This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/intern/bmesh_polygon.c
Harley Acheson 3a7fd309fc Spelling: It's Versus Its
Corrects incorrect usage of contraction for 'it is', when possessive 'its' was required.

Differential Revision: https://developer.blender.org/D9250

Reviewed by Campbell Barton
2020-10-19 08:12:33 -07:00

1812 lines
48 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup bmesh
*
* This file contains code for dealing
* with polygons (normal/area calculation,
* tessellation, etc)
*/
#include "DNA_listBase.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "MEM_guardedalloc.h"
#include "BLI_alloca.h"
#include "BLI_heap.h"
#include "BLI_linklist.h"
#include "BLI_math.h"
#include "BLI_memarena.h"
#include "BLI_polyfill_2d.h"
#include "BLI_polyfill_2d_beautify.h"
#include "bmesh.h"
#include "bmesh_tools.h"
#include "BKE_customdata.h"
#include "intern/bmesh_private.h"
/**
* \brief COMPUTE POLY NORMAL (BMFace)
*
* Same as #normal_poly_v3 but operates directly on a bmesh face.
*/
static float bm_face_calc_poly_normal(const BMFace *f, float n[3])
{
BMLoop *l_first = BM_FACE_FIRST_LOOP(f);
BMLoop *l_iter = l_first;
const float *v_prev = l_first->prev->v->co;
const float *v_curr = l_first->v->co;
zero_v3(n);
/* Newell's Method */
do {
add_newell_cross_v3_v3v3(n, v_prev, v_curr);
l_iter = l_iter->next;
v_prev = v_curr;
v_curr = l_iter->v->co;
} while (l_iter != l_first);
return normalize_v3(n);
}
/**
* \brief COMPUTE POLY NORMAL (BMFace)
*
* Same as #bm_face_calc_poly_normal
* but takes an array of vertex locations.
*/
static float bm_face_calc_poly_normal_vertex_cos(const BMFace *f,
float r_no[3],
float const (*vertexCos)[3])
{
BMLoop *l_first = BM_FACE_FIRST_LOOP(f);
BMLoop *l_iter = l_first;
const float *v_prev = vertexCos[BM_elem_index_get(l_first->prev->v)];
const float *v_curr = vertexCos[BM_elem_index_get(l_first->v)];
zero_v3(r_no);
/* Newell's Method */
do {
add_newell_cross_v3_v3v3(r_no, v_prev, v_curr);
l_iter = l_iter->next;
v_prev = v_curr;
v_curr = vertexCos[BM_elem_index_get(l_iter->v)];
} while (l_iter != l_first);
return normalize_v3(r_no);
}
/**
* \brief COMPUTE POLY CENTER (BMFace)
*/
static void bm_face_calc_poly_center_median_vertex_cos(const BMFace *f,
float r_cent[3],
float const (*vertexCos)[3])
{
const BMLoop *l_first, *l_iter;
zero_v3(r_cent);
/* Newell's Method */
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
add_v3_v3(r_cent, vertexCos[BM_elem_index_get(l_iter->v)]);
} while ((l_iter = l_iter->next) != l_first);
mul_v3_fl(r_cent, 1.0f / f->len);
}
/**
* For tools that insist on using triangles, ideally we would cache this data.
*
* \param use_fixed_quad: When true,
* always split quad along (0 -> 2) regardless of concave corners,
* (as done in #BM_mesh_calc_tessellation).
* \param r_loops: Store face loop pointers, (f->len)
* \param r_index: Store triangle triples, indices into \a r_loops, `((f->len - 2) * 3)`
*/
void BM_face_calc_tessellation(const BMFace *f,
const bool use_fixed_quad,
BMLoop **r_loops,
uint (*r_index)[3])
{
BMLoop *l_first = BM_FACE_FIRST_LOOP(f);
BMLoop *l_iter;
if (f->len == 3) {
*r_loops++ = (l_iter = l_first);
*r_loops++ = (l_iter = l_iter->next);
*r_loops++ = (l_iter->next);
r_index[0][0] = 0;
r_index[0][1] = 1;
r_index[0][2] = 2;
}
else if (f->len == 4 && use_fixed_quad) {
*r_loops++ = (l_iter = l_first);
*r_loops++ = (l_iter = l_iter->next);
*r_loops++ = (l_iter = l_iter->next);
*r_loops++ = (l_iter->next);
r_index[0][0] = 0;
r_index[0][1] = 1;
r_index[0][2] = 2;
r_index[1][0] = 0;
r_index[1][1] = 2;
r_index[1][2] = 3;
}
else {
float axis_mat[3][3];
float(*projverts)[2] = BLI_array_alloca(projverts, f->len);
int j;
axis_dominant_v3_to_m3_negate(axis_mat, f->no);
j = 0;
l_iter = l_first;
do {
mul_v2_m3v3(projverts[j], axis_mat, l_iter->v->co);
r_loops[j] = l_iter;
j++;
} while ((l_iter = l_iter->next) != l_first);
/* complete the loop */
BLI_polyfill_calc(projverts, f->len, 1, r_index);
}
}
/**
* Return a point inside the face.
*/
void BM_face_calc_point_in_face(const BMFace *f, float r_co[3])
{
const BMLoop *l_tri[3];
if (f->len == 3) {
const BMLoop *l = BM_FACE_FIRST_LOOP(f);
ARRAY_SET_ITEMS(l_tri, l, l->next, l->prev);
}
else {
/* tessellation here seems overkill when in many cases this will be the center,
* but without this we can't be sure the point is inside a concave face. */
const int tottri = f->len - 2;
BMLoop **loops = BLI_array_alloca(loops, f->len);
uint(*index)[3] = BLI_array_alloca(index, tottri);
int j;
int j_best = 0; /* use as fallback when unset */
float area_best = -1.0f;
BM_face_calc_tessellation(f, false, loops, index);
for (j = 0; j < tottri; j++) {
const float *p1 = loops[index[j][0]]->v->co;
const float *p2 = loops[index[j][1]]->v->co;
const float *p3 = loops[index[j][2]]->v->co;
const float area = area_squared_tri_v3(p1, p2, p3);
if (area > area_best) {
j_best = j;
area_best = area;
}
}
ARRAY_SET_ITEMS(
l_tri, loops[index[j_best][0]], loops[index[j_best][1]], loops[index[j_best][2]]);
}
mid_v3_v3v3v3(r_co, l_tri[0]->v->co, l_tri[1]->v->co, l_tri[2]->v->co);
}
/**
* get the area of the face
*/
float BM_face_calc_area(const BMFace *f)
{
/* inline 'area_poly_v3' logic, avoid creating a temp array */
const BMLoop *l_iter, *l_first;
float n[3];
zero_v3(n);
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
add_newell_cross_v3_v3v3(n, l_iter->v->co, l_iter->next->v->co);
} while ((l_iter = l_iter->next) != l_first);
return len_v3(n) * 0.5f;
}
/**
* Get the area of the face in world space.
