Submitted by: Teppo Kansala (teppoka) See patch report for details of fixes. https://projects.blender.org/tracker/index.php?func=detail&aid=17500&group_id=9&atid=127 Note: the patch submitter's test files were quite nice, and would be good to have in our regression suite.
2340 lines
65 KiB
C
2340 lines
65 KiB
C
/**
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* Contributor(s): Full recode, Ton Roosendaal, Crete 2005
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <float.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "nla.h"
|
|
|
|
#include "BLI_arithb.h"
|
|
#include "BLI_blenlib.h"
|
|
|
|
#include "DNA_armature_types.h"
|
|
#include "DNA_action_types.h"
|
|
#include "DNA_constraint_types.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_lattice_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_nla_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_scene_types.h"
|
|
#include "DNA_view3d_types.h"
|
|
|
|
#include "BKE_armature.h"
|
|
#include "BKE_action.h"
|
|
#include "BKE_blender.h"
|
|
#include "BKE_constraint.h"
|
|
#include "BKE_curve.h"
|
|
#include "BKE_deform.h"
|
|
#include "BKE_depsgraph.h"
|
|
#include "BKE_DerivedMesh.h"
|
|
#include "BKE_displist.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_library.h"
|
|
#include "BKE_lattice.h"
|
|
#include "BKE_main.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_utildefines.h"
|
|
|
|
#include "BIF_editdeform.h"
|
|
|
|
#include "IK_solver.h"
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
/* **************** Generic Functions, data level *************** */
|
|
|
|
bArmature *get_armature(Object *ob)
|
|
{
|
|
if(ob==NULL) return NULL;
|
|
if(ob->type==OB_ARMATURE) return ob->data;
|
|
else return NULL;
|
|
}
|
|
|
|
bArmature *add_armature(char *name)
|
|
{
|
|
bArmature *arm;
|
|
|
|
arm= alloc_libblock (&G.main->armature, ID_AR, name);
|
|
arm->deformflag = ARM_DEF_VGROUP|ARM_DEF_ENVELOPE;
|
|
arm->layer= 1;
|
|
return arm;
|
|
}
|
|
|
|
|
|
void free_boneChildren(Bone *bone)
|
|
{
|
|
Bone *child;
|
|
|
|
if (bone) {
|
|
|
|
child=bone->childbase.first;
|
|
if (child){
|
|
while (child){
|
|
free_boneChildren (child);
|
|
child=child->next;
|
|
}
|
|
BLI_freelistN (&bone->childbase);
|
|
}
|
|
}
|
|
}
|
|
|
|
void free_bones (bArmature *arm)
|
|
{
|
|
Bone *bone;
|
|
/* Free children (if any) */
|
|
bone= arm->bonebase.first;
|
|
if (bone) {
|
|
while (bone){
|
|
free_boneChildren (bone);
|
|
bone=bone->next;
|
|
}
|
|
}
|
|
|
|
|
|
BLI_freelistN(&arm->bonebase);
|
|
}
|
|
|
|
void free_armature(bArmature *arm)
|
|
{
|
|
if (arm) {
|
|
/* unlink_armature(arm);*/
|
|
free_bones(arm);
|
|
}
|
|
}
|
|
|
|
void make_local_armature(bArmature *arm)
|
|
{
|
|
int local=0, lib=0;
|
|
Object *ob;
|
|
bArmature *newArm;
|
|
|
|
if (arm->id.lib==0)
|
|
return;
|
|
if (arm->id.us==1) {
|
|
arm->id.lib= 0;
|
|
arm->id.flag= LIB_LOCAL;
|
|
new_id(0, (ID*)arm, 0);
|
|
return;
|
|
}
|
|
|
|
if(local && lib==0) {
|
|
arm->id.lib= 0;
|
|
arm->id.flag= LIB_LOCAL;
|
