This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/collision.c
Brecht Van Lommel 17bd5c9d4b Collections and groups unification
OVERVIEW

* In 2.7 terminology, all layers and groups are now collection datablocks.
* These collections are nestable, linkable, instanceable, overrideable, ..
  which opens up new ways to set up scenes and link + override data.
* Viewport/render visibility and selectability are now a part of the collection
  and shared across all view layers and linkable.
* View layers define which subset of the scene collection hierarchy is excluded
  for each. For many workflows one view layer can be used, these are more of an
  advanced feature now.

OUTLINER

* The outliner now has a "View Layer" display mode instead of "Collections",
  which can display the collections and/or objects in the view layer.
* In this display mode, collections can be excluded with the right click menu.
  These will then be greyed out and their objects will be excluded.
* To view collections not linked to any scene, the "Blender File" display mode
  can be used, with the new filtering option to just see Colleciton datablocks.
* The outliner right click menus for collections and objects were reorganized.
* Drag and drop still needs to be improved. Like before, dragging the icon or
  text gives different results, we'll unify this later.

LINKING AND OVERRIDES

* Collections can now be linked into the scene without creating an instance,
  with the link/append operator or from the collections view in the outliner.
* Collections can get static overrides with the right click menu in the outliner,
  but this is rather unreliable and not clearly communicated at the moment.
* We still need to improve the make override operator to turn collection instances
  into collections with overrides directly in the scene.

PERFORMANCE

* We tried to make performance not worse than before and improve it in some
  cases. The main thing that's still a bit slower is multiple scenes, we have to
  change the layer syncing to only updated affected scenes.
* Collections keep a list of their parent collections for faster incremental
  updates in syncing and caching.
* View layer bases are now in a object -> base hash to avoid quadratic time
  lookups internally and in API functions like visible_get().

VERSIONING

* Compatibility with 2.7 files should be improved due to the new visibility
  controls. Of course users may not want to set up their scenes differently
  now to avoid having separate layers and groups.
* Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero
  files. There's a few things which are know to be not quite compatible, like
  nested layer collections inside groups.
* The versioning code for 2.8 files is quite complicated, and isolated behind
  #ifdef so it can be removed at the end of the release cycle.

KNOWN ISSUES

* The G-key group operators in the 3D viewport were left mostly as is, they
  need to be modified still to fit better.
* Same for the groups panel in the object properties. This needs to be updated
  still, or perhaps replaced by something better.
* Collections must all have a unique name. Less restrictive namespacing is to
  be done later, we'll have to see how important this is as all objects within
  the collections must also have a unique name anyway.
* Full scene copy and delete scene are exactly doing the right thing yet.

Differential Revision: https://developer.blender.org/D3383

https://code.blender.org/2018/05/collections-and-groups/
2018-05-18 13:34:24 +02:00

1463 lines
44 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/collision.c
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include "DNA_cloth_types.h"
#include "DNA_effect_types.h"
#include "DNA_group_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force_types.h"
#include "DNA_scene_types.h"
#include "DNA_meshdata_types.h"
#include "BLI_utildefines.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_edgehash.h"
#include "BKE_cloth.h"
#include "BKE_collection.h"
#include "BKE_effect.h"
#include "BKE_layer.h"
#include "BKE_modifier.h"
#include "BKE_scene.h"
#ifdef WITH_BULLET
#include "Bullet-C-Api.h"
#endif
#include "BLI_kdopbvh.h"
#include "BKE_collision.h"
#ifdef WITH_ELTOPO
#include "eltopo-capi.h"
#endif
/***********************************
Collision modifier code start
***********************************/
/* step is limited from 0 (frame start position) to 1 (frame end position) */
void collision_move_object(CollisionModifierData *collmd, float step, float prevstep)
{
float tv[3] = {0, 0, 0};
unsigned int i = 0;
/* the collider doesn't move this frame */
if (collmd->is_static) {
for (i = 0; i < collmd->mvert_num; i++) {
zero_v3(collmd->current_v[i].co);
}
return;
}
for (i = 0; i < collmd->mvert_num; i++) {
sub_v3_v3v3(tv, collmd->xnew[i].co, collmd->x[i].co);
VECADDS(collmd->current_x[i].co, collmd->x[i].co, tv, prevstep);
VECADDS(collmd->current_xnew[i].co, collmd->x[i].co, tv, step);
sub_v3_v3v3(collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co);
}
bvhtree_update_from_mvert(
collmd->bvhtree, collmd->current_x, collmd->current_xnew,