*/
float BM_face_calc_area_with_mat3(const BMFace *f, const float mat3[3][3])
{
/* inline 'area_poly_v3' logic, avoid creating a temp array */
const BMLoop *l_iter, *l_first;
float co[3];
float n[3];
zero_v3(n);
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
mul_v3_m3v3(co, mat3, l_iter->v->co);
do {
float co_next[3];
mul_v3_m3v3(co_next, mat3, l_iter->next->v->co);
add_newell_cross_v3_v3v3(n, co, co_next);
copy_v3_v3(co, co_next);
} while ((l_iter = l_iter->next) != l_first);
return len_v3(n) * 0.5f;
}
/**
* get the area of UV face
*/
float BM_face_calc_area_uv(const BMFace *f, int cd_loop_uv_offset)
{
/* inline 'area_poly_v2' logic, avoid creating a temp array */
const BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
/* The Trapezium Area Rule */
float cross = 0.0f;
do {
const MLoopUV *luv = BM_ELEM_CD_GET_VOID_P(l_iter, cd_loop_uv_offset);
const MLoopUV *luv_next = BM_ELEM_CD_GET_VOID_P(l_iter->next, cd_loop_uv_offset);
cross += (luv_next->uv[0] - luv->uv[0]) * (luv_next->uv[1] + luv->uv[1]);
} while ((l_iter = l_iter->next) != l_first);
return fabsf(cross * 0.5f);
}
/**
* compute the perimeter of an ngon
*/
float BM_face_calc_perimeter(const BMFace *f)
{
const BMLoop *l_iter, *l_first;
float perimeter = 0.0f;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
perimeter += len_v3v3(l_iter->v->co, l_iter->next->v->co);
} while ((l_iter = l_iter->next) != l_first);
return perimeter;
}
/**
* Calculate the perimeter of a ngon in world space.
*/
float BM_face_calc_perimeter_with_mat3(const BMFace *f, const float mat3[3][3])
{
const BMLoop *l_iter, *l_first;
float co[3];
float perimeter = 0.0f;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
mul_v3_m3v3(co, mat3, l_iter->v->co);
do {
float co_next[3];
mul_v3_m3v3(co_next, mat3, l_iter->next->v->co);
perimeter += len_v3v3(co, co_next);
copy_v3_v3(co, co_next);
} while ((l_iter = l_iter->next) != l_first);
return perimeter;
}
/**
* Utility function to calculate the edge which is most different from the other two.
*
* \return The first edge index, where the second vertex is ``(index + 1) % 3``.
*/
static int bm_vert_tri_find_unique_edge(BMVert *verts[3])
{
/* find the most 'unique' loop, (greatest difference to others) */
#if 1
/* optimized version that avoids sqrt */
float difs[3];
for (int i_prev = 1, i_curr = 2, i_next = 0; i_next < 3; i_prev = i_curr, i_curr = i_next++) {
const float *co = verts[i_curr]->co;
const float *co_other[2] = {verts[i_prev]->co, verts[i_next]->co};
float proj_dir[3];
mid_v3_v3v3(proj_dir, co_other[0], co_other[1]);
sub_v3_v3(proj_dir, co);
float proj_pair[2][3];
project_v3_v3v3(proj_pair[0], co_other[0], proj_dir);
project_v3_v3v3(proj_pair[1], co_other[1], proj_dir);
difs[i_next] = len_squared_v3v3(proj_pair[0], proj_pair[1]);
}
#else
const float lens[3] = {
len_v3v3(verts[0]->co, verts[1]->co),
len_v3v3(verts[1]->co, verts[2]->co),
len_v3v3(verts[2]->co, verts[0]->co),
};
const float difs[3] = {
fabsf(lens[1] - lens[2]),
fabsf(lens[2] - lens[0]),
fabsf(lens[0] - lens[1]),
};
#endif
int order[3] = {0, 1, 2};
axis_sort_v3(difs, order);
return order[0];
}
/**
* Calculate a tangent from any 3 vertices.
*
* The tangent aligns to the most *unique* edge
* (the edge most unlike the other two).
*
* \param r_tangent: Calculated unit length tangent (return value).
*/
void BM_vert_tri_calc_tangent_edge(BMVert *verts[3], float r_tangent[3])
{
const int index = bm_vert_tri_find_unique_edge(verts);
sub_v3_v3v3(r_tangent, verts[index]->co, verts[(index + 1) % 3]->co);
normalize_v3(r_tangent);
}
/**
* Calculate a tangent from any 3 vertices,
*
* The tangent follows the center-line formed by the most unique edges center
* and the opposite vertex.
*
* \param r_tangent: Calculated unit length tangent (return value).
*/
void BM_vert_tri_calc_tangent_edge_pair(BMVert *verts[3], float r_tangent[3])
{
const int index = bm_vert_tri_find_unique_edge(verts);
const float *v_a = verts[index]->co;
const float *v_b = verts[(index + 1) % 3]->co;
const float *v_other = verts[(index + 2) % 3]->co;
mid_v3_v3v3(r_tangent, v_a, v_b);
sub_v3_v3v3(r_tangent, v_other, r_tangent);
normalize_v3(r_tangent);
}
/**
* Compute the tangent of the face, using the longest edge.
*/
void BM_face_calc_tangent_edge(const BMFace *f, float r_tangent[3])
{
const BMLoop *l_long = BM_face_find_longest_loop((BMFace *)f);
sub_v3_v3v3(r_tangent, l_long->v->co, l_long->next->v->co);
normalize_v3(r_tangent);
}
/**
* Compute the tangent of the face, using the two longest disconnected edges.
*
* \param r_tangent: Calculated unit length tangent (return value).
*/
void BM_face_calc_tangent_edge_pair(const BMFace *f, float r_tangent[3])
{
if (f->len == 3) {
BMVert *verts[3];
BM_face_as_array_vert_tri((BMFace *)f, verts);
BM_vert_tri_calc_tangent_edge_pair(verts, r_tangent);
}
else if (f->len == 4) {
/* Use longest edge pair */
BMVert *verts[4];
float vec[3], vec_a[3], vec_b[3];
BM_face_as_array_vert_quad((BMFace *)f, verts);
sub_v3_v3v3(vec_a, verts[3]->co, verts[2]->co);
sub_v3_v3v3(vec_b, verts[0]->co, verts[1]->co);
add_v3_v3v3(r_tangent, vec_a, vec_b);
sub_v3_v3v3(vec_a, verts[0]->co, verts[3]->co);
sub_v3_v3v3(vec_b, verts[1]->co, verts[2]->co);
add_v3_v3v3(vec, vec_a, vec_b);
/* use the longest edge length */
if (len_squared_v3(r_tangent) < len_squared_v3(vec)) {
copy_v3_v3(r_tangent, vec);
}
}
else {
/* For ngons use two longest disconnected edges */
BMLoop *l_long = BM_face_find_longest_loop((BMFace *)f);
BMLoop *l_long_other = NULL;
float len_max_sq = 0.0f;
float vec_a[3], vec_b[3];
BMLoop *l_iter = l_long->prev->prev;
BMLoop *l_last = l_long->next;
do {
const float len_sq = len_squared_v3v3(l_iter->v->co, l_iter->next->v->co);
if (len_sq >= len_max_sq) {
l_long_other = l_iter;
len_max_sq = len_sq;
}
} while ((l_iter = l_iter->prev) != l_last);
sub_v3_v3v3(vec_a, l_long->next->v->co, l_long->v->co);
sub_v3_v3v3(vec_b, l_long_other->v->co, l_long_other->next->v->co);
add_v3_v3v3(r_tangent, vec_a, vec_b);
/* Edges may not be opposite side of the ngon,
* this could cause problems for ngons with multiple-aligned edges of the same length.
