This commit adds a new model to the Sky Texture node, which is based on a method by Nishita et al. and works by basically simulating volumetric scattering in the atmosphere. By making some approximations (such as only considering single scattering), we get a fairly simple and fast simulation code that takes into account Rayleigh and Mie scattering as well as Ozone absorption. This code is used to precompute a 512x128 texture which is then looked up during render time, and is fast enough to allow real-time tweaking in the viewport. Due to the nature of the simulation, it exposes several parameters that allow for lots of flexibility in choosing the look and matching real-world conditions (such as Air/Dust/Ozone density and altitude). Additionally, the same volumetric approach can be used to compute absorption of the direct sunlight, so the model also supports adding direct sunlight. This makes it significantly easier to set up Sun+Sky illumination where the direction, intensity and color of the sun actually matches the sky. In order to support properly sampling the direct sun component, the commit also adds logic for sampling a specific area to the kernel light sampling code. This is combined with portal and background map sampling using MIS. This sampling logic works for the common case of having one Sky texture going into the Background shader, but if a custom input to the Vector node is used or if there are multiple Sky textures, it falls back to using only background map sampling (while automatically setting the resolution to 4096x2048 if auto resolution is used). More infos and preview can be found here: https://docs.google.com/document/d/1gQta0ygFWXTrl5Pmvl_nZRgUw0mWg0FJeRuNKS36m08/view Underlying model, implementation and documentation by Marco (@nacioss). Improvements, cleanup and sun sampling by @lukasstockner. Differential Revision: https://developer.blender.org/D7896
330 lines
10 KiB
C++
330 lines
10 KiB
C++
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Sky texture */
|
|
|
|
ccl_device float sky_angle_between(float thetav, float phiv, float theta, float phi)
|
|
{
|
|
float cospsi = sinf(thetav) * sinf(theta) * cosf(phi - phiv) + cosf(thetav) * cosf(theta);
|
|
return safe_acosf(cospsi);
|
|
}
|
|
|
|
/*
|
|
* "A Practical Analytic Model for Daylight"
|
|
* A. J. Preetham, Peter Shirley, Brian Smits
|
|
*/
|
|
ccl_device float sky_perez_function(float *lam, float theta, float gamma)
|
|
{
|
|
float ctheta = cosf(theta);
|
|
float cgamma = cosf(gamma);
|
|
|
|
return (1.0f + lam[0] * expf(lam[1] / ctheta)) *
|
|
(1.0f + lam[2] * expf(lam[3] * gamma) + lam[4] * cgamma * cgamma);
|
|
}
|
|
|
|
ccl_device float3 sky_radiance_preetham(KernelGlobals *kg,
|
|
float3 dir,
|
|
float sunphi,
|
|
float suntheta,
|
|
float radiance_x,
|
|
float radiance_y,
|
|
float radiance_z,
|
|
float *config_x,
|
|
float *config_y,
|
|
float *config_z)
|
|
{
|
|
/* convert vector to spherical coordinates */
|
|
float2 spherical = direction_to_spherical(dir);
|
|
float theta = spherical.x;
|
|
float phi = spherical.y;
|
|
|
|
/* angle between sun direction and dir */
|
|
float gamma = sky_angle_between(theta, phi, suntheta, sunphi);
|
|
|
|
/* clamp theta to horizon */
|
|
theta = min(theta, M_PI_2_F - 0.001f);
|
|
|
|
/* compute xyY color space values */
|
|
float x = radiance_y * sky_perez_function(config_y, theta, gamma);
|
|
float y = radiance_z * sky_perez_function(config_z, theta, gamma);
|
|
float Y = radiance_x * sky_perez_function(config_x, theta, gamma);
|
|
|
|
/* convert to RGB */
|
|
float3 xyz = xyY_to_xyz(x, y, Y);
|
|
return xyz_to_rgb(kg, xyz);
|
|
}
|
|
|
|
/*
|
|