collmd->tri, collmd->tri_num, true);
}
BVHTree *bvhtree_build_from_mvert(
const MVert *mvert,
const struct MVertTri *tri, int tri_num,
float epsilon)
{
BVHTree *tree;
const MVertTri *vt;
int i;
tree = BLI_bvhtree_new(tri_num, epsilon, 4, 26);
/* fill tree */
for (i = 0, vt = tri; i < tri_num; i++, vt++) {
float co[3][3];
copy_v3_v3(co[0], mvert[vt->tri[0]].co);
copy_v3_v3(co[1], mvert[vt->tri[1]].co);
copy_v3_v3(co[2], mvert[vt->tri[2]].co);
BLI_bvhtree_insert(tree, i, co[0], 3);
}
/* balance tree */
BLI_bvhtree_balance(tree);
return tree;
}
void bvhtree_update_from_mvert(
BVHTree *bvhtree,
const MVert *mvert, const MVert *mvert_moving,
const MVertTri *tri, int tri_num,
bool moving)
{
const MVertTri *vt;
int i;
if ((bvhtree == NULL) || (mvert == NULL)) {
return;
}
if (mvert_moving == NULL) {
moving = false;
}
for (i = 0, vt = tri; i < tri_num; i++, vt++) {
float co[3][3];
bool ret;
copy_v3_v3(co[0], mvert[vt->tri[0]].co);
copy_v3_v3(co[1], mvert[vt->tri[1]].co);
copy_v3_v3(co[2], mvert[vt->tri[2]].co);
/* copy new locations into array */
if (moving) {
float co_moving[3][3];
/* update moving positions */
copy_v3_v3(co_moving[0], mvert_moving[vt->tri[0]].co);
copy_v3_v3(co_moving[1], mvert_moving[vt->tri[1]].co);
copy_v3_v3(co_moving[2], mvert_moving[vt->tri[2]].co);
ret = BLI_bvhtree_update_node(bvhtree, i, &co[0][0], &co_moving[0][0], 3);
}
else {
ret = BLI_bvhtree_update_node(bvhtree, i, &co[0][0], NULL, 3);
}
/* check if tree is already full */
if (ret == false) {
break;
}
}
BLI_bvhtree_update_tree(bvhtree);
}
/***********************************
Collision modifier code end
***********************************/
// w3 is not perfect
static void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
{
/* dot_v3v3 */
#define INPR(v1, v2) ( (v1)[0] * (v2)[0] + (v1)[1] * (v2)[1] + (v1)[2] * (v2)[2])
double tempV1[3], tempV2[3], tempV4[3];
double a, b, c, d, e, f;
VECSUB ( tempV1, p1, p3 );
VECSUB ( tempV2, p2, p3 );
VECSUB ( tempV4, pv, p3 );
a = INPR ( tempV1, tempV1 );
b = INPR ( tempV1, tempV2 );
c = INPR ( tempV2, tempV2 );
e = INPR ( tempV1, tempV4 );
f = INPR ( tempV2, tempV4 );
d = ( a * c - b * b );
if ( ABS ( d ) < (double)ALMOST_ZERO ) {
*w1 = *w2 = *w3 = 1.0 / 3.0;
return;
}
w1[0] = ( float ) ( ( e * c - b * f ) / d );
if ( w1[0] < 0 )
w1[0] = 0;
w2[0] = ( float ) ( ( f - b * ( double ) w1[0] ) / c );
if ( w2[0] < 0 )
w2[0] = 0;
w3[0] = 1.0f - w1[0] - w2[0];
#undef INPR
}
#ifdef __GNUC__
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif
DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3 )
{
zero_v3(to);
VECADDMUL(to, v1, w1);
VECADDMUL(to, v2, w2);
VECADDMUL(to, v3, w3);
}
static int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_get_epsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ ) {
float i1[3], i2[3], i3[3];
zero_v3(i1);
zero_v3(i2);
zero_v3(i3);
/* only handle static collisions here */
if ( collpair->flag & COLLISION_IN_FUTURE )
continue;
/* compute barycentric coordinates for both collision points */
collision_compute_barycentric ( collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3 );
/* was: txold */
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
/* Calculate relative "velocity". */
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
sub_v3_v3v3(relativeVelocity, v2, v1);
/* Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal'). */
magrelVel = dot_v3v3(relativeVelocity, collpair->normal);
/* printf("magrelVel: %f\n", magrelVel); */
/* Calculate masses of points.
* TODO */
/* If v_n_mag < 0 the edges are approaching each other. */
if ( magrelVel > ALMOST_ZERO ) {
/* Calculate Impulse magnitude to stop all motion in normal direction. */
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3], spf;
/* calculate tangential velocity */
copy_v3_v3 ( temp, collpair->normal );
mul_v3_fl(temp, magrelVel);
sub_v3_v3v3(vrel_t_pre, relativeVelocity, temp);
/* Decrease in magnitude of relative tangential velocity due to coulomb friction
* in original formula "magrelVel" should be the "change of relative velocity in normal direction" */
magtangent = min_ff(clmd->coll_parms->friction * 0.01f * magrelVel, len_v3(vrel_t_pre));
/* Apply friction impulse. */
if ( magtangent > ALMOST_ZERO ) {
normalize_v3(vrel_t_pre);
impulse = magtangent / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); /* 2.0 * */
VECADDMUL ( i1, vrel_t_pre, w1 * impulse );
VECADDMUL ( i2, vrel_t_pre, w2 * impulse );
VECADDMUL ( i3, vrel_t_pre, w3 * impulse );
}
/* Apply velocity stopping impulse
* I_c = m * v_N / 2.0
* no 2.0 * magrelVel normally, but looks nicer DG */
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( i1, collpair->normal, w1 * impulse );
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL ( i2, collpair->normal, w2 * impulse );
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL ( i3, collpair->normal, w3 * impulse );
cloth1->verts[collpair->ap3].impulse_count++;
/* Apply repulse impulse if distance too short
* I_r = -min(dt*kd, m(0, 1d/dt - v_n))
* DG: this formula ineeds to be changed for this code since we apply impulses/repulses like this:
* v += impulse; x_new = x + v;
* We don't use dt!!
