dirty |= BM_LOOP;
|
|
|
|
/* ensure we are well outside the face bounds (value is arbitrary) */
|
|
add_v2_fl(out, 1.0f);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
edgeverts[i][0] = projverts[BM_elem_index_get(loops[i][0])];
|
|
edgeverts[i][1] = projverts[BM_elem_index_get(loops[i][1])];
|
|
}
|
|
|
|
/* do convexity test */
|
|
for (i = 0; i < len; i++) {
|
|
float mid[2];
|
|
mid_v2_v2v2(mid, edgeverts[i][0], edgeverts[i][1]);
|
|
|
|
int isect = 0;
|
|
int j_prev;
|
|
for (j = 0, j_prev = f->len - 1; j < f->len; j_prev = j++) {
|
|
const float *f_edge[2] = {projverts[j_prev], projverts[j]};
|
|
if (isect_seg_seg_v2(UNPACK2(f_edge), mid, out) == ISECT_LINE_LINE_CROSS) {
|
|
isect++;
|
|
}
|
|
}
|
|
|
|
if (isect % 2 == 0) {
|
|
loops[i][0] = NULL;
|
|
}
|
|
}
|
|
|
|
#define EDGE_SHARE_VERT(e1, e2) \
|
|
((ELEM((e1)[0], (e2)[0], (e2)[1])) || (ELEM((e1)[1], (e2)[0], (e2)[1])))
|
|
|
|
/* do line crossing tests */
|
|
for (i = 0, i_prev = f->len - 1; i < f->len; i_prev = i++) {
|
|
const float *f_edge[2] = {projverts[i_prev], projverts[i]};
|
|
for (j = 0; j < len; j++) {
|
|
if ((loops[j][0] != NULL) && !EDGE_SHARE_VERT(f_edge, edgeverts[j])) {
|
|
if (isect_seg_seg_v2(UNPACK2(f_edge), UNPACK2(edgeverts[j])) == ISECT_LINE_LINE_CROSS) {
|
|
loops[j][0] = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* self intersect tests */
|
|
for (i = 0; i < len; i++) {
|
|
if (loops[i][0]) {
|
|
for (j = i + 1; j < len; j++) {
|
|
if ((loops[j][0] != NULL) && !EDGE_SHARE_VERT(edgeverts[i], edgeverts[j])) {
|
|
if (isect_seg_seg_v2(UNPACK2(edgeverts[i]), UNPACK2(edgeverts[j])) ==
|
|
ISECT_LINE_LINE_CROSS) {
|
|
loops[i][0] = NULL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef EDGE_SHARE_VERT
|
|
}
|
|
|
|
/**
|
|
* This simply checks that the verts don't connect faces which would have more optimal splits.
|
|
* but _not_ check for correctness.
|
|
*/
|
|
void BM_face_splits_check_optimal(BMFace *f, BMLoop *(*loops)[2], int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
BMLoop *l_a_dummy, *l_b_dummy;
|
|
if (f != BM_vert_pair_share_face_by_angle(
|
|
loops[i][0]->v, loops[i][1]->v, &l_a_dummy, &l_b_dummy, false)) {
|
|
loops[i][0] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Small utility functions for fast access
|
|
*
|
|
* faster alternative to:
|
|
* BM_iter_as_array(bm, BM_VERTS_OF_FACE, f, (void **)v, 3);
|
|
*/
|
|
void BM_face_as_array_vert_tri(BMFace *f, BMVert *r_verts[3])
|
|
{
|
|
BMLoop *l = BM_FACE_FIRST_LOOP(f);
|
|
|
|
BLI_assert(f->len == 3);
|
|
|
|
r_verts[0] = l->v;
|
|
l = l->next;
|
|
r_verts[1] = l->v;
|
|
l = l->next;
|
|
r_verts[2] = l->v;
|
|
}
|
|
|
|
/**
|
|
* faster alternative to:
|
|
* BM_iter_as_array(bm, BM_VERTS_OF_FACE, f, (void **)v, 4);
|
|
*/
|
|
void BM_face_as_array_vert_quad(BMFace *f, BMVert *r_verts[4])
|
|
{
|
|
BMLoop *l = BM_FACE_FIRST_LOOP(f);
|
|
|
|
BLI_assert(f->len == 4);
|
|
|
|
r_verts[0] = l->v;
|
|