* Fallback to longest edge. */
if (UNLIKELY(normalize_v3(r_tangent) == 0.0f)) {
normalize_v3_v3(r_tangent, vec_a);
}
}
}
/**
* Compute the tangent of the face, using the edge farthest away from any vertex in the face.
*
* \param r_tangent: Calculated unit length tangent (return value).
*/
void BM_face_calc_tangent_edge_diagonal(const BMFace *f, float r_tangent[3])
{
BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
/* In case of degenerate faces. */
zero_v3(r_tangent);
/* warning: O(n^2) loop here, take care! */
float dist_max_sq = 0.0f;
do {
BMLoop *l_iter_other = l_iter->next;
BMLoop *l_iter_last = l_iter->prev;
do {
BLI_assert(!ELEM(l_iter->v->co, l_iter_other->v->co, l_iter_other->next->v->co));
float co_other[3], vec[3];
closest_to_line_segment_v3(
co_other, l_iter->v->co, l_iter_other->v->co, l_iter_other->next->v->co);
sub_v3_v3v3(vec, l_iter->v->co, co_other);
const float dist_sq = len_squared_v3(vec);
if (dist_sq > dist_max_sq) {
dist_max_sq = dist_sq;
copy_v3_v3(r_tangent, vec);
}
} while ((l_iter_other = l_iter_other->next) != l_iter_last);
} while ((l_iter = l_iter->next) != l_first);
normalize_v3(r_tangent);
}
/**
* Compute the tangent of the face, using longest distance between vertices on the face.
*
* \note The logic is almost identical to #BM_face_calc_tangent_edge_diagonal
*/
void BM_face_calc_tangent_vert_diagonal(const BMFace *f, float r_tangent[3])
{
BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
/* In case of degenerate faces. */
zero_v3(r_tangent);
/* warning: O(n^2) loop here, take care! */
float dist_max_sq = 0.0f;
do {
BMLoop *l_iter_other = l_iter->next;
do {
float vec[3];
sub_v3_v3v3(vec, l_iter->v->co, l_iter_other->v->co);
const float dist_sq = len_squared_v3(vec);
if (dist_sq > dist_max_sq) {
dist_max_sq = dist_sq;
copy_v3_v3(r_tangent, vec);
}
} while ((l_iter_other = l_iter_other->next) != l_iter);
} while ((l_iter = l_iter->next) != l_first);
normalize_v3(r_tangent);
}
/**
* Compute a meaningful direction along the face (use for gizmo axis).
*
* \note Callers shouldn't depend on the *exact* method used here.
*/
void BM_face_calc_tangent_auto(const BMFace *f, float r_tangent[3])
{
if (f->len == 3) {
/* most 'unique' edge of a triangle */
BMVert *verts[3];
BM_face_as_array_vert_tri((BMFace *)f, verts);
BM_vert_tri_calc_tangent_edge(verts, r_tangent);
}
else if (f->len == 4) {
/* longest edge pair of a quad */
BM_face_calc_tangent_edge_pair((BMFace *)f, r_tangent);
}
else {
/* longest edge of an ngon */
BM_face_calc_tangent_edge((BMFace *)f, r_tangent);
}
}
/**
* expands bounds (min/max must be initialized).
*/
void BM_face_calc_bounds_expand(const BMFace *f, float min[3], float max[3])
{
const BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
minmax_v3v3_v3(min, max, l_iter->v->co);
} while ((l_iter = l_iter->next) != l_first);
}
/**
* computes center of face in 3d. uses center of bounding box.
*/
void BM_face_calc_center_bounds(const BMFace *f, float r_cent[3])
{
const BMLoop *l_iter, *l_first;
float min[3], max[3];
INIT_MINMAX(min, max);
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
minmax_v3v3_v3(min, max, l_iter->v->co);
} while ((l_iter = l_iter->next) != l_first);
mid_v3_v3v3(r_cent, min, max);
}
/**
* computes center of face in 3d. uses center of bounding box.
*/
void BM_face_calc_center_bounds_vcos(const BMesh *bm,
const BMFace *f,
float r_cent[3],
float const (*vertexCos)[3])
{
/* must have valid index data */
BLI_assert((bm->elem_index_dirty & BM_VERT) == 0);
(void)bm;
const BMLoop *l_iter, *l_first;
float min[3], max[3];
INIT_MINMAX(min, max);
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
minmax_v3v3_v3(min, max, vertexCos[BM_elem_index_get(l_iter->v)]);
} while ((l_iter = l_iter->next) != l_first);
mid_v3_v3v3(r_cent, min, max);
}
/**
* computes the center of a face, using the mean average
*/
void BM_face_calc_center_median(const BMFace *f, float r_cent[3])
{
const BMLoop *l_iter, *l_first;
zero_v3(r_cent);
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
add_v3_v3(r_cent, l_iter->v->co);
} while ((l_iter = l_iter->next) != l_first);
mul_v3_fl(r_cent, 1.0f / (float)f->len);
}
/**
* computes the center of a face, using the mean average
* weighted by edge length
*/
void BM_face_calc_center_median_weighted(const BMFace *f, float r_cent[3])
{
const BMLoop *l_iter;
const BMLoop *l_first;
float totw = 0.0f;
float w_prev;
zero_v3(r_cent);
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
w_prev = BM_edge_calc_length(l_iter->prev->e);
do {
const float w_curr = BM_edge_calc_length(l_iter->e);
const float w = (w_curr + w_prev);
madd_v3_v3fl(r_cent, l_iter->v->co, w);
totw += w;
w_prev = w_curr;
} while ((l_iter = l_iter->next) != l_first);
if (totw != 0.0f) {
mul_v3_fl(r_cent, 1.0f / (float)totw);
}
}
/**
* \brief POLY ROTATE PLANE
*
* Rotates a polygon so that its
* normal is pointing towards the mesh Z axis
*/
void poly_rotate_plane(const float normal[3], float (*verts)[3], const uint nverts)
{
float mat[3][3];
float co[3];
uint i;
co[2] = 0.0f;
axis_dominant_v3_to_m3(mat, normal);
for (i = 0; i < nverts; i++) {
mul_v2_m3v3(co, mat, verts[i]);
copy_v3_v3(verts[i], co);
}
}
/**
* updates face and vertex normals incident on an edge
*/
void BM_edge_normals_update(BMEdge *e)
{
BMIter iter;
BMFace *f;
BM_ITER_ELEM (f, &iter, e, BM_FACES_OF_EDGE) {
BM_face_normal_update(f);
}
BM_vert_normal_update(e->v1);
BM_vert_normal_update(e->v2);
}
static void bm_loop_normal_accum(const BMLoop *l, float no[3])
{
float vec1[3], vec2[3], fac;
/* Same calculation used in BM_mesh_normals_update */
sub_v3_v3v3(vec1, l->v->co, l->prev->v->co);
sub_v3_v3v3(vec2, l->next->v->co, l->v->co);
normalize_v3(vec1);
normalize_v3(vec2);
fac = saacos(-dot_v3v3(vec1, vec2));