* DG TODO: Fix usage of dt here! */
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
d = clmd->coll_parms->epsilon*8.0f/9.0f + epsilon2*8.0f/9.0f - collpair->distance;
if ( ( magrelVel < 0.1f*d*spf ) && ( d > ALMOST_ZERO ) ) {
repulse = MIN2 ( d*1.0f/spf, 0.1f*d*spf - magrelVel );
/* stay on the safe side and clamp repulse */
if ( impulse > ALMOST_ZERO )
repulse = min_ff( repulse, 5.0*impulse );
repulse = max_ff(impulse, repulse);
impulse = repulse / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); /* original 2.0 / 0.25 */
VECADDMUL ( i1, collpair->normal, impulse );
VECADDMUL ( i2, collpair->normal, impulse );
VECADDMUL ( i3, collpair->normal, impulse );
}
result = 1;
}
else {
/* Apply repulse impulse if distance too short
* I_r = -min(dt*kd, max(0, 1d/dt - v_n))
* DG: this formula ineeds to be changed for this code since we apply impulses/repulses like this:
* v += impulse; x_new = x + v;
* We don't use dt!! */
float spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
float d = clmd->coll_parms->epsilon*8.0f/9.0f + epsilon2*8.0f/9.0f - (float)collpair->distance;
if ( d > ALMOST_ZERO) {
/* stay on the safe side and clamp repulse */
float repulse = d*1.0f/spf;
float impulse = repulse / ( 3.0f * ( 1.0f + w1*w1 + w2*w2 + w3*w3 )); /* original 2.0 / 0.25 */
VECADDMUL ( i1, collpair->normal, impulse );
VECADDMUL ( i2, collpair->normal, impulse );
VECADDMUL ( i3, collpair->normal, impulse );
cloth1->verts[collpair->ap1].impulse_count++;
cloth1->verts[collpair->ap2].impulse_count++;
cloth1->verts[collpair->ap3].impulse_count++;
result = 1;
}
}
if (result) {
int i = 0;
for (i = 0; i < 3; i++) {
if (cloth1->verts[collpair->ap1].impulse_count > 0 && ABS(cloth1->verts[collpair->ap1].impulse[i]) < ABS(i1[i]))
cloth1->verts[collpair->ap1].impulse[i] = i1[i];
if (cloth1->verts[collpair->ap2].impulse_count > 0 && ABS(cloth1->verts[collpair->ap2].impulse[i]) < ABS(i2[i]))
cloth1->verts[collpair->ap2].impulse[i] = i2[i];
if (cloth1->verts[collpair->ap3].impulse_count > 0 && ABS(cloth1->verts[collpair->ap3].impulse[i]) < ABS(i3[i]))
cloth1->verts[collpair->ap3].impulse[i] = i3[i];
}
}
}
return result;
}
#ifdef __GNUC__
# pragma GCC diagnostic pop
#endif
//Determines collisions on overlap, collisions are written to collpair[i] and collision+number_collision_found is returned
static CollPair* cloth_collision(ModifierData *md1, ModifierData *md2,
BVHTreeOverlap *overlap, CollPair *collpair, float UNUSED(dt))
{
ClothModifierData *clmd = (ClothModifierData *)md1;
CollisionModifierData *collmd = (CollisionModifierData *) md2;
/* Cloth *cloth = clmd->clothObject; */ /* UNUSED */
const MVertTri *tri_a, *tri_b;
#ifdef WITH_BULLET
ClothVertex *verts1 = clmd->clothObject->verts;
#endif
double distance = 0;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_get_epsilon ( collmd->bvhtree );
tri_a = &clmd->clothObject->tri[overlap->indexA];
tri_b = &collmd->tri[overlap->indexB];
/* fill face_a */
collpair->ap1 = tri_a->tri[0];
collpair->ap2 = tri_a->tri[1];
collpair->ap3 = tri_a->tri[2];
/* fill face_b */
collpair->bp1 = tri_b->tri[0];
collpair->bp2 = tri_b->tri[1];
collpair->bp3 = tri_b->tri[2];
{
#ifdef WITH_BULLET
// calc distance + normal
distance = plNearestPoints (
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa, collpair->pb, collpair->vector );
#else
// just be sure that we don't add anything
distance = 2.0 * (double)( epsilon1 + epsilon2 + ALMOST_ZERO );
#endif
// distance -1 means no collision result
if (distance != -1.0 && (distance <= (double)(epsilon1 + epsilon2 + ALMOST_ZERO))) {
normalize_v3_v3(collpair->normal, collpair->vector);
collpair->distance = distance;
collpair->flag = 0;
collpair++;
}/*
else {
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
// calc relative velocity
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
verts1[collpair->ap1].txold,
verts1[collpair->ap2].txold,
verts1[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, verts1[collpair->ap1].tv, verts1[collpair->ap2].tv, verts1[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
sub_v3_v3v3(relativeVelocity, v2, v1);
if (sqrt(dot_v3v3(relativeVelocity, relativeVelocity)) >= distance)
{
// check for collision in the future
collpair->flag |= COLLISION_IN_FUTURE;
collpair++;
}
}*/
}
return collpair;
}
static void add_collision_object(Object ***objs, unsigned int *numobj, unsigned int *maxobj, Object *ob, Object *self, int level, unsigned int modifier_type)
{
CollisionModifierData *cmd= NULL;
if (ob == self)
return;
/* only get objects with collision modifier */
if (((modifier_type == eModifierType_Collision) && ob->pd && ob->pd->deflect) || (modifier_type != eModifierType_Collision))
cmd= (CollisionModifierData *)modifiers_findByType(ob, modifier_type);
if (cmd) {
/* extend array */
if (*numobj >= *maxobj) {
*maxobj *= 2;