|
new_id(0, (ID *)arm, 0);
|
|
}
|
|
else if(local && lib) {
|
|
newArm= copy_armature(arm);
|
|
newArm->id.us= 0;
|
|
|
|
ob= G.main->object.first;
|
|
while(ob) {
|
|
if(ob->data==arm) {
|
|
|
|
if(ob->id.lib==0) {
|
|
ob->data= newArm;
|
|
newArm->id.us++;
|
|
arm->id.us--;
|
|
}
|
|
}
|
|
ob= ob->id.next;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void copy_bonechildren (Bone* newBone, Bone* oldBone)
|
|
{
|
|
Bone *curBone, *newChildBone;
|
|
|
|
/* Copy this bone's list*/
|
|
duplicatelist (&newBone->childbase, &oldBone->childbase);
|
|
|
|
/* For each child in the list, update it's children*/
|
|
newChildBone=newBone->childbase.first;
|
|
for (curBone=oldBone->childbase.first;curBone;curBone=curBone->next){
|
|
newChildBone->parent=newBone;
|
|
copy_bonechildren(newChildBone,curBone);
|
|
newChildBone=newChildBone->next;
|
|
}
|
|
}
|
|
|
|
bArmature *copy_armature(bArmature *arm)
|
|
{
|
|
bArmature *newArm;
|
|
Bone *oldBone, *newBone;
|
|
|
|
newArm= copy_libblock (arm);
|
|
duplicatelist(&newArm->bonebase, &arm->bonebase);
|
|
|
|
/* Duplicate the childrens' lists*/
|
|
newBone=newArm->bonebase.first;
|
|
for (oldBone=arm->bonebase.first;oldBone;oldBone=oldBone->next){
|
|
newBone->parent=NULL;
|
|
copy_bonechildren (newBone, oldBone);
|
|
newBone=newBone->next;
|
|
};
|
|
|
|
return newArm;
|
|
}
|
|
|
|
static Bone *get_named_bone_bonechildren (Bone *bone, const char *name)
|
|
{
|
|
Bone *curBone, *rbone;
|
|
|
|
if (!strcmp (bone->name, name))
|
|
return bone;
|
|
|
|
for (curBone=bone->childbase.first; curBone; curBone=curBone->next){
|
|
rbone=get_named_bone_bonechildren (curBone, name);
|
|
if (rbone)
|
|
return rbone;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
Bone *get_named_bone (bArmature *arm, const char *name)
|
|
/*
|
|
Walk the list until the bone is found
|
|
*/
|
|
{
|
|
Bone *bone=NULL, *curBone;
|
|
|
|
if (!arm) return NULL;
|
|
|
|
for (curBone=arm->bonebase.first; curBone; curBone=curBone->next){
|
|
bone = get_named_bone_bonechildren (curBone, name);
|
|
if (bone)
|
|
return bone;
|
|
}
|
|
|
|
return bone;
|
|
}
|
|
|
|
|
|
#define IS_SEPARATOR(a) (a=='.' || a==' ' || a=='-' || a=='_')
|
|
|
|
/* finds the best possible flipped name. For renaming; check for unique names afterwards */
|
|
/* if strip_number: removes number extensions */
|
|
void bone_flip_name (char *name, int strip_number)
|
|
{
|
|
int len;
|
|
char prefix[128]={""}; /* The part before the facing */
|
|
char suffix[128]={""}; /* The part after the facing */
|
|
char replace[128]={""}; /* The replacement string */
|
|
char number[128]={""}; /* The number extension string */
|
|
char *index=NULL;
|
|
|
|
len= strlen(name);
|
|
if(len<3) return; // we don't do names like .R or .L
|
|
|
|
/* We first check the case with a .### extension, let's find the last period */
|
|
if(isdigit(name[len-1])) {
|
|
index= strrchr(name, '.'); // last occurrance
|
|
if (index && isdigit(index[1]) ) { // doesnt handle case bone.1abc2 correct..., whatever!