madd_v3_v3fl(no, l->f->no, fac);
}
bool BM_vert_calc_normal_ex(const BMVert *v, const char hflag, float r_no[3])
{
int len = 0;
zero_v3(r_no);
if (v->e) {
const BMEdge *e = v->e;
do {
if (e->l) {
const BMLoop *l = e->l;
do {
if (l->v == v) {
if (BM_elem_flag_test(l->f, hflag)) {
bm_loop_normal_accum(l, r_no);
len++;
}
}
} while ((l = l->radial_next) != e->l);
}
} while ((e = bmesh_disk_edge_next(e, v)) != v->e);
}
if (len) {
normalize_v3(r_no);
return true;
}
return false;
}
bool BM_vert_calc_normal(const BMVert *v, float r_no[3])
{
int len = 0;
zero_v3(r_no);
if (v->e) {
const BMEdge *e = v->e;
do {
if (e->l) {
const BMLoop *l = e->l;
do {
if (l->v == v) {
bm_loop_normal_accum(l, r_no);
len++;
}
} while ((l = l->radial_next) != e->l);
}
} while ((e = bmesh_disk_edge_next(e, v)) != v->e);
}
if (len) {
normalize_v3(r_no);
return true;
}
return false;
}
void BM_vert_normal_update_all(BMVert *v)
{
int len = 0;
zero_v3(v->no);
if (v->e) {
const BMEdge *e = v->e;
do {
if (e->l) {
const BMLoop *l = e->l;
do {
if (l->v == v) {
BM_face_normal_update(l->f);
bm_loop_normal_accum(l, v->no);
len++;
}
} while ((l = l->radial_next) != e->l);
}
} while ((e = bmesh_disk_edge_next(e, v)) != v->e);
}
if (len) {
normalize_v3(v->no);
}
}
/**
* update a vert normal (but not the faces incident on it)
*/
void BM_vert_normal_update(BMVert *v)
{
BM_vert_calc_normal(v, v->no);
}
/**
* \brief BMESH UPDATE FACE NORMAL
*
* Updates the stored normal for the
* given face. Requires that a buffer
* of sufficient length to store projected
* coordinates for all of the face's vertices
* is passed in as well.
*/
float BM_face_calc_normal(const BMFace *f, float r_no[3])
{
BMLoop *l;
/* common cases first */
switch (f->len) {
case 4: {
const float *co1 = (l = BM_FACE_FIRST_LOOP(f))->v->co;
const float *co2 = (l = l->next)->v->co;
const float *co3 = (l = l->next)->v->co;
const float *co4 = (l->next)->v->co;
return normal_quad_v3(r_no, co1, co2, co3, co4);
}
case 3: {
const float *co1 = (l = BM_FACE_FIRST_LOOP(f))->v->co;
const float *co2 = (l = l->next)->v->co;
const float *co3 = (l->next)->v->co;
return normal_tri_v3(r_no, co1, co2, co3);
}
default: {
return bm_face_calc_poly_normal(f, r_no);
}
}
}
void BM_face_normal_update(BMFace *f)
{
BM_face_calc_normal(f, f->no);
}
/* exact same as 'BM_face_calc_normal' but accepts vertex coords */
float BM_face_calc_normal_vcos(const BMesh *bm,
const BMFace *f,
float r_no[3],
float const (*vertexCos)[3])
{
BMLoop *l;
/* must have valid index data */
BLI_assert((bm->elem_index_dirty & BM_VERT) == 0);
(void)bm;
/* common cases first */
switch (f->len) {
case 4: {
const float *co1 = vertexCos[BM_elem_index_get((l = BM_FACE_FIRST_LOOP(f))->v)];
const float *co2 = vertexCos[BM_elem_index_get((l = l->next)->v)];
const float *co3 = vertexCos[BM_elem_index_get((l = l->next)->v)];
const float *co4 = vertexCos[BM_elem_index_get((l->next)->v)];
return normal_quad_v3(r_no, co1, co2, co3, co4);
}
case 3: {
const float *co1 = vertexCos[BM_elem_index_get((l = BM_FACE_FIRST_LOOP(f))->v)];
const float *co2 = vertexCos[BM_elem_index_get((l = l->next)->v)];
const float *co3 = vertexCos[BM_elem_index_get((l->next)->v)];
return normal_tri_v3(r_no, co1, co2, co3);
}
default: {
return bm_face_calc_poly_normal_vertex_cos(f, r_no, vertexCos);
}
}
}
/**
* Calculate a normal from a vertex cloud.
*
* \note We could make a higher quality version that takes all vertices into account.
* Currently it finds 4 outer most points returning its normal.
*/
void BM_verts_calc_normal_from_cloud_ex(
BMVert **varr, int varr_len, float r_normal[3], float r_center[3], int *r_index_tangent)
{
const float varr_len_inv = 1.0f / (float)varr_len;
/* Get the center point and collect vector array since we loop over these a lot. */
float center[3] = {0.0f, 0.0f, 0.0f};
for (int i = 0; i < varr_len; i++) {
madd_v3_v3fl(center, varr[i]->co, varr_len_inv);
}
/* Find the 'co_a' point from center. */
int co_a_index = 0;
const float *co_a = NULL;
{
float dist_sq_max = -1.0f;
for (int i = 0; i < varr_len; i++) {
const float dist_sq_test = len_squared_v3v3(varr[i]->co, center);
if (!(dist_sq_test <= dist_sq_max)) {
co_a = varr[i]->co;
co_a_index = i;
dist_sq_max = dist_sq_test;
}
}
}
float dir_a[3];
sub_v3_v3v3(dir_a, co_a, center);
normalize_v3(dir_a);
const float *co_b = NULL;
float dir_b[3] = {0.0f, 0.0f, 0.0f};
{
float dist_sq_max = -1.0f;
for (int i = 0; i < varr_len; i++) {
if (varr[i]->co == co_a) {
continue;
}
float dir_test[3];
sub_v3_v3v3(dir_test, varr[i]->co, center);
project_plane_normalized_v3_v3v3(dir_test, dir_test, dir_a);
const float dist_sq_test = len_squared_v3(dir_test);
if (!(dist_sq_test <= dist_sq_max)) {
co_b = varr[i]->co;
dist_sq_max = dist_sq_test;
copy_v3_v3(dir_b, dir_test);
}
}
}
if (varr_len <= 3) {
normal_tri_v3(r_normal, center, co_a, co_b);
goto finally;
}
normalize_v3(dir_b);
const float *co_a_opposite = NULL;
const float *co_b_opposite = NULL;
{
float dot_a_min = FLT_MAX;
float dot_b_min = FLT_MAX;
for (int i = 0; i < varr_len; i++) {
const float *co_test = varr[i]->co;
float dot_test;
if (co_test != co_a) {
dot_test = dot_v3v3(dir_a, co_test);
if (dot_test < dot_a_min) {
dot_a_min = dot_test;
co_a_opposite = co_test;
}
}
if (co_test != co_b) {
dot_test = dot_v3v3(dir_b, co_test);
if (dot_test < dot_b_min) {
dot_b_min = dot_test;
co_b_opposite = co_test;
}
}
}
}
normal_quad_v3(r_normal, co_a, co_b, co_a_opposite, co_b_opposite);
finally:
if (r_center != NULL) {
copy_v3_v3(r_center, center);
}
if (r_index_tangent != NULL) {
*r_index_tangent = co_a_index;
}
}
void BM_verts_calc_normal_from_cloud(BMVert **varr, int varr_len, float r_normal[3])
{
BM_verts_calc_normal_from_cloud_ex(varr, varr_len, r_normal, NULL, NULL);
}
/**
* Calculates the face subset normal.