*objs= MEM_reallocN(*objs, sizeof(Object *)*(*maxobj));
}
(*objs)[*numobj] = ob;
(*numobj)++;
}
/* objects in dupli groups, one level only for now */
if (ob->dup_group && level == 0) {
Collection *collection= ob->dup_group;
/* add objects */
FOREACH_COLLECTION_OBJECT_RECURSIVE_BEGIN(collection, object)
{
add_collision_object(objs, numobj, maxobj, object, self, level+1, modifier_type);
}
FOREACH_COLLECTION_OBJECT_RECURSIVE_END;
}
}
// return all collision objects in scene
// collision object will exclude self
Object **get_collisionobjects_ext(Scene *scene, Object *self, Collection *collection, unsigned int *numcollobj, unsigned int modifier_type, bool dupli)
{
Object **objs;
unsigned int numobj= 0, maxobj= 100;
int level = dupli ? 0 : 1;
objs= MEM_callocN(sizeof(Object *)*maxobj, "CollisionObjectsArray");
/* gather all collision objects */
if (collection) {
/* use specified collection */
FOREACH_COLLECTION_OBJECT_RECURSIVE_BEGIN(collection, object)
{
add_collision_object(&objs, &numobj, &maxobj, object, self, level, modifier_type);
}
FOREACH_COLLECTION_OBJECT_RECURSIVE_END;
}
else {
Scene *sce_iter;
Base *base;
/* add objects in same layer in scene */
for (SETLOOPER(scene, sce_iter, base)) {
if ((base->flag & BASE_VISIBLED) != 0) {
add_collision_object(&objs, &numobj, &maxobj, base->object, self, level, modifier_type);
}
}
}
*numcollobj= numobj;
return objs;
}
Object **get_collisionobjects(Scene *scene, Object *self, Collection *collection, unsigned int *numcollobj, unsigned int modifier_type)
{
/* Need to check for active layers, too.
Otherwise this check fails if the objects are not on the same layer - DG */
return get_collisionobjects_ext(scene, self, collection, numcollobj, modifier_type, true);
}
static void add_collider_cache_object(ListBase **objs, Object *ob, Object *self, int level)
{
CollisionModifierData *cmd= NULL;
ColliderCache *col;
if (ob == self)
return;
if (ob->pd && ob->pd->deflect)
cmd =(CollisionModifierData *)modifiers_findByType(ob, eModifierType_Collision);
if (cmd && cmd->bvhtree) {
if (*objs == NULL)
*objs = MEM_callocN(sizeof(ListBase), "ColliderCache array");
col = MEM_callocN(sizeof(ColliderCache), "ColliderCache");
col->ob = ob;
col->collmd = cmd;
/* make sure collider is properly set up */
collision_move_object(cmd, 1.0, 0.0);
BLI_addtail(*objs, col);
}
/* objects in dupli collection, one level only for now */
if (ob->dup_group && level == 0) {
Collection *collection= ob->dup_group;
/* add objects */
FOREACH_COLLECTION_OBJECT_RECURSIVE_BEGIN(collection, object)
{
add_collider_cache_object(objs, object, self, level+1);
}
FOREACH_COLLECTION_OBJECT_RECURSIVE_END;
}
}
ListBase *get_collider_cache(Scene *scene, Object *self, Collection *collection)
{
ListBase *objs= NULL;
/* add object in same layer in scene */
if (collection) {
FOREACH_COLLECTION_OBJECT_RECURSIVE_BEGIN(collection, object)
{
add_collider_cache_object(&objs, object, self, 0);
}
FOREACH_COLLECTION_OBJECT_RECURSIVE_END;
}
else {
Scene *sce_iter;
Base *base;
/* add objects in same layer in scene */
for (SETLOOPER(scene, sce_iter, base)) {
if (!self || ((base->flag & BASE_VISIBLED) != 0))
add_collider_cache_object(&objs, base->object, self, 0);
}
}
return objs;
}
void free_collider_cache(ListBase **colliders)
{
if (*colliders) {
BLI_freelistN(*colliders);
MEM_freeN(*colliders);
*colliders = NULL;
}
}
static void cloth_bvh_objcollisions_nearcheck ( ClothModifierData * clmd, CollisionModifierData *collmd,
CollPair **collisions, CollPair **collisions_index, int numresult, BVHTreeOverlap *overlap, double dt)
{
int i;
*collisions = (CollPair *) MEM_mallocN(sizeof(CollPair) * numresult * 4, "collision array" ); // * 4 since cloth_collision_static can return more than 1 collision
*collisions_index = *collisions;
for ( i = 0; i < numresult; i++ ) {
*collisions_index = cloth_collision((ModifierData *)clmd, (ModifierData *)collmd,
overlap+i, *collisions_index, dt);
}
}
static int cloth_bvh_objcollisions_resolve ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair *collisions, CollPair *collisions_index)
{
Cloth *cloth = clmd->clothObject;
int i=0, j = 0, /*numfaces = 0, */ mvert_num = 0;
ClothVertex *verts = NULL;
int ret = 0;
int result = 0;
mvert_num = clmd->clothObject->mvert_num;
verts = cloth->verts;
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
result = 1;
for ( j = 0; j < 2; j++ ) { /* 5 is just a value that ensures convergence */
result = 0;
if ( collmd->bvhtree ) {
result += cloth_collision_response_static ( clmd, collmd, collisions, collisions_index );
// apply impulses in parallel
if (result) {
for (i = 0; i < mvert_num; i++) {
// calculate "velocities" (just xnew = xold + v; no dt in v)
if (verts[i].impulse_count) {
// VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
VECADD ( verts[i].tv, verts[i].tv, verts[i].impulse);
zero_v3(verts[i].impulse);