|
|
if(strip_number==0)
|
|
strcpy(number, index);
|
|
*index= 0;
|
|
len= strlen(name);
|
|
}
|
|
}
|
|
|
|
strcpy (prefix, name);
|
|
|
|
/* first case; separator . - _ with extensions r R l L */
|
|
if( IS_SEPARATOR(name[len-2]) ) {
|
|
switch(name[len-1]) {
|
|
case 'l':
|
|
prefix[len-1]= 0;
|
|
strcpy(replace, "r");
|
|
break;
|
|
case 'r':
|
|
prefix[len-1]= 0;
|
|
strcpy(replace, "l");
|
|
break;
|
|
case 'L':
|
|
prefix[len-1]= 0;
|
|
strcpy(replace, "R");
|
|
break;
|
|
case 'R':
|
|
prefix[len-1]= 0;
|
|
strcpy(replace, "L");
|
|
break;
|
|
}
|
|
}
|
|
/* case; beginning with r R l L , with separator after it */
|
|
else if( IS_SEPARATOR(name[1]) ) {
|
|
switch(name[0]) {
|
|
case 'l':
|
|
strcpy(replace, "r");
|
|
strcpy(suffix, name+1);
|
|
prefix[0]= 0;
|
|
break;
|
|
case 'r':
|
|
strcpy(replace, "l");
|
|
strcpy(suffix, name+1);
|
|
prefix[0]= 0;
|
|
break;
|
|
case 'L':
|
|
strcpy(replace, "R");
|
|
strcpy(suffix, name+1);
|
|
prefix[0]= 0;
|
|
break;
|
|
case 'R':
|
|
strcpy(replace, "L");
|
|
strcpy(suffix, name+1);
|
|
prefix[0]= 0;
|
|
break;
|
|
}
|
|
}
|
|
else if(len > 5) {
|
|
/* hrms, why test for a separator? lets do the rule 'ultimate left or right' */
|
|
index = BLI_strcasestr(prefix, "right");
|
|
if (index==prefix || index==prefix+len-5) {
|
|
if(index[0]=='r')
|
|
strcpy (replace, "left");
|
|
else {
|
|
if(index[1]=='I')
|
|
strcpy (replace, "LEFT");
|
|
else
|
|
strcpy (replace, "Left");
|
|
}
|
|
*index= 0;
|
|
strcpy (suffix, index+5);
|
|
}
|
|
else {
|
|
index = BLI_strcasestr(prefix, "left");
|
|
if (index==prefix || index==prefix+len-4) {
|
|
if(index[0]=='l')
|
|
strcpy (replace, "right");
|
|
else {
|
|
if(index[1]=='E')
|
|
strcpy (replace, "RIGHT");
|
|
else
|
|
strcpy (replace, "Right");
|
|
}
|
|
*index= 0;
|
|
strcpy (suffix, index+4);
|
|
}
|
|
}
|
|
}
|
|
|
|
sprintf (name, "%s%s%s%s", prefix, replace, suffix, number);
|
|
}
|
|
|
|
/* Finds the best possible extension to the name on a particular axis. (For renaming, check for unique names afterwards)
|
|
* This assumes that bone names are at most 32 chars long!
|
|
* strip_number: removes number extensions (TODO: not used)
|
|
* axis: the axis to name on
|
|
* head/tail: the head/tail co-ordinate of the bone on the specified axis
|
|
*/
|
|
void bone_autoside_name (char *name, int strip_number, short axis, float head, float tail)
|
|
{
|
|
int len;
|
|
char basename[32]={""};
|
|
char extension[5]={""};
|
|
|
|
len= strlen(name);
|
|
if (len == 0) return;
|
|
strcpy(basename, name);
|
|
|
|
/* Figure out extension to append:
|
|
* - The extension to append is based upon the axis that we are working on.