* "An Analytic Model for Full Spectral Sky-Dome Radiance"
|
|
* Lukas Hosek, Alexander Wilkie
|
|
*/
|
|
ccl_device float sky_radiance_internal(float *configuration, float theta, float gamma)
|
|
{
|
|
float ctheta = cosf(theta);
|
|
float cgamma = cosf(gamma);
|
|
|
|
float expM = expf(configuration[4] * gamma);
|
|
float rayM = cgamma * cgamma;
|
|
float mieM = (1.0f + rayM) / powf((1.0f + configuration[8] * configuration[8] -
|
|
2.0f * configuration[8] * cgamma),
|
|
1.5f);
|
|
float zenith = sqrtf(ctheta);
|
|
|
|
return (1.0f + configuration[0] * expf(configuration[1] / (ctheta + 0.01f))) *
|
|
(configuration[2] + configuration[3] * expM + configuration[5] * rayM +
|
|
configuration[6] * mieM + configuration[7] * zenith);
|
|
}
|
|
|
|
ccl_device float3 sky_radiance_hosek(KernelGlobals *kg,
|
|
float3 dir,
|
|
float sunphi,
|
|
float suntheta,
|
|
float radiance_x,
|
|
float radiance_y,
|
|
float radiance_z,
|
|
float *config_x,
|
|
float *config_y,
|
|
float *config_z)
|
|
{
|
|
/* convert vector to spherical coordinates */
|
|
float2 spherical = direction_to_spherical(dir);
|
|
float theta = spherical.x;
|
|
float phi = spherical.y;
|
|
|
|
/* angle between sun direction and dir */
|
|
float gamma = sky_angle_between(theta, phi, suntheta, sunphi);
|
|
|
|
/* clamp theta to horizon */
|
|
theta = min(theta, M_PI_2_F - 0.001f);
|
|
|
|
/* compute xyz color space values */
|
|
float x = sky_radiance_internal(config_x, theta, gamma) * radiance_x;
|
|
float y = sky_radiance_internal(config_y, theta, gamma) * radiance_y;
|
|
float z = sky_radiance_internal(config_z, theta, gamma) * radiance_z;
|
|
|
|
/* convert to RGB and adjust strength */
|
|
return xyz_to_rgb(kg, make_float3(x, y, z)) * (M_2PI_F / 683);
|
|
}
|
|
|
|
/* Nishita improved sky model */
|
|
ccl_device float3 geographical_to_direction(float lat, float lon)
|
|
{
|
|
return make_float3(cos(lat) * cos(lon), cos(lat) * sin(lon), sin(lat));
|
|
}
|
|
|
|
ccl_device float3 sky_radiance_nishita(KernelGlobals *kg,
|
|
float3 dir,
|
|
float *nishita_data,
|
|
uint texture_id)
|
|
{
|
|
/* definitions */
|
|
float sun_elevation = nishita_data[6];
|
|
float sun_rotation = nishita_data[7];
|
|
float angular_diameter = nishita_data[8];
|
|
bool sun_disc = (angular_diameter > 0.0f);
|
|
float3 xyz;
|
|
/* convert dir to spherical coordinates */
|
|
float2 direction = direction_to_spherical(dir);
|
|
|
|
/* render above the horizon */
|
|
if (dir.z >= 0.0f) {
|
|
/* definitions */
|
|
float3 sun_dir = geographical_to_direction(sun_elevation, sun_rotation + M_PI_2_F);
|
|
float sun_dir_angle = acos(dot(dir, sun_dir));
|
|
float half_angular = angular_diameter / 2.0f;
|
|
float dir_elevation = M_PI_2_F - direction.x;
|
|
|
|
/* if ray inside sun disc render it, otherwise render sky */
|
|
if (sun_disc && sun_dir_angle < half_angular) {
|
|
/* get 3 pixels data */
|
|
float3 pixel_bottom = make_float3(nishita_data[0], nishita_data[1], nishita_data[2]);
|
|
float3 pixel_top = make_float3(nishita_data[3], nishita_data[4], nishita_data[5]);
|
|
float y;
|
|
|
|
/* sun interpolation */
|
|
if (sun_elevation - half_angular > 0.0f) {
|
|
if (sun_elevation + half_angular > 0.0f) {
|
|
y = ((dir_elevation - sun_elevation) / angular_diameter) + 0.5f;
|
|
xyz = interp(pixel_bottom, pixel_top, y);
|
|
}
|
|
}
|
|
else {
|
|
if (sun_elevation + half_angular > 0.0f) {
|
|
y = dir_elevation / (sun_elevation + half_angular);
|
|
xyz = interp(pixel_bottom, pixel_top, y);
|
|
}
|
|
}
|
|
/* limb darkening, coefficient is 0.6f */
|
|
float limb_darkening = (1.0f -
|
|
0.6f * (1.0f - sqrtf(1.0f - sqr(sun_dir_angle / half_angular))));
|
|
xyz *= limb_darkening;
|
|
}
|
|
/* sky */
|
|
else {