l = l->next;
|
|
r_verts[1] = l->v;
|
|
l = l->next;
|
|
r_verts[2] = l->v;
|
|
l = l->next;
|
|
r_verts[3] = l->v;
|
|
}
|
|
|
|
/**
|
|
* Small utility functions for fast access
|
|
*
|
|
* faster alternative to:
|
|
* BM_iter_as_array(bm, BM_LOOPS_OF_FACE, f, (void **)l, 3);
|
|
*/
|
|
void BM_face_as_array_loop_tri(BMFace *f, BMLoop *r_loops[3])
|
|
{
|
|
BMLoop *l = BM_FACE_FIRST_LOOP(f);
|
|
|
|
BLI_assert(f->len == 3);
|
|
|
|
r_loops[0] = l;
|
|
l = l->next;
|
|
r_loops[1] = l;
|
|
l = l->next;
|
|
r_loops[2] = l;
|
|
}
|
|
|
|
/**
|
|
* faster alternative to:
|
|
* BM_iter_as_array(bm, BM_LOOPS_OF_FACE, f, (void **)l, 4);
|
|
*/
|
|
void BM_face_as_array_loop_quad(BMFace *f, BMLoop *r_loops[4])
|
|
{
|
|
BMLoop *l = BM_FACE_FIRST_LOOP(f);
|
|
|
|
BLI_assert(f->len == 4);
|
|
|
|
r_loops[0] = l;
|
|
l = l->next;
|
|
r_loops[1] = l;
|
|
l = l->next;
|
|
r_loops[2] = l;
|
|
l = l->next;
|
|
r_loops[3] = l;
|
|
}
|
|
|
|
/**
|
|
* \brief BM_mesh_calc_tessellation get the looptris and its number from a certain bmesh
|
|
* \param looptris:
|
|
*
|
|
* \note \a looptris Must be pre-allocated to at least the size of given by: poly_to_tri_count
|
|
*/
|
|
void BM_mesh_calc_tessellation(BMesh *bm, BMLoop *(*looptris)[3], int *r_looptris_tot)
|
|
{
|
|
/* use this to avoid locking pthread for _every_ polygon
|
|
* and calling the fill function */
|
|
#define USE_TESSFACE_SPEEDUP
|
|
|
|
/* this assumes all faces can be scan-filled, which isn't always true,
|
|
* worst case we over alloc a little which is acceptable */
|
|
#ifndef NDEBUG
|
|
const int looptris_tot = poly_to_tri_count(bm->totface, bm->totloop);
|
|
#endif
|
|
|
|
BMIter iter;
|
|
BMFace *efa;
|
|
int i = 0;
|
|
|
|
MemArena *arena = NULL;
|
|
|
|
BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
|
|
/* don't consider two-edged faces */
|
|
if (UNLIKELY(efa->len < 3)) {
|
|
/* do nothing */
|
|
}
|
|
|
|
#ifdef USE_TESSFACE_SPEEDUP
|
|
|
|
/* no need to ensure the loop order, we know its ok */
|
|
|
|
else if (efa->len == 3) {
|
|
# if 0
|
|
int j;
|
|
BM_ITER_ELEM_INDEX(l, &liter, efa, BM_LOOPS_OF_FACE, j) {
|
|
looptris[i][j] = l;
|
|
}
|
|
i += 1;
|
|
# else
|
|
/* more cryptic but faster */
|
|
BMLoop *l;
|
|
BMLoop **l_ptr = looptris[i++];
|
|
l_ptr[0] = l = BM_FACE_FIRST_LOOP(efa);
|
|
l_ptr[1] = l = l->next;
|
|
l_ptr[2] = l->next;
|
|
# endif
|
|
}
|
|
else if (efa->len == 4) {
|
|
# if 0
|
|
BMLoop *ltmp[4];
|
|
int j;
|
|
BLI_array_grow_items(looptris, 2);
|
|
BM_ITER_ELEM_INDEX(l, &liter, efa, BM_LOOPS_OF_FACE, j) {
|
|
ltmp[j] = l;
|
|
}
|
|
|
|
looptris[i][0] = ltmp[0];
|
|
looptris[i][1] = ltmp[1];
|
|
looptris[i][2] = ltmp[2];
|
|
i += 1;
|
|
|
|
looptris[i][0] = ltmp[0];
|
|
looptris[i][1] = ltmp[2];
|
|
looptris[i][2] = ltmp[3];
|
|
i += 1;
|
|
# else
|
|
/* more cryptic but faster */
|
|
BMLoop *l;
|
|
BMLoop **l_ptr_a = looptris[i++];
|
|
BMLoop **l_ptr_b = looptris[i++];
|
|