verts[i].impulse_count = 0;
ret++;
}
}
}
}
if (!result) {
break;
}
}
return ret;
}
// cloth - object collisions
int cloth_bvh_objcollision(Object *ob, ClothModifierData *clmd, float step, float dt )
{
Cloth *cloth= clmd->clothObject;
BVHTree *cloth_bvh= cloth->bvhtree;
unsigned int i=0, /* numfaces = 0, */ /* UNUSED */ mvert_num = 0, k, l, j;
int rounds = 0; // result counts applied collisions; ic is for debug output;
ClothVertex *verts = NULL;
int ret = 0, ret2 = 0;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ) || cloth_bvh==NULL)
return 0;
verts = cloth->verts;
/* numfaces = cloth->numfaces; */ /* UNUSED */
mvert_num = cloth->mvert_num;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// update cloth bvh
bvhtree_update_from_cloth ( clmd, 1 ); // 0 means STATIC, 1 means MOVING (see later in this function)
bvhselftree_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
if (!collobjs)
return 0;
/* move object to position (step) in time */
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
if (!collmd->bvhtree)
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
}
do {
CollPair **collisions, **collisions_index;
ret2 = 0;
collisions = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
// check all collision objects
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
BVHTreeOverlap *overlap = NULL;
unsigned int result = 0;
if (!collmd->bvhtree)
continue;
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap(cloth_bvh, collmd->bvhtree, &result, NULL, NULL);
// go to next object if no overlap is there
if ( result && overlap ) {
/* check if collisions really happen (costly near check) */
cloth_bvh_objcollisions_nearcheck ( clmd, collmd, &collisions[i],
&collisions_index[i], result, overlap, dt/(float)clmd->coll_parms->loop_count);
// resolve nearby collisions
ret += cloth_bvh_objcollisions_resolve ( clmd, collmd, collisions[i], collisions_index[i]);
ret2 += ret;
}
if ( overlap )
MEM_freeN ( overlap );
}
rounds++;
for (i = 0; i < numcollobj; i++) {
if ( collisions[i] ) MEM_freeN ( collisions[i] );
}
MEM_freeN(collisions);
MEM_freeN(collisions_index);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
/* verts come from clmd */
for (i = 0; i < mvert_num; i++) {
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL ) {
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) {
continue;
}
}
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Test on *simple* selfcollisions
////////////////////////////////////////////////////////////
if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF ) {
for (l = 0; l < (unsigned int)clmd->coll_parms->self_loop_count; l++) {
/* TODO: add coll quality rounds again */
BVHTreeOverlap *overlap = NULL;
unsigned int result = 0;
// collisions = 1;
verts = cloth->verts; // needed for openMP
/* numfaces = cloth->numfaces; */ /* UNUSED */
mvert_num = cloth->mvert_num;
verts = cloth->verts;
if ( cloth->bvhselftree ) {
// search for overlapping collision pairs
overlap = BLI_bvhtree_overlap(cloth->bvhselftree, cloth->bvhselftree, &result, NULL, NULL);
/* Could be parallelized (using BLI_task)... */
for ( k = 0; k < result; k++ ) {
float temp[3];
float length = 0;
float mindistance;
i = overlap[k].indexA;
j = overlap[k].indexB;
mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL ) {
if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED ) &&
( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
{
continue;
}
}
if ((cloth->verts[i].flags & CLOTH_VERT_FLAG_NOSELFCOLL) ||
(cloth->verts[j].flags & CLOTH_VERT_FLAG_NOSELFCOLL))
{
continue;
}
sub_v3_v3v3(temp, verts[i].tx, verts[j].tx);
if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
if (BLI_edgeset_haskey(cloth->edgeset, i, j)) {
continue;
}
length = normalize_v3(temp );
if ( length < mindistance ) {
float correction = mindistance - length;
if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED ) {
mul_v3_fl(temp, -correction);
VECADD ( verts[j].tx, verts[j].tx, temp );
}
else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) {
mul_v3_fl(temp, correction);
VECADD ( verts[i].tx, verts[i].tx, temp );
}
else {
mul_v3_fl(temp, correction * -0.5f);
VECADD ( verts[j].tx, verts[j].tx, temp );
sub_v3_v3v3(verts[i].tx, verts[i].tx, temp);
}
ret = 1;
ret2 += ret;
}
else {
// check for approximated time collisions
}
}
if ( overlap )
MEM_freeN ( overlap );
}
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// SELFCOLLISIONS: update velocities
////////////////////////////////////////////////////////////
if (ret2) {
for (i = 0; i < cloth->mvert_num; i++) {
if ( ! ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) ) {
sub_v3_v3v3(verts[i].tv, verts[i].tx, verts[i].txold);
}
}
}
////////////////////////////////////////////////////////////
}
}
while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
if (collobjs)
MEM_freeN(collobjs);