|
|
/* sky interpolation */
|
|
float x = (direction.y + M_PI_F + sun_rotation) / M_2PI_F;
|
|
float y = dir_elevation / M_PI_2_F;
|
|
if (x > 1.0f) {
|
|
x -= 1.0f;
|
|
}
|
|
xyz = float4_to_float3(kernel_tex_image_interp(kg, texture_id, x, y));
|
|
}
|
|
}
|
|
/* ground */
|
|
else {
|
|
if (dir.z < -0.4f) {
|
|
xyz = make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
else {
|
|
/* black ground fade */
|
|
float fade = 1.0f + dir.z * 2.5f;
|
|
fade = sqr(fade) * fade;
|
|
/* interpolation */
|
|
float x = (direction.y + M_PI_F + sun_rotation) / M_2PI_F;
|
|
if (x > 1.0f) {
|
|
x -= 1.0f;
|
|
}
|
|
xyz = float4_to_float3(kernel_tex_image_interp(kg, texture_id, x, -0.5)) * fade;
|
|
}
|
|
}
|
|
|
|
/* convert to rgb and adjust strength */
|
|
return xyz_to_rgb(kg, xyz) * 120000.0f;
|
|
}
|
|
|
|
ccl_device void svm_node_tex_sky(
|
|
KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int *offset)
|
|
{
|
|
/* Load data */
|
|
uint dir_offset = node.y;
|
|
uint out_offset = node.z;
|
|
int sky_model = node.w;
|
|
|
|
float3 dir = stack_load_float3(stack, dir_offset);
|
|
float3 f;
|
|
|
|
/* Preetham and Hosek share the same data */
|
|
if (sky_model == 0 || sky_model == 1) {
|
|
/* Define variables */
|
|
float sunphi, suntheta, radiance_x, radiance_y, radiance_z;
|
|
float config_x[9], config_y[9], config_z[9];
|
|
|
|
float4 data = read_node_float(kg, offset);
|
|
sunphi = data.x;
|
|
suntheta = data.y;
|
|
radiance_x = data.z;
|
|
radiance_y = data.w;
|
|
|
|
data = read_node_float(kg, offset);
|
|
radiance_z = data.x;
|
|
config_x[0] = data.y;
|
|
config_x[1] = data.z;
|
|
config_x[2] = data.w;
|
|
|
|
data = read_node_float(kg, offset);
|
|
config_x[3] = data.x;
|
|
config_x[4] = data.y;
|
|
config_x[5] = data.z;
|
|
config_x[6] = data.w;
|
|
|
|
data = read_node_float(kg, offset);
|
|
config_x[7] = data.x;
|
|
config_x[8] = data.y;
|
|
config_y[0] = data.z;
|
|
config_y[1] = data.w;
|
|
|
|
data = read_node_float(kg, offset);
|
|
config_y[2] = data.x;
|
|
config_y[3] = data.y;
|
|
config_y[4] = data.z;
|
|
config_y[5] = data.w;
|
|
|
|
data = read_node_float(kg, offset);
|
|
config_y[6] = data.x;
|
|
config_y[7] = data.y;
|
|
config_y[8] = data.z;
|
|
config_z[0] = data.w;
|
|
|
|
data = read_node_float(kg, offset);
|
|
config_z[1] = data.x;
|
|
config_z[2] = data.y;
|
|
config_z[3] = data.z;
|
|
config_z[4] = data.w;
|
|
|
|
data = read_node_float(kg, offset);
|
|
config_z[5] = data.x;
|
|
config_z[6] = data.y;
|
|
config_z[7] = data.z;
|
|
config_z[8] = data.w;
|
|
|
|
/* Compute Sky */
|
|
if (sky_model == 0) {
|
|
f = sky_radiance_preetham(kg,
|
|
dir,
|
|
sunphi,
|
|
suntheta,
|
|
radiance_x,
|
|
radiance_y,
|
|
radiance_z,
|
|
config_x,
|
|
config_y,
|
|
config_z);
|
|
}
|
|
else {
|
|
f = sky_radiance_hosek(kg,
|
|
dir,
|
|
sunphi,
|
|
suntheta,
|
|
radiance_x,
|
|
radiance_y,
|
|
radiance_z,
|
|
config_x,
|
|
config_y,
|
|
config_z);
|
|
}
|
|
}
|
|
/* Nishita */
|
|
else {
|
|
/* Define variables */
|
|
float nishita_data[9];
|
|
|
|
float4 data = read_node_float(kg, offset);
|
|
nishita_data[0] = data.x;
|
|
nishita_data[1] = data.y;
|
|
nishita_data[2] = data.z;
|
|
nishita_data[3] = data.w;
|
|
|
|
data = read_node_float(kg, offset);
|
|
nishita_data[4] = data.x;
|
|
nishita_data[5] = data.y;
|
|
nishita_data[6] = data.z;
|
|
nishita_data[7] = data.w;
|
|
|
|
data = read_node_float(kg, offset);
|
|
nishita_data[8] = data.x;
|
|
uint texture_id = __float_as_uint(data.y);
|
|
|
|
/* Compute Sky */
|
|
f = sky_radiance_nishita(kg, dir, nishita_data, texture_id);
|
|
}
|
|
|
|
stack_store_float3(stack, out_offset, f);
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|