|
|
* - If head happens to be on 0, then we must consider the tail position as well to decide
|
|
* which side the bone is on
|
|
* -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
|
|
* -> Otherwise, extension is added from perspective of object based on which side tail goes to
|
|
* - If head is non-zero, extension is added from perspective of object based on side head is on
|
|
*/
|
|
if (axis == 2) {
|
|
/* z-axis - vertical (top/bottom) */
|
|
if (IS_EQ(head, 0)) {
|
|
if (tail < 0)
|
|
strcpy(extension, "Bot");
|
|
else if (tail > 0)
|
|
strcpy(extension, "Top");
|
|
}
|
|
else {
|
|
if (head < 0)
|
|
strcpy(extension, "Bot");
|
|
else
|
|
strcpy(extension, "Top");
|
|
}
|
|
}
|
|
else if (axis == 1) {
|
|
/* y-axis - depth (front/back) */
|
|
if (IS_EQ(head, 0)) {
|
|
if (tail < 0)
|
|
strcpy(extension, "Fr");
|
|
else if (tail > 0)
|
|
strcpy(extension, "Bk");
|
|
}
|
|
else {
|
|
if (head < 0)
|
|
strcpy(extension, "Fr");
|
|
else
|
|
strcpy(extension, "Bk");
|
|
}
|
|
}
|
|
else {
|
|
/* x-axis - horizontal (left/right) */
|
|
if (IS_EQ(head, 0)) {
|
|
if (tail < 0)
|
|
strcpy(extension, "R");
|
|
else if (tail > 0)
|
|
strcpy(extension, "L");
|
|
}
|
|
else {
|
|
if (head < 0)
|
|
strcpy(extension, "R");
|
|
else if (head > 0)
|
|
strcpy(extension, "L");
|
|
}
|
|
}
|
|
|
|
/* Simple name truncation
|
|
* - truncate if there is an extension and it wouldn't be able to fit
|
|
* - otherwise, just append to end
|
|
*/
|
|
if (extension[0]) {
|
|
int change = 1;
|
|
|
|
while (change) { /* remove extensions */
|
|
change = 0;
|
|
if (len > 2 && basename[len-2]=='.') {
|
|
if (basename[len-1]=='L' || basename[len-1] == 'R' ) { /* L R */
|
|
basename[len-2] = '\0';
|
|
len-=2;
|
|
change= 1;
|
|
}
|
|
} else if (len > 3 && basename[len-3]=='.') {
|
|
if ( (basename[len-2]=='F' && basename[len-1] == 'r') || /* Fr */
|
|
(basename[len-2]=='B' && basename[len-1] == 'k') /* Bk */
|
|
) {
|
|
basename[len-3] = '\0';
|
|
len-=3;
|
|
change= 1;
|
|
}
|
|
} else if (len > 4 && basename[len-4]=='.') {
|
|
if ( (basename[len-3]=='T' && basename[len-2]=='o' && basename[len-1] == 'p') || /* Top */
|
|
(basename[len-3]=='B' && basename[len-2]=='o' && basename[len-1] == 't') /* Bot */
|
|
) {
|
|
basename[len-4] = '\0';
|
|
len-=4;
|
|
change= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((32 - len) < strlen(extension) + 1) { /* add 1 for the '.' */
|
|
strncpy(name, basename, len-strlen(extension));
|
|
}
|
|
}
|
|
|
|
sprintf(name, "%s.%s", basename, extension);
|
|
}
|
|
|
|
/* ************* B-Bone support ******************* */
|
|
|
|
#define MAX_BBONE_SUBDIV 32
|
|
|
|
/* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
|
|
static void equalize_bezier(float *data, int desired)
|
|
{
|
|
float *fp, totdist, ddist, dist, fac1, fac2;
|
|
float pdist[MAX_BBONE_SUBDIV+1];