*/
float BM_face_calc_normal_subset(const BMLoop *l_first, const BMLoop *l_last, float r_no[3])
{
const float *v_prev, *v_curr;
/* Newell's Method */
const BMLoop *l_iter = l_first;
const BMLoop *l_term = l_last->next;
zero_v3(r_no);
v_prev = l_last->v->co;
do {
v_curr = l_iter->v->co;
add_newell_cross_v3_v3v3(r_no, v_prev, v_curr);
v_prev = v_curr;
} while ((l_iter = l_iter->next) != l_term);
return normalize_v3(r_no);
}
/* exact same as 'BM_face_calc_normal' but accepts vertex coords */
void BM_face_calc_center_median_vcos(const BMesh *bm,
const BMFace *f,
float r_cent[3],
float const (*vertexCos)[3])
{
/* must have valid index data */
BLI_assert((bm->elem_index_dirty & BM_VERT) == 0);
(void)bm;
bm_face_calc_poly_center_median_vertex_cos(f, r_cent, vertexCos);
}
/**
* \brief Face Flip Normal
*
* Reverses the winding of a face.
* \note This updates the calculated normal.
*/
void BM_face_normal_flip_ex(BMesh *bm,
BMFace *f,
const int cd_loop_mdisp_offset,
const bool use_loop_mdisp_flip)
{
bmesh_kernel_loop_reverse(bm, f, cd_loop_mdisp_offset, use_loop_mdisp_flip);
negate_v3(f->no);
}
void BM_face_normal_flip(BMesh *bm, BMFace *f)
{
const int cd_loop_mdisp_offset = CustomData_get_offset(&bm->ldata, CD_MDISPS);
BM_face_normal_flip_ex(bm, f, cd_loop_mdisp_offset, true);
}
/**
* BM POINT IN FACE
*
* Projects co onto face f, and returns true if it is inside
* the face bounds.
*
* \note this uses a best-axis projection test,
* instead of projecting co directly into f's orientation space,
* so there might be accuracy issues.
*/
bool BM_face_point_inside_test(const BMFace *f, const float co[3])
{
float axis_mat[3][3];
float(*projverts)[2] = BLI_array_alloca(projverts, f->len);
float co_2d[2];
BMLoop *l_iter;
int i;
BLI_assert(BM_face_is_normal_valid(f));
axis_dominant_v3_to_m3(axis_mat, f->no);
mul_v2_m3v3(co_2d, axis_mat, co);
for (i = 0, l_iter = BM_FACE_FIRST_LOOP(f); i < f->len; i++, l_iter = l_iter->next) {
mul_v2_m3v3(projverts[i], axis_mat, l_iter->v->co);
}
return isect_point_poly_v2(co_2d, projverts, f->len, false);
}
/**
* \brief BMESH TRIANGULATE FACE
*
* Breaks all quads and ngons down to triangles.
* It uses polyfill for the ngons splitting, and
* the beautify operator when use_beauty is true.
*
* \param r_faces_new: if non-null, must be an array of BMFace pointers,
* with a length equal to (f->len - 3). It will be filled with the new
* triangles (not including the original triangle).
*
* \param r_faces_double: When newly created faces are duplicates of existing faces,
* they're added to this list. Caller must handle de-duplication.
* This is done because its possible _all_ faces exist already,
* and in that case we would have to remove all faces including the one passed,
* which causes complications adding/removing faces while looking over them.
*
* \note The number of faces is _almost_ always (f->len - 3),
* However there may be faces that already occupying the
* triangles we would make, so the caller must check \a r_faces_new_tot.
*
* \note use_tag tags new flags and edges.
*/
void BM_face_triangulate(BMesh *bm,
BMFace *f,
BMFace **r_faces_new,
int *r_faces_new_tot,
BMEdge **r_edges_new,
int *r_edges_new_tot,
LinkNode **r_faces_double,
const int quad_method,
const int ngon_method,
const bool use_tag,
/* use for ngons only! */
MemArena *pf_arena,
/* use for MOD_TRIANGULATE_NGON_BEAUTY only! */
struct Heap *pf_heap)
{
const int cd_loop_mdisp_offset = CustomData_get_offset(&bm->ldata, CD_MDISPS);
const bool use_beauty = (ngon_method == MOD_TRIANGULATE_NGON_BEAUTY);
BMLoop *l_first, *l_new;
BMFace *f_new;
int nf_i = 0;
int ne_i = 0;
BLI_assert(BM_face_is_normal_valid(f));
/* ensure both are valid or NULL */
BLI_assert((r_faces_new == NULL) == (r_faces_new_tot == NULL));
BLI_assert(f->len > 3);
{
BMLoop **loops = BLI_array_alloca(loops, f->len);
uint(*tris)[3] = BLI_array_alloca(tris, f->len);
const int totfilltri = f->len - 2;
const int last_tri = f->len - 3;
int i;
/* for mdisps */
float f_center[3];
if (f->len == 4) {
/* even though we're not using BLI_polyfill, fill in 'tris' and 'loops'
* so we can share code to handle face creation afterwards. */
BMLoop *l_v1, *l_v2;
l_first = BM_FACE_FIRST_LOOP(f);
switch (quad_method) {
case MOD_TRIANGULATE_QUAD_FIXED: {
l_v1 = l_first;
l_v2 = l_first->next->next;
break;
}
case MOD_TRIANGULATE_QUAD_ALTERNATE: {
l_v1 = l_first->next;
l_v2 = l_first->prev;
break;
}
case MOD_TRIANGULATE_QUAD_SHORTEDGE:
case MOD_TRIANGULATE_QUAD_BEAUTY:
default: {
BMLoop *l_v3, *l_v4;
bool split_24;
l_v1 = l_first->next;
l_v2 = l_first->next->next;
l_v3 = l_first->prev;
l_v4 = l_first;
if (quad_method == MOD_TRIANGULATE_QUAD_SHORTEDGE) {
float d1, d2;
d1 = len_squared_v3v3(l_v4->v->co, l_v2->v->co);
d2 = len_squared_v3v3(l_v1->v->co, l_v3->v->co);
split_24 = ((d2 - d1) > 0.0f);
}
else {