(l_ptr_a[0] = l_ptr_b[0] = l = BM_FACE_FIRST_LOOP(efa));
|
|
(l_ptr_a[1] = l = l->next);
|
|
(l_ptr_a[2] = l_ptr_b[1] = l = l->next);
|
|
(l_ptr_b[2] = l->next);
|
|
# endif
|
|
|
|
if (UNLIKELY(is_quad_flip_v3_first_third_fast(
|
|
l_ptr_a[0]->v->co, l_ptr_a[1]->v->co, l_ptr_a[2]->v->co, l_ptr_b[2]->v->co))) {
|
|
/* flip out of degenerate 0-2 state. */
|
|
l_ptr_a[2] = l_ptr_b[2];
|
|
l_ptr_b[0] = l_ptr_a[1];
|
|
}
|
|
}
|
|
|
|
#endif /* USE_TESSFACE_SPEEDUP */
|
|
|
|
else {
|
|
int j;
|
|
|
|
BMLoop *l_iter;
|
|
BMLoop *l_first;
|
|
BMLoop **l_arr;
|
|
|
|
float axis_mat[3][3];
|
|
float(*projverts)[2];
|
|
uint(*tris)[3];
|
|
|
|
const int totfilltri = efa->len - 2;
|
|
|
|
if (UNLIKELY(arena == NULL)) {
|
|
arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
|
|
}
|
|
|
|
tris = BLI_memarena_alloc(arena, sizeof(*tris) * totfilltri);
|
|
l_arr = BLI_memarena_alloc(arena, sizeof(*l_arr) * efa->len);
|
|
projverts = BLI_memarena_alloc(arena, sizeof(*projverts) * efa->len);
|
|
|
|
axis_dominant_v3_to_m3_negate(axis_mat, efa->no);
|
|
|
|
j = 0;
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(efa);
|
|
do {
|
|
l_arr[j] = l_iter;
|
|
mul_v2_m3v3(projverts[j], axis_mat, l_iter->v->co);
|
|
j++;
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
BLI_polyfill_calc_arena(projverts, efa->len, 1, tris, arena);
|
|
|
|
for (j = 0; j < totfilltri; j++) {
|
|
BMLoop **l_ptr = looptris[i++];
|
|
uint *tri = tris[j];
|
|
|
|
l_ptr[0] = l_arr[tri[0]];
|
|
l_ptr[1] = l_arr[tri[1]];
|
|
l_ptr[2] = l_arr[tri[2]];
|
|
}
|
|
|
|
BLI_memarena_clear(arena);
|
|
}
|
|
}
|
|
|
|
if (arena) {
|
|
BLI_memarena_free(arena);
|
|
arena = NULL;
|
|
}
|
|
|
|
*r_looptris_tot = i;
|
|
|
|
BLI_assert(i <= looptris_tot);
|
|
|
|
#undef USE_TESSFACE_SPEEDUP
|
|
}
|
|
|
|
/**
|
|
* A version of #BM_mesh_calc_tessellation that avoids degenerate triangles.
|
|
*/
|
|
void BM_mesh_calc_tessellation_beauty(BMesh *bm, BMLoop *(*looptris)[3], int *r_looptris_tot)
|
|
{
|
|
/* this assumes all faces can be scan-filled, which isn't always true,
|
|
* worst case we over alloc a little which is acceptable */
|
|
#ifndef NDEBUG
|
|
const int looptris_tot = poly_to_tri_count(bm->totface, bm->totloop);
|
|
#endif
|
|
|
|
BMIter iter;
|
|
BMFace *efa;
|
|
int i = 0;
|
|
|
|
MemArena *pf_arena = NULL;
|
|
|
|
/* use_beauty */
|
|
Heap *pf_heap = NULL;
|
|
|
|
BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
|
|
/* don't consider two-edged faces */
|
|
if (UNLIKELY(efa->len < 3)) {
|
|
/* do nothing */
|
|
}
|
|
else if (efa->len == 3) {
|
|
BMLoop *l;
|
|
BMLoop **l_ptr = looptris[i++];
|
|
l_ptr[0] = l = BM_FACE_FIRST_LOOP(efa);
|
|
l_ptr[1] = l = l->next;
|
|
l_ptr[2] = l->next;
|
|
}
|
|
else if (efa->len == 4) {
|
|
BMLoop *l_v1 = BM_FACE_FIRST_LOOP(efa);
|
|
BMLoop *l_v2 = l_v1->next;
|
|
BMLoop *l_v3 = l_v2->next;
|
|
BMLoop *l_v4 = l_v1->prev;
|
|
|
|
/* #BM_verts_calc_rotate_beauty performs excessive checks we don't need!