|
|
float temp[MAX_BBONE_SUBDIV+1][4];
|
|
int a, nr;
|
|
|
|
pdist[0]= 0.0f;
|
|
for(a=0, fp= data; a<MAX_BBONE_SUBDIV; a++, fp+=4) {
|
|
QUATCOPY(temp[a], fp);
|
|
pdist[a+1]= pdist[a]+VecLenf(fp, fp+4);
|
|
}
|
|
/* do last point */
|
|
QUATCOPY(temp[a], fp);
|
|
totdist= pdist[a];
|
|
|
|
/* go over distances and calculate new points */
|
|
ddist= totdist/((float)desired);
|
|
nr= 1;
|
|
for(a=1, fp= data+4; a<desired; a++, fp+=4) {
|
|
|
|
dist= ((float)a)*ddist;
|
|
|
|
/* we're looking for location (distance) 'dist' in the array */
|
|
while((dist>= pdist[nr]) && nr<MAX_BBONE_SUBDIV) {
|
|
nr++;
|
|
}
|
|
|
|
fac1= pdist[nr]- pdist[nr-1];
|
|
fac2= pdist[nr]-dist;
|
|
fac1= fac2/fac1;
|
|
fac2= 1.0f-fac1;
|
|
|
|
fp[0]= fac1*temp[nr-1][0]+ fac2*temp[nr][0];
|
|
fp[1]= fac1*temp[nr-1][1]+ fac2*temp[nr][1];
|
|
fp[2]= fac1*temp[nr-1][2]+ fac2*temp[nr][2];
|
|
fp[3]= fac1*temp[nr-1][3]+ fac2*temp[nr][3];
|
|
}
|
|
/* set last point, needed for orientation calculus */
|
|
QUATCOPY(fp, temp[MAX_BBONE_SUBDIV]);
|
|
}
|
|
|
|
/* returns pointer to static array, filled with desired amount of bone->segments elements */
|
|
/* this calculation is done within unit bone space */
|
|
Mat4 *b_bone_spline_setup(bPoseChannel *pchan, int rest)
|
|
{
|
|
static Mat4 bbone_array[MAX_BBONE_SUBDIV];
|
|
static Mat4 bbone_rest_array[MAX_BBONE_SUBDIV];
|
|
Mat4 *result_array= (rest)? bbone_rest_array: bbone_array;
|
|
bPoseChannel *next, *prev;
|
|
Bone *bone= pchan->bone;
|
|
float h1[3], h2[3], scale[3], length, hlength1, hlength2, roll1=0.0f, roll2;
|
|
float mat3[3][3], imat[4][4], posemat[4][4], scalemat[4][4], iscalemat[4][4];
|
|
float data[MAX_BBONE_SUBDIV+1][4], *fp;
|
|
int a, doscale= 0;
|
|
|
|
length= bone->length;
|
|
|
|
if(!rest) {
|
|
/* check if we need to take non-uniform bone scaling into account */
|
|
scale[0]= VecLength(pchan->pose_mat[0]);
|
|
scale[1]= VecLength(pchan->pose_mat[1]);
|
|
scale[2]= VecLength(pchan->pose_mat[2]);
|
|
|
|
if(fabs(scale[0] - scale[1]) > 1e-6f || fabs(scale[1] - scale[2]) > 1e-6f) {
|
|
Mat4One(scalemat);
|
|
scalemat[0][0]= scale[0];
|
|
scalemat[1][1]= scale[1];
|
|
scalemat[2][2]= scale[2];
|
|
Mat4Invert(iscalemat, scalemat);
|
|
|
|
length *= scale[1];
|
|
doscale = 1;
|
|
}
|
|
}
|
|
|
|
hlength1= bone->ease1*length*0.390464f; // 0.5*sqrt(2)*kappa, the handle length for near-perfect circles
|
|
hlength2= bone->ease2*length*0.390464f;
|
|
|
|
/* evaluate next and prev bones */
|
|
if(bone->flag & BONE_CONNECTED)
|
|
prev= pchan->parent;
|
|
else
|
|
prev= NULL;
|
|
|
|
next= pchan->child;
|
|
|
|
/* find the handle points, since this is inside bone space, the
|
|
first point = (0,0,0)
|
|
last point = (0, length, 0) */
|
|
|
|
if(rest) {
|
|
Mat4Invert(imat, pchan->bone->arm_mat);
|
|
}
|
|
else if(doscale) {
|
|
Mat4CpyMat4(posemat, pchan->pose_mat);