/* first check if the quad is concave on either diagonal */
const int flip_flag = is_quad_flip_v3(
l_v1->v->co, l_v2->v->co, l_v3->v->co, l_v4->v->co);
if (UNLIKELY(flip_flag & (1 << 0))) {
split_24 = true;
}
else if (UNLIKELY(flip_flag & (1 << 1))) {
split_24 = false;
}
else {
split_24 = (BM_verts_calc_rotate_beauty(l_v1->v, l_v2->v, l_v3->v, l_v4->v, 0, 0) >
0.0f);
}
}
/* named confusingly, l_v1 is in fact the second vertex */
if (split_24) {
l_v1 = l_v4;
// l_v2 = l_v2;
}
else {
// l_v1 = l_v1;
l_v2 = l_v3;
}
break;
}
}
loops[0] = l_v1;
loops[1] = l_v1->next;
loops[2] = l_v2;
loops[3] = l_v2->next;
ARRAY_SET_ITEMS(tris[0], 0, 1, 2);
ARRAY_SET_ITEMS(tris[1], 0, 2, 3);
}
else {
BMLoop *l_iter;
float axis_mat[3][3];
float(*projverts)[2] = BLI_array_alloca(projverts, f->len);
axis_dominant_v3_to_m3_negate(axis_mat, f->no);
for (i = 0, l_iter = BM_FACE_FIRST_LOOP(f); i < f->len; i++, l_iter = l_iter->next) {
loops[i] = l_iter;
mul_v2_m3v3(projverts[i], axis_mat, l_iter->v->co);
}
BLI_polyfill_calc_arena(projverts, f->len, 1, tris, pf_arena);
if (use_beauty) {
BLI_polyfill_beautify(projverts, f->len, tris, pf_arena, pf_heap);
}
BLI_memarena_clear(pf_arena);
}
if (cd_loop_mdisp_offset != -1) {
BM_face_calc_center_median(f, f_center);
}
/* loop over calculated triangles and create new geometry */
for (i = 0; i < totfilltri; i++) {
BMLoop *l_tri[3] = {loops[tris[i][0]], loops[tris[i][1]], loops[tris[i][2]]};
BMVert *v_tri[3] = {l_tri[0]->v, l_tri[1]->v, l_tri[2]->v};
f_new = BM_face_create_verts(bm, v_tri, 3, f, BM_CREATE_NOP, true);
l_new = BM_FACE_FIRST_LOOP(f_new);
BLI_assert(v_tri[0] == l_new->v);
/* check for duplicate */
if (l_new->radial_next != l_new) {
BMLoop *l_iter = l_new->radial_next;
do {
if (UNLIKELY((l_iter->f->len == 3) && (l_new->prev->v == l_iter->prev->v))) {
/* Check the last tri because we swap last f_new with f at the end... */
BLI_linklist_prepend(r_faces_double, (i != last_tri) ? f_new : f);
break;
}
} while ((l_iter = l_iter->radial_next) != l_new);
}
/* copy CD data */
BM_elem_attrs_copy(bm, bm, l_tri[0], l_new);
BM_elem_attrs_copy(bm, bm, l_tri[1], l_new->next);
BM_elem_attrs_copy(bm, bm, l_tri[2], l_new->prev);
/* add all but the last face which is swapped and removed (below) */
if (i != last_tri) {
if (use_tag) {
BM_elem_flag_enable(f_new, BM_ELEM_TAG);
}
if (r_faces_new) {
r_faces_new[nf_i++] = f_new;
}
}
if (use_tag || r_edges_new) {
/* new faces loops */
BMLoop *l_iter;
l_iter = l_first = l_new;
do {
BMEdge *e = l_iter->e;
/* Confusing! if its not a boundary now, we know it will be later since this will be an
* edge of one of the new faces which we're in the middle of creating. */
bool is_new_edge = (l_iter == l_iter->radial_next);
if (is_new_edge) {
if (use_tag) {
BM_elem_flag_enable(e, BM_ELEM_TAG);
}
if (r_edges_new) {
r_edges_new[ne_i++] = e;
}
}
/* note, never disable tag's */
} while ((l_iter = l_iter->next) != l_first);
}
if (cd_loop_mdisp_offset != -1) {
float f_new_center[3];
BM_face_calc_center_median(f_new, f_new_center);
BM_face_interp_multires_ex(bm, f_new, f, f_new_center, f_center, cd_loop_mdisp_offset);
}
}
{
/* we can't delete the real face, because some of the callers expect it to remain valid.
* so swap data and delete the last created tri */
bmesh_face_swap_data(f, f_new);
BM_face_kill(bm, f_new);
}
}
bm->elem_index_dirty |= BM_FACE;
if (r_faces_new_tot) {
*r_faces_new_tot = nf_i;
}
if (r_edges_new_tot) {
*r_edges_new_tot = ne_i;
}
}
/**
* each pair of loops defines a new edge, a split. this function goes
* through and sets pairs that are geometrically invalid to null. a
* split is invalid, if it forms a concave angle or it intersects other
* edges in the face, or it intersects another split. in the case of
* intersecting splits, only the first of the set of intersecting
* splits survives
*/
void BM_face_splits_check_legal(BMesh *bm, BMFace *f, BMLoop *(*loops)[2], int len)
{
float out[2] = {-FLT_MAX, -FLT_MAX};
float center[2] = {0.0f, 0.0f};
float axis_mat[3][3];
float(*projverts)[2] = BLI_array_alloca(projverts, f->len);
const float *(*edgeverts)[2] = BLI_array_alloca(edgeverts, len);
BMLoop *l;
int i, i_prev, j;
BLI_assert(BM_face_is_normal_valid(f));
axis_dominant_v3_to_m3(axis_mat, f->no);
for (i = 0, l = BM_FACE_FIRST_LOOP(f); i < f->len; i++, l = l->next) {
mul_v2_m3v3(projverts[i], axis_mat, l->v->co);
add_v2_v2(center, projverts[i]);
}
/* first test for completely convex face */
if (is_poly_convex_v2(projverts, f->len)) {
return;
}
mul_v2_fl(center, 1.0f / f->len);
for (i = 0, l = BM_FACE_FIRST_LOOP(f); i < f->len; i++, l = l->next) {
BM_elem_index_set(l, i); /* set_dirty */
/* center the projection for maximum accuracy */
sub_v2_v2(projverts[i], center);
out[0] = max_ff(out[0], projverts[i][0]);
out[1] = max_ff(out[1], projverts[i][1]);
}
bm->elem_index_dirty |= BM_LOOP;