|
|
* It's meant for rotating edges, it also calculates a new normal.
|
|
*
|
|
* Use #BLI_polyfill_beautify_quad_rotate_calc since we have the normal.
|
|
*/
|
|
#if 0
|
|
const bool split_13 = (BM_verts_calc_rotate_beauty(
|
|
l_v1->v, l_v2->v, l_v3->v, l_v4->v, 0, 0) < 0.0f);
|
|
#else
|
|
float axis_mat[3][3], v_quad[4][2];
|
|
axis_dominant_v3_to_m3(axis_mat, efa->no);
|
|
mul_v2_m3v3(v_quad[0], axis_mat, l_v1->v->co);
|
|
mul_v2_m3v3(v_quad[1], axis_mat, l_v2->v->co);
|
|
mul_v2_m3v3(v_quad[2], axis_mat, l_v3->v->co);
|
|
mul_v2_m3v3(v_quad[3], axis_mat, l_v4->v->co);
|
|
|
|
const bool split_13 = BLI_polyfill_beautify_quad_rotate_calc(
|
|
v_quad[0], v_quad[1], v_quad[2], v_quad[3]) < 0.0f;
|
|
#endif
|
|
|
|
BMLoop **l_ptr_a = looptris[i++];
|
|
BMLoop **l_ptr_b = looptris[i++];
|
|
if (split_13) {
|
|
l_ptr_a[0] = l_v1;
|
|
l_ptr_a[1] = l_v2;
|
|
l_ptr_a[2] = l_v3;
|
|
|
|
l_ptr_b[0] = l_v1;
|
|
l_ptr_b[1] = l_v3;
|
|
l_ptr_b[2] = l_v4;
|
|
}
|
|
else {
|
|
l_ptr_a[0] = l_v1;
|
|
l_ptr_a[1] = l_v2;
|
|
l_ptr_a[2] = l_v4;
|
|
|
|
l_ptr_b[0] = l_v2;
|
|
l_ptr_b[1] = l_v3;
|
|
l_ptr_b[2] = l_v4;
|
|
}
|
|
}
|
|
else {
|
|
int j;
|
|
|
|
BMLoop *l_iter;
|
|
BMLoop *l_first;
|
|
BMLoop **l_arr;
|
|
|
|
float axis_mat[3][3];
|
|
float(*projverts)[2];
|
|
unsigned int(*tris)[3];
|
|
|
|
const int totfilltri = efa->len - 2;
|
|
|
|
if (UNLIKELY(pf_arena == NULL)) {
|
|
pf_arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
|
|
pf_heap = BLI_heap_new_ex(BLI_POLYFILL_ALLOC_NGON_RESERVE);
|
|
}
|
|
|
|
tris = BLI_memarena_alloc(pf_arena, sizeof(*tris) * totfilltri);
|
|
l_arr = BLI_memarena_alloc(pf_arena, sizeof(*l_arr) * efa->len);
|
|
projverts = BLI_memarena_alloc(pf_arena, sizeof(*projverts) * efa->len);
|
|
|
|
axis_dominant_v3_to_m3_negate(axis_mat, efa->no);
|
|
|
|
j = 0;
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(efa);
|
|
do {
|
|
l_arr[j] = l_iter;
|
|
mul_v2_m3v3(projverts[j], axis_mat, l_iter->v->co);
|
|
j++;
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
BLI_polyfill_calc_arena(projverts, efa->len, 1, tris, pf_arena);
|
|
|
|
BLI_polyfill_beautify(projverts, efa->len, tris, pf_arena, pf_heap);
|
|
|
|
for (j = 0; j < totfilltri; j++) {
|
|
BMLoop **l_ptr = looptris[i++];
|
|
unsigned int *tri = tris[j];
|
|
|
|
l_ptr[0] = l_arr[tri[0]];
|
|
l_ptr[1] = l_arr[tri[1]];
|
|
l_ptr[2] = l_arr[tri[2]];
|
|
}
|
|
|
|
BLI_memarena_clear(pf_arena);
|
|
}
|
|
}
|
|
|
|
if (pf_arena) {
|
|
BLI_memarena_free(pf_arena);
|
|
|
|
BLI_heap_free(pf_heap, NULL);
|
|
}
|
|
|
|
*r_looptris_tot = i;
|
|
|
|
BLI_assert(i <= looptris_tot);
|
|
}
|