|
|
Mat4Ortho(posemat);
|
|
Mat4Invert(imat, posemat);
|
|
}
|
|
else
|
|
Mat4Invert(imat, pchan->pose_mat);
|
|
|
|
if(prev) {
|
|
float difmat[4][4], result[3][3], imat3[3][3];
|
|
|
|
/* transform previous point inside this bone space */
|
|
if(rest)
|
|
VECCOPY(h1, prev->bone->arm_head)
|
|
else
|
|
VECCOPY(h1, prev->pose_head)
|
|
Mat4MulVecfl(imat, h1);
|
|
|
|
if(prev->bone->segments>1) {
|
|
/* if previous bone is B-bone too, use average handle direction */
|
|
h1[1]-= length;
|
|
roll1= 0.0f;
|
|
}
|
|
|
|
Normalize(h1);
|
|
VecMulf(h1, -hlength1);
|
|
|
|
if(prev->bone->segments==1) {
|
|
/* find the previous roll to interpolate */
|
|
if(rest)
|
|
Mat4MulMat4(difmat, prev->bone->arm_mat, imat);
|
|
else
|
|
Mat4MulMat4(difmat, prev->pose_mat, imat);
|
|
Mat3CpyMat4(result, difmat); // the desired rotation at beginning of next bone
|
|
|
|
vec_roll_to_mat3(h1, 0.0f, mat3); // the result of vec_roll without roll
|
|
|
|
Mat3Inv(imat3, mat3);
|
|
Mat3MulMat3(mat3, result, imat3); // the matrix transforming vec_roll to desired roll
|
|
|
|
roll1= atan2(mat3[2][0], mat3[2][2]);
|
|
}
|
|
}
|
|
else {
|
|
h1[0]= 0.0f; h1[1]= hlength1; h1[2]= 0.0f;
|
|
roll1= 0.0f;
|
|
}
|
|
if(next) {
|
|
float difmat[4][4], result[3][3], imat3[3][3];
|
|
|
|
/* transform next point inside this bone space */
|
|
if(rest)
|
|
VECCOPY(h2, next->bone->arm_tail)
|
|
else
|
|
VECCOPY(h2, next->pose_tail)
|
|
Mat4MulVecfl(imat, h2);
|
|
/* if next bone is B-bone too, use average handle direction */
|
|
if(next->bone->segments>1);
|
|
else h2[1]-= length;
|
|
Normalize(h2);
|
|
|
|
/* find the next roll to interpolate as well */
|
|
if(rest)
|
|
Mat4MulMat4(difmat, next->bone->arm_mat, imat);
|
|
else
|
|
Mat4MulMat4(difmat, next->pose_mat, imat);
|
|
Mat3CpyMat4(result, difmat); // the desired rotation at beginning of next bone
|
|
|
|
vec_roll_to_mat3(h2, 0.0f, mat3); // the result of vec_roll without roll
|
|
|
|
Mat3Inv(imat3, mat3);
|
|
Mat3MulMat3(mat3, imat3, result); // the matrix transforming vec_roll to desired roll
|
|
|
|
roll2= atan2(mat3[2][0], mat3[2][2]);
|
|
|
|
/* and only now negate handle */
|
|
VecMulf(h2, -hlength2);
|
|
}
|
|
else {
|
|
h2[0]= 0.0f; h2[1]= -hlength2; h2[2]= 0.0f;
|
|
roll2= 0.0;
|
|
}
|
|
|
|
/* make curve */
|
|
if(bone->segments > MAX_BBONE_SUBDIV)
|
|
bone->segments= MAX_BBONE_SUBDIV;
|
|
|
|
forward_diff_bezier(0.0, h1[0], h2[0], 0.0, data[0], MAX_BBONE_SUBDIV, 4);
|
|
forward_diff_bezier(0.0, h1[1], length + h2[1], length, data[0]+1, MAX_BBONE_SUBDIV, 4);
|
|
forward_diff_bezier(0.0, h1[2], h2[2], 0.0, data[0]+2, MAX_BBONE_SUBDIV, 4);
|
|
forward_diff_bezier(roll1, roll1 + 0.390464f*(roll2-roll1), roll2 - 0.390464f*(roll2-roll1), roll2, data[0]+3, MAX_BBONE_SUBDIV, 4);
|
|
|
|
equalize_bezier(data[0], bone->segments); // note: does stride 4!