return 1|MIN2 ( ret, 1 );
}
BLI_INLINE void max_v3_v3v3(float r[3], const float a[3], const float b[3])
{
r[0] = max_ff(a[0], b[0]);
r[1] = max_ff(a[1], b[1]);
r[2] = max_ff(a[2], b[2]);
}
void collision_get_collider_velocity(float vel_old[3], float vel_new[3], CollisionModifierData *collmd, CollPair *collpair)
{
float u1, u2, u3;
/* compute barycentric coordinates */
collision_compute_barycentric(collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3);
collision_interpolateOnTriangle(vel_new, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3);
/* XXX assume constant velocity of the collider for now */
copy_v3_v3(vel_old, vel_new);
}
static bool cloth_points_collision_response_static(ClothModifierData *clmd, CollisionModifierData *collmd, PartDeflect *pd,
CollPair *collpair, CollPair *collision_end, float dt)
{
bool result = false;
float restitution = (1.0f - clmd->coll_parms->damping) * (1.0f - pd->pdef_sbdamp);
float inv_dt = 1.0f / dt;
Cloth *cloth1 = clmd->clothObject;
// float w1, w2;
float u1, u2, u3;
float v1[3], v2_old[3], v2_new[3], v_rel_old[3], v_rel_new[3];
float epsilon2 = BLI_bvhtree_get_epsilon ( collmd->bvhtree );
for ( ; collpair != collision_end; collpair++ ) {
float margin_distance = (float)(collpair->distance - (double)epsilon2);
float impulse[3];
float mag_v_rel;
if (margin_distance > 0.0f)
continue;
zero_v3(impulse);
/* only handle static collisions here */
if ( collpair->flag & COLLISION_IN_FUTURE )
continue;
/* compute barycentric coordinates for both collision points */
// w1 = 1.0f - collpair->time;
// w2 = collpair->time;
/* was: txold */
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
/* Calculate relative velocity */
copy_v3_v3(v1, cloth1->verts[collpair->ap1].tv);
collision_interpolateOnTriangle ( v2_new, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
/* XXX assume constant velocity of the collider for now */
copy_v3_v3(v2_old, v2_new);
sub_v3_v3v3(v_rel_old, v1, v2_old);
sub_v3_v3v3(v_rel_new, v1, v2_new);
/* normal component of the relative velocity */
mag_v_rel = dot_v3v3(v_rel_old, collpair->normal);
/**** DEBUG ****/
BKE_sim_debug_data_add_dot(collpair->pa, 0.9, 0.2, 0.2, "collision", 833, collpair->face1, collpair->face2);
BKE_sim_debug_data_add_dot(collpair->pb, 0.2, 0.9, 0.2, "collision", 834, collpair->face1, collpair->face2);
BKE_sim_debug_data_add_line(collpair->pa, collpair->pb, 0.8, 0.8, 0.8, "collision", 835, collpair->face1, collpair->face2);
/********/
if (mag_v_rel < -ALMOST_ZERO) {
float v_nor_old, v_nor_new;
float v_tan_old[3], v_tan_new[3];
float bounce, repulse;
/* Collision response based on
* "Simulating Complex Hair with Robust Collision Handling" (Choe, Choi, Ko, ACM SIGGRAPH 2005)
* http://graphics.snu.ac.kr/publications/2005-choe-HairSim/Choe_2005_SCA.pdf
*/
v_nor_old = mag_v_rel;
v_nor_new = dot_v3v3(v_rel_new, collpair->normal);
madd_v3_v3v3fl(v_tan_old, v_rel_old, collpair->normal, -v_nor_old);
madd_v3_v3v3fl(v_tan_new, v_rel_new, collpair->normal, -v_nor_new);
repulse = -margin_distance * inv_dt + dot_v3v3(v1, collpair->normal);
if (margin_distance < -epsilon2) {
bounce = -v_nor_new + v_nor_old * restitution;
mul_v3_v3fl(impulse, collpair->normal, max_ff(repulse, bounce));
}
else {
bounce = 0.0f;
mul_v3_v3fl(impulse, collpair->normal, repulse);
}
cloth1->verts[collpair->ap1].impulse_count++;
result = true;
}
if (result) {
int i = 0;
for (i = 0; i < 3; i++) {
if (cloth1->verts[collpair->ap1].impulse_count > 0 && fabsf(cloth1->verts[collpair->ap1].impulse[i]) < fabsf(impulse[i]))
cloth1->verts[collpair->ap1].impulse[i] = impulse[i];
}
}
}
return result;
}
BLI_INLINE bool cloth_point_face_collision_params(const float p1[3], const float p2[3], const float v0[3], const float v1[3], const float v2[3],
float r_nor[3], float *r_lambda, float r_w[3])
{
float edge1[3], edge2[3], p2face[3], p1p2[3], v0p2[3];
float nor_v0p2, nor_p1p2;
sub_v3_v3v3(edge1, v1, v0);
sub_v3_v3v3(edge2, v2, v0);
cross_v3_v3v3(r_nor, edge1, edge2);
normalize_v3(r_nor);
nor_v0p2 = dot_v3v3(v0p2, r_nor);
madd_v3_v3v3fl(p2face, p2, r_nor, -nor_v0p2);
interp_weights_tri_v3(r_w, v0, v1, v2, p2face);
sub_v3_v3v3(p1p2, p2, p1);
sub_v3_v3v3(v0p2, p2, v0);
nor_p1p2 = dot_v3v3(p1p2, r_nor);
*r_lambda = (nor_p1p2 != 0.0f ? nor_v0p2 / nor_p1p2 : 0.0f);
return r_w[1] >= 0.0f && r_w[2] >= 0.0f && r_w[1] + r_w[2] <= 1.0f;
#if 0 /* XXX this method uses the intersection point, but is broken and doesn't work well in general */
float p[3], vec1[3], line[3], edge1[3], edge2[3], q[3];
float a, f, u, v;
sub_v3_v3v3(edge1, v1, v0);
sub_v3_v3v3(edge2, v2, v0);
sub_v3_v3v3(line, p2, p1);
cross_v3_v3v3(p, line, edge2);
a = dot_v3v3(edge1, p);
if (a == 0.0f) return 0;
f = 1.0f / a;
sub_v3_v3v3(vec1, p1, v0);
u = f * dot_v3v3(vec1, p);
if ((u < 0.0f) || (u > 1.0f))
return false;
cross_v3_v3v3(q, vec1, edge1);