/* ensure we are well outside the face bounds (value is arbitrary) */
add_v2_fl(out, 1.0f);
for (i = 0; i < len; i++) {
edgeverts[i][0] = projverts[BM_elem_index_get(loops[i][0])];
edgeverts[i][1] = projverts[BM_elem_index_get(loops[i][1])];
}
/* do convexity test */
for (i = 0; i < len; i++) {
float mid[2];
mid_v2_v2v2(mid, edgeverts[i][0], edgeverts[i][1]);
int isect = 0;
int j_prev;
for (j = 0, j_prev = f->len - 1; j < f->len; j_prev = j++) {
const float *f_edge[2] = {projverts[j_prev], projverts[j]};
if (isect_seg_seg_v2(UNPACK2(f_edge), mid, out) == ISECT_LINE_LINE_CROSS) {
isect++;
}
}
if (isect % 2 == 0) {
loops[i][0] = NULL;
}
}
#define EDGE_SHARE_VERT(e1, e2) \
((ELEM((e1)[0], (e2)[0], (e2)[1])) || (ELEM((e1)[1], (e2)[0], (e2)[1])))
/* do line crossing tests */
for (i = 0, i_prev = f->len - 1; i < f->len; i_prev = i++) {
const float *f_edge[2] = {projverts[i_prev], projverts[i]};
for (j = 0; j < len; j++) {
if ((loops[j][0] != NULL) && !EDGE_SHARE_VERT(f_edge, edgeverts[j])) {
if (isect_seg_seg_v2(UNPACK2(f_edge), UNPACK2(edgeverts[j])) == ISECT_LINE_LINE_CROSS) {
loops[j][0] = NULL;
}
}
}
}
/* self intersect tests */
for (i = 0; i < len; i++) {
if (loops[i][0]) {
for (j = i + 1; j < len; j++) {
if ((loops[j][0] != NULL) && !EDGE_SHARE_VERT(edgeverts[i], edgeverts[j])) {
if (isect_seg_seg_v2(UNPACK2(edgeverts[i]), UNPACK2(edgeverts[j])) ==
ISECT_LINE_LINE_CROSS) {
loops[i][0] = NULL;
break;
}
}
}
}
}
#undef EDGE_SHARE_VERT
}
/**
* This simply checks that the verts don't connect faces which would have more optimal splits.
* but _not_ check for correctness.
*/
void BM_face_splits_check_optimal(BMFace *f, BMLoop *(*loops)[2], int len)
{
int i;
for (i = 0; i < len; i++) {
BMLoop *l_a_dummy, *l_b_dummy;
if (f != BM_vert_pair_share_face_by_angle(
loops[i][0]->v, loops[i][1]->v, &l_a_dummy, &l_b_dummy, false)) {
loops[i][0] = NULL;
}
}
}
/**
* Small utility functions for fast access
*
* faster alternative to:
* BM_iter_as_array(bm, BM_VERTS_OF_FACE, f, (void **)v, 3);
*/
void BM_face_as_array_vert_tri(BMFace *f, BMVert *r_verts[3])
{
BMLoop *l = BM_FACE_FIRST_LOOP(f);
BLI_assert(f->len == 3);
r_verts[0] = l->v;
l = l->next;
r_verts[1] = l->v;
l = l->next;
r_verts[2] = l->v;
}
/**
* faster alternative to:
* BM_iter_as_array(bm, BM_VERTS_OF_FACE, f, (void **)v, 4);
*/
void BM_face_as_array_vert_quad(BMFace *f, BMVert *r_verts[4])
{
BMLoop *l = BM_FACE_FIRST_LOOP(f);
BLI_assert(f->len == 4);
r_verts[0] = l->v;
l = l->next;
r_verts[1] = l->v;
l = l->next;
r_verts[2] = l->v;
l = l->next;
r_verts[3] = l->v;
}
/**
* Small utility functions for fast access
*
* faster alternative to:
* BM_iter_as_array(bm, BM_LOOPS_OF_FACE, f, (void **)l, 3);
*/
void BM_face_as_array_loop_tri(BMFace *f, BMLoop *r_loops[3])
{
BMLoop *l = BM_FACE_FIRST_LOOP(f);
BLI_assert(f->len == 3);
r_loops[0] = l;
l = l->next;
r_loops[1] = l;
l = l->next;
r_loops[2] = l;
}
/**
* faster alternative to:
* BM_iter_as_array(bm, BM_LOOPS_OF_FACE, f, (void **)l, 4);
*/
void BM_face_as_array_loop_quad(BMFace *f, BMLoop *r_loops[4])
{
BMLoop *l = BM_FACE_FIRST_LOOP(f);
BLI_assert(f->len == 4);
r_loops[0] = l;
l = l->next;
r_loops[1] = l;
l = l->next;
r_loops[2] = l;
l = l->next;
r_loops[3] = l;
}
/**
* \brief BM_mesh_calc_tessellation get the looptris and its number from a certain bmesh
* \param looptris:
*
* \note \a looptris Must be pre-allocated to at least the size of given by: poly_to_tri_count
*/
void BM_mesh_calc_tessellation(BMesh *bm, BMLoop *(*looptris)[3], int *r_looptris_tot)
{
/* use this to avoid locking pthread for _every_ polygon
* and calling the fill function */
#define USE_TESSFACE_SPEEDUP
/* this assumes all faces can be scan-filled, which isn't always true,
* worst case we over alloc a little which is acceptable */
#ifndef NDEBUG
const int looptris_tot = poly_to_tri_count(bm->totface, bm->totloop);
#endif
BMIter iter;
BMFace *efa;
int i = 0;
MemArena *arena = NULL;
BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
/* don't consider two-edged faces */
if (UNLIKELY(efa->len < 3)) {
/* do nothing */
}
#ifdef USE_TESSFACE_SPEEDUP
/* no need to ensure the loop order, we know its ok */
else if (efa->len == 3) {
# if 0
int j;
BM_ITER_ELEM_INDEX(l, &liter, efa, BM_LOOPS_OF_FACE, j) {
looptris[i][j] = l;
}
i += 1;
# else
/* more cryptic but faster */
BMLoop *l;
BMLoop **l_ptr = looptris[i++];
l_ptr[0] = l = BM_FACE_FIRST_LOOP(efa);
l_ptr[1] = l = l->next;
l_ptr[2] = l->next;
# endif
}
else if (efa->len == 4) {
# if 0
BMLoop *ltmp[4];
int j;
BLI_array_grow_items(looptris, 2);
BM_ITER_ELEM_INDEX(l, &liter, efa, BM_LOOPS_OF_FACE, j) {
ltmp[j] = l;
}
looptris[i][0] = ltmp[0];
looptris[i][1] = ltmp[1];
looptris[i][2] = ltmp[2];
i += 1;
looptris[i][0] = ltmp[0];
looptris[i][1] = ltmp[2];
looptris[i][2] = ltmp[3];
i += 1;