|
|
|
|
/* make transformation matrices for the segments for drawing */
|
|
for(a=0, fp= data[0]; a<bone->segments; a++, fp+=4) {
|
|
VecSubf(h1, fp+4, fp);
|
|
vec_roll_to_mat3(h1, fp[3], mat3); // fp[3] is roll
|
|
|
|
Mat4CpyMat3(result_array[a].mat, mat3);
|
|
VECCOPY(result_array[a].mat[3], fp);
|
|
|
|
if(doscale) {
|
|
/* correct for scaling when this matrix is used in scaled space */
|
|
Mat4MulSerie(result_array[a].mat, iscalemat, result_array[a].mat,
|
|
scalemat, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
return result_array;
|
|
}
|
|
|
|
/* ************ Armature Deform ******************* */
|
|
|
|
static void pchan_b_bone_defmats(bPoseChannel *pchan, int use_quaternion, int rest_def)
|
|
{
|
|
Bone *bone= pchan->bone;
|
|
Mat4 *b_bone= b_bone_spline_setup(pchan, 0);
|
|
Mat4 *b_bone_rest= (rest_def)? NULL: b_bone_spline_setup(pchan, 1);
|
|
Mat4 *b_bone_mats;
|
|
DualQuat *b_bone_dual_quats= NULL;
|
|
float tmat[4][4];
|
|
int a;
|
|
|
|
/* allocate b_bone matrices and dual quats */
|
|
b_bone_mats= MEM_mallocN((1+bone->segments)*sizeof(Mat4), "BBone defmats");
|
|
pchan->b_bone_mats= b_bone_mats;
|
|
|
|
if(use_quaternion) {
|
|
b_bone_dual_quats= MEM_mallocN((bone->segments)*sizeof(DualQuat), "BBone dqs");
|
|
pchan->b_bone_dual_quats= b_bone_dual_quats;
|
|
}
|
|
|
|
/* first matrix is the inverse arm_mat, to bring points in local bone space
|
|
for finding out which segment it belongs to */
|
|
Mat4Invert(b_bone_mats[0].mat, bone->arm_mat);
|
|
|
|
/* then we make the b_bone_mats:
|
|
- first transform to local bone space
|
|
- translate over the curve to the bbone mat space
|
|
- transform with b_bone matrix
|
|
- transform back into global space */
|
|
Mat4One(tmat);
|
|
|
|
for(a=0; a<bone->segments; a++) {
|
|
if(b_bone_rest)
|
|
Mat4Invert(tmat, b_bone_rest[a].mat);
|
|
else
|
|
tmat[3][1] = -a*(bone->length/(float)bone->segments);
|
|
|
|
Mat4MulSerie(b_bone_mats[a+1].mat, pchan->chan_mat, bone->arm_mat,
|
|
b_bone[a].mat, tmat, b_bone_mats[0].mat, NULL, NULL, NULL);
|
|
|
|
if(use_quaternion)
|
|
Mat4ToDQuat(bone->arm_mat, b_bone_mats[a+1].mat, &b_bone_dual_quats[a]);
|
|
}
|
|
}
|
|
|
|
static void b_bone_deform(bPoseChannel *pchan, Bone *bone, float *co, DualQuat *dq, float defmat[][3])
|
|
{
|
|
Mat4 *b_bone= pchan->b_bone_mats;
|
|
float (*mat)[4]= b_bone[0].mat;
|
|