v = f * dot_v3v3(line, q);
if ((v < 0.0f) || ((u + v) > 1.0f))
return false;
*r_lambda = f * dot_v3v3(edge2, q);
/* don't care about 0..1 lambda range here */
/*if ((*r_lambda < 0.0f) || (*r_lambda > 1.0f))
* return 0;
*/
r_w[0] = 1.0f - u - v;
r_w[1] = u;
r_w[2] = v;
r_w[3] = 0.0f;
cross_v3_v3v3(r_nor, edge1, edge2);
normalize_v3(r_nor);
return true;
#endif
}
static CollPair *cloth_point_collpair(
float p1[3], float p2[3], const MVert *mverts, int bp1, int bp2, int bp3,
int index_cloth, int index_coll, float epsilon, CollPair *collpair)
{
const float *co1 = mverts[bp1].co, *co2 = mverts[bp2].co, *co3 = mverts[bp3].co;
float lambda /*, distance1 */, distance2;
float facenor[3], v1p1[3], v1p2[3];
float w[3];
if (!cloth_point_face_collision_params(p1, p2, co1, co2, co3, facenor, &lambda, w))
return collpair;
sub_v3_v3v3(v1p1, p1, co1);
// distance1 = dot_v3v3(v1p1, facenor);
sub_v3_v3v3(v1p2, p2, co1);
distance2 = dot_v3v3(v1p2, facenor);
// if (distance2 > epsilon || (distance1 < 0.0f && distance2 < 0.0f))
if (distance2 > epsilon)
return collpair;
collpair->face1 = index_cloth; /* XXX actually not a face, but equivalent index for point */
collpair->face2 = index_coll;
collpair->ap1 = index_cloth;
collpair->ap2 = collpair->ap3 = -1; /* unused */
collpair->bp1 = bp1;
collpair->bp2 = bp2;
collpair->bp3 = bp3;
/* note: using the second point here, which is
* the current updated position that needs to be corrected
*/
copy_v3_v3(collpair->pa, p2);
collpair->distance = distance2;
mul_v3_v3fl(collpair->vector, facenor, -distance2);
interp_v3_v3v3v3(collpair->pb, co1, co2, co3, w);
copy_v3_v3(collpair->normal, facenor);
collpair->time = lambda;
collpair->flag = 0;
collpair++;
return collpair;
}
//Determines collisions on overlap, collisions are written to collpair[i] and collision+number_collision_found is returned
static CollPair *cloth_point_collision(
ModifierData *md1, ModifierData *md2,
BVHTreeOverlap *overlap, float epsilon, CollPair *collpair, float UNUSED(dt))
{
ClothModifierData *clmd = (ClothModifierData *)md1;
CollisionModifierData *collmd = (CollisionModifierData *) md2;
/* Cloth *cloth = clmd->clothObject; */ /* UNUSED */
ClothVertex *vert = NULL;
const MVertTri *vt;
const MVert *mverts = collmd->current_x;
vert = &clmd->clothObject->verts[overlap->indexA];
vt = &collmd->tri[overlap->indexB];
collpair = cloth_point_collpair(
vert->tx, vert->x, mverts,
vt->tri[0], vt->tri[1], vt->tri[2],
overlap->indexA, overlap->indexB,
epsilon, collpair);
return collpair;
}
static void cloth_points_objcollisions_nearcheck(
ClothModifierData *clmd, CollisionModifierData *collmd,
CollPair **collisions, CollPair **collisions_index,
int numresult, BVHTreeOverlap *overlap, float epsilon, double dt)
{
int i;
/* can return 2 collisions in total */
*collisions = (CollPair *) MEM_mallocN(sizeof(CollPair) * numresult * 2, "collision array" );
*collisions_index = *collisions;
for ( i = 0; i < numresult; i++ ) {
*collisions_index = cloth_point_collision((ModifierData *)clmd, (ModifierData *)collmd,
overlap+i, epsilon, *collisions_index, dt);
}
}
static int cloth_points_objcollisions_resolve(
ClothModifierData *clmd, CollisionModifierData *collmd, PartDeflect *pd,
CollPair *collisions, CollPair *collisions_index, float dt)
{
Cloth *cloth = clmd->clothObject;
int i = 0, mvert_num = clmd->clothObject->mvert_num;
ClothVertex *verts = cloth->verts;
int ret = 0;
// process all collisions
if ( collmd->bvhtree ) {
bool result = cloth_points_collision_response_static(clmd, collmd, pd, collisions, collisions_index, dt);
// apply impulses in parallel
if (result) {
for (i = 0; i < mvert_num; i++) {
// calculate "velocities" (just xnew = xold + v; no dt in v)
if (verts[i].impulse_count) {
// VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
VECADD ( verts[i].tv, verts[i].tv, verts[i].impulse);
zero_v3(verts[i].impulse);
verts[i].impulse_count = 0;
ret++;
}
}
}
}
return ret;
}
// cloth - object collisions
int cloth_points_objcollision(Object *ob, ClothModifierData *clmd, float step, float dt)
{
Cloth *cloth= clmd->clothObject;
BVHTree *cloth_bvh;
int rounds = 0; // result counts applied collisions; ic is for debug output;
float round_dt = dt / (float)clmd->coll_parms->loop_count;
unsigned int i = 0, mvert_num = 0;
ClothVertex *verts = NULL;
int ret = 0, ret2 = 0;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
verts = cloth->verts;
mvert_num = cloth->mvert_num;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// create temporary cloth points bvh
cloth_bvh = BLI_bvhtree_new(mvert_num, max_ff(clmd->coll_parms->epsilon, clmd->coll_parms->distance_repel), 4, 6);
/* fill tree */
for (i = 0; i < mvert_num; i++) {
float co[2][3];
copy_v3_v3(co[0], verts[i].x);
copy_v3_v3(co[1], verts[i].tx);
BLI_bvhtree_insert(cloth_bvh, i, co[0], 2);
}
/* balance tree */