# else
/* more cryptic but faster */
BMLoop *l;
BMLoop **l_ptr_a = looptris[i++];
BMLoop **l_ptr_b = looptris[i++];
(l_ptr_a[0] = l_ptr_b[0] = l = BM_FACE_FIRST_LOOP(efa));
(l_ptr_a[1] = l = l->next);
(l_ptr_a[2] = l_ptr_b[1] = l = l->next);
(l_ptr_b[2] = l->next);
# endif
if (UNLIKELY(is_quad_flip_v3_first_third_fast(
l_ptr_a[0]->v->co, l_ptr_a[1]->v->co, l_ptr_a[2]->v->co, l_ptr_b[2]->v->co))) {
/* flip out of degenerate 0-2 state. */
l_ptr_a[2] = l_ptr_b[2];
l_ptr_b[0] = l_ptr_a[1];
}
}
#endif /* USE_TESSFACE_SPEEDUP */
else {
int j;
BMLoop *l_iter;
BMLoop *l_first;
BMLoop **l_arr;
float axis_mat[3][3];
float(*projverts)[2];
uint(*tris)[3];
const int totfilltri = efa->len - 2;
if (UNLIKELY(arena == NULL)) {
arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
}
tris = BLI_memarena_alloc(arena, sizeof(*tris) * totfilltri);
l_arr = BLI_memarena_alloc(arena, sizeof(*l_arr) * efa->len);
projverts = BLI_memarena_alloc(arena, sizeof(*projverts) * efa->len);
axis_dominant_v3_to_m3_negate(axis_mat, efa->no);
j = 0;
l_iter = l_first = BM_FACE_FIRST_LOOP(efa);
do {
l_arr[j] = l_iter;
mul_v2_m3v3(projverts[j], axis_mat, l_iter->v->co);
j++;
} while ((l_iter = l_iter->next) != l_first);
BLI_polyfill_calc_arena(projverts, efa->len, 1, tris, arena);
for (j = 0; j < totfilltri; j++) {
BMLoop **l_ptr = looptris[i++];
uint *tri = tris[j];
l_ptr[0] = l_arr[tri[0]];
l_ptr[1] = l_arr[tri[1]];
l_ptr[2] = l_arr[tri[2]];
}
BLI_memarena_clear(arena);
}
}
if (arena) {
BLI_memarena_free(arena);
arena = NULL;
}
*r_looptris_tot = i;
BLI_assert(i <= looptris_tot);
#undef USE_TESSFACE_SPEEDUP
}
/**
* A version of #BM_mesh_calc_tessellation that avoids degenerate triangles.
*/
void BM_mesh_calc_tessellation_beauty(BMesh *bm, BMLoop *(*looptris)[3], int *r_looptris_tot)
{
/* this assumes all faces can be scan-filled, which isn't always true,
* worst case we over alloc a little which is acceptable */
#ifndef NDEBUG
const int looptris_tot = poly_to_tri_count(bm->totface, bm->totloop);
#endif
BMIter iter;
BMFace *efa;
int i = 0;
MemArena *pf_arena = NULL;
/* use_beauty */
Heap *pf_heap = NULL;
BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
/* don't consider two-edged faces */
if (UNLIKELY(efa->len < 3)) {
/* do nothing */
}
else if (efa->len == 3) {
BMLoop *l;
BMLoop **l_ptr = looptris[i++];
l_ptr[0] = l = BM_FACE_FIRST_LOOP(efa);
l_ptr[1] = l = l->next;
l_ptr[2] = l->next;
}
else if (efa->len == 4) {
BMLoop *l_v1 = BM_FACE_FIRST_LOOP(efa);
BMLoop *l_v2 = l_v1->next;
BMLoop *l_v3 = l_v2->next;
BMLoop *l_v4 = l_v1->prev;
/* #BM_verts_calc_rotate_beauty performs excessive checks we don't need!
* It's meant for rotating edges, it also calculates a new normal.
*
* Use #BLI_polyfill_beautify_quad_rotate_calc since we have the normal.
*/
#if 0
const bool split_13 = (BM_verts_calc_rotate_beauty(
l_v1->v, l_v2->v, l_v3->v, l_v4->v, 0, 0) < 0.0f);
#else
float axis_mat[3][3], v_quad[4][2];
axis_dominant_v3_to_m3(axis_mat, efa->no);
mul_v2_m3v3(v_quad[0], axis_mat, l_v1->v->co);
mul_v2_m3v3(v_quad[1], axis_mat, l_v2->v->co);
mul_v2_m3v3(v_quad[2], axis_mat, l_v3->v->co);
mul_v2_m3v3(v_quad[3], axis_mat, l_v4->v->co);
const bool split_13 = BLI_polyfill_beautify_quad_rotate_calc(
v_quad[0], v_quad[1], v_quad[2], v_quad[3]) < 0.0f;
#endif
BMLoop **l_ptr_a = looptris[i++];
BMLoop **l_ptr_b = looptris[i++];
if (split_13) {
l_ptr_a[0] = l_v1;
l_ptr_a[1] = l_v2;
l_ptr_a[2] = l_v3;
l_ptr_b[0] = l_v1;
l_ptr_b[1] = l_v3;
l_ptr_b[2] = l_v4;
}
else {
l_ptr_a[0] = l_v1;
l_ptr_a[1] = l_v2;
l_ptr_a[2] = l_v4;
l_ptr_b[0] = l_v2;
l_ptr_b[1] = l_v3;
l_ptr_b[2] = l_v4;
}
}
else {
int j;
BMLoop *l_iter;
BMLoop *l_first;
BMLoop **l_arr;
float axis_mat[3][3];
float(*projverts)[2];
unsigned int(*tris)[3];
const int totfilltri = efa->len - 2;
if (UNLIKELY(pf_arena == NULL)) {
pf_arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
pf_heap = BLI_heap_new_ex(BLI_POLYFILL_ALLOC_NGON_RESERVE);
}
tris = BLI_memarena_alloc(pf_arena, sizeof(*tris) * totfilltri);
l_arr = BLI_memarena_alloc(pf_arena, sizeof(*l_arr) * efa->len);
projverts = BLI_memarena_alloc(pf_arena, sizeof(*projverts) * efa->len);
axis_dominant_v3_to_m3_negate(axis_mat, efa->no);
j = 0;
l_iter = l_first = BM_FACE_FIRST_LOOP(efa);
do {
l_arr[j] = l_iter;
mul_v2_m3v3(projverts[j], axis_mat, l_iter->v->co);
j++;
} while ((l_iter = l_iter->next) != l_first);
BLI_polyfill_calc_arena(projverts, efa->len, 1, tris, pf_arena);
BLI_polyfill_beautify(projverts, efa->len, tris, pf_arena, pf_heap);
for (j = 0; j < totfilltri; j++) {
BMLoop **l_ptr = looptris[i++];
unsigned int *tri = tris[j];
l_ptr[0] = l_arr[tri[0]];
l_ptr[1] = l_arr[tri[1]];
l_ptr[2] = l_arr[tri[2]];
}
BLI_memarena_clear(pf_arena);
}
}
if (pf_arena) {
BLI_memarena_free(pf_arena);
BLI_heap_free(pf_heap, NULL);
}
*r_looptris_tot = i;
BLI_assert(i <= looptris_tot);
}