BLI_bvhtree_balance(cloth_bvh);
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
if (!collobjs)
return 0;
/* move object to position (step) in time */
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
if (!collmd->bvhtree)
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
}
do {
CollPair **collisions, **collisions_index;
ret2 = 0;
collisions = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
// check all collision objects
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
BVHTreeOverlap *overlap = NULL;
unsigned int result = 0;
float epsilon;
if (!collmd->bvhtree)
continue;
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap(cloth_bvh, collmd->bvhtree, &result, NULL, NULL);
epsilon = BLI_bvhtree_get_epsilon(collmd->bvhtree);
// go to next object if no overlap is there
if (result && overlap) {
/* check if collisions really happen (costly near check) */
cloth_points_objcollisions_nearcheck(clmd, collmd, &collisions[i], &collisions_index[i],
result, overlap, epsilon, round_dt);
// resolve nearby collisions
ret += cloth_points_objcollisions_resolve(clmd, collmd, collob->pd, collisions[i], collisions_index[i], round_dt);
ret2 += ret;
}
if (overlap)
MEM_freeN ( overlap );
}
rounds++;
for (i = 0; i < numcollobj; i++) {
if (collisions[i])
MEM_freeN(collisions[i]);
}
MEM_freeN(collisions);
MEM_freeN(collisions_index);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for (i = 0; i < mvert_num; i++) {
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL ) {
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) {
continue;
}
}
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
}
////////////////////////////////////////////////////////////
}
while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
if (collobjs)
MEM_freeN(collobjs);
BLI_bvhtree_free(cloth_bvh);
return 1|MIN2 ( ret, 1 );
}
void cloth_find_point_contacts(Object *ob, ClothModifierData *clmd, float step, float dt,
ColliderContacts **r_collider_contacts, int *r_totcolliders)
{
Cloth *cloth= clmd->clothObject;
BVHTree *cloth_bvh;
unsigned int i = 0, mvert_num = 0;
ClothVertex *verts = NULL;
ColliderContacts *collider_contacts;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
verts = cloth->verts;
mvert_num = cloth->mvert_num;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// create temporary cloth points bvh
cloth_bvh = BLI_bvhtree_new(mvert_num, max_ff(clmd->coll_parms->epsilon, clmd->coll_parms->distance_repel), 4, 6);
/* fill tree */
for (i = 0; i < mvert_num; i++) {
float co[6];
copy_v3_v3(&co[0*3], verts[i].x);
copy_v3_v3(&co[1*3], verts[i].tx);
BLI_bvhtree_insert(cloth_bvh, i, co, 2);
}
/* balance tree */
BLI_bvhtree_balance(cloth_bvh);
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
if (!collobjs) {
*r_collider_contacts = NULL;
*r_totcolliders = 0;
return;
}
/* move object to position (step) in time */
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
if (!collmd->bvhtree)
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
}
collider_contacts = MEM_callocN(sizeof(ColliderContacts) * numcollobj, "CollPair");
// check all collision objects
for (i = 0; i < numcollobj; i++) {
ColliderContacts *ct = collider_contacts + i;
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
BVHTreeOverlap *overlap;
unsigned int result = 0;
float epsilon;
ct->ob = collob;
ct->collmd = collmd;
ct->collisions = NULL;
ct->totcollisions = 0;
if (!collmd->bvhtree)
continue;
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap(cloth_bvh, collmd->bvhtree, &result, NULL, NULL);
epsilon = BLI_bvhtree_get_epsilon(collmd->bvhtree);
// go to next object if no overlap is there
if (result && overlap) {
CollPair *collisions_index;
/* check if collisions really happen (costly near check) */
cloth_points_objcollisions_nearcheck(clmd, collmd, &ct->collisions, &collisions_index,
result, overlap, epsilon, dt);
ct->totcollisions = (int)(collisions_index - ct->collisions);
// resolve nearby collisions
// ret += cloth_points_objcollisions_resolve(clmd, collmd, collob->pd, collisions[i], collisions_index[i], dt);
}
if (overlap)
MEM_freeN(overlap);
}
if (collobjs)
MEM_freeN(collobjs);
BLI_bvhtree_free(cloth_bvh);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for (i = 0; i < mvert_num; i++) {
if (clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) {
if (verts [i].flags & CLOTH_VERT_FLAG_PINNED) {
continue;
}
}
VECADD(verts[i].tx, verts[i].txold, verts[i].tv);
}
////////////////////////////////////////////////////////////
*r_collider_contacts = collider_contacts;
*r_totcolliders = numcollobj;
}
void cloth_free_contacts(ColliderContacts *collider_contacts, int totcolliders)
{
if (collider_contacts) {
int i;
for (i = 0; i < totcolliders; ++i) {
ColliderContacts *ct = collider_contacts + i;
if (ct->collisions) {
MEM_freeN(ct->collisions);
}
}
MEM_freeN(collider_contacts);
}
}