float segment, y;
|
|
int a;
|
|
|
|
/* need to transform co back to bonespace, only need y */
|
|
y= mat[0][1]*co[0] + mat[1][1]*co[1] + mat[2][1]*co[2] + mat[3][1];
|
|
|
|
/* now calculate which of the b_bones are deforming this */
|
|
segment= bone->length/((float)bone->segments);
|
|
a= (int)(y/segment);
|
|
|
|
/* note; by clamping it extends deform at endpoints, goes best with
|
|
straight joints in restpos. */
|
|
CLAMP(a, 0, bone->segments-1);
|
|
|
|
if(dq) {
|
|
DQuatCpyDQuat(dq, &((DualQuat*)pchan->b_bone_dual_quats)[a]);
|
|
}
|
|
else {
|
|
Mat4MulVecfl(b_bone[a+1].mat, co);
|
|
|
|
if(defmat)
|
|
Mat3CpyMat4(defmat, b_bone[a+1].mat);
|
|
}
|
|
}
|
|
|
|
/* using vec with dist to bone b1 - b2 */
|
|
float distfactor_to_bone (float vec[3], float b1[3], float b2[3], float rad1, float rad2, float rdist)
|
|
{
|
|
float dist=0.0f;
|
|
float bdelta[3];
|
|
float pdelta[3];
|
|
float hsqr, a, l, rad;
|
|
|
|
VecSubf (bdelta, b2, b1);
|
|
l = Normalize (bdelta);
|
|
|
|
VecSubf (pdelta, vec, b1);
|
|
|
|
a = bdelta[0]*pdelta[0] + bdelta[1]*pdelta[1] + bdelta[2]*pdelta[2];
|
|
hsqr = ((pdelta[0]*pdelta[0]) + (pdelta[1]*pdelta[1]) + (pdelta[2]*pdelta[2]));
|
|
|
|
if (a < 0.0F){
|
|
/* If we're past the end of the bone, do a spherical field attenuation thing */
|
|
dist= ((b1[0]-vec[0])*(b1[0]-vec[0]) +(b1[1]-vec[1])*(b1[1]-vec[1]) +(b1[2]-vec[2])*(b1[2]-vec[2])) ;
|
|
rad= rad1;
|
|
}
|
|
else if (a > l){
|
|
/* If we're past the end of the bone, do a spherical field attenuation thing */
|
|
dist= ((b2[0]-vec[0])*(b2[0]-vec[0]) +(b2[1]-vec[1])*(b2[1]-vec[1]) +(b2[2]-vec[2])*(b2[2]-vec[2])) ;
|
|
rad= rad2;
|
|
}
|
|
else {
|
|
dist= (hsqr - (a*a));
|
|
|
|
if(l!=0.0f) {
|
|
rad= a/l;
|
|
rad= rad*rad2 + (1.0-rad)*rad1;
|
|
}
|
|
else rad= rad1;
|
|
}
|
|
|
|
a= rad*rad;
|
|
if(dist < a)
|
|
return 1.0f;
|
|
else {
|
|
l= rad+rdist;
|
|
l*= l;
|
|
if(rdist==0.0f || dist >= l)
|
|
return 0.0f;
|
|
else {
|
|
a= sqrt(dist)-rad;
|
|
return 1.0-( a*a )/( rdist*rdist );
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pchan_deform_mat_add(bPoseChannel *pchan, float weight, float bbonemat[][3], float mat[][3])
|
|
{
|
|
float wmat[3][3];
|
|
|
|
if(pchan->bone->segments>1)
|
|
Mat3CpyMat3(wmat, bbonemat);
|
|
else
|
|
Mat3CpyMat4(wmat, pchan->chan_mat);
|
|
|
|
Mat3MulFloat((float*)wmat, weight);
|
|
Mat3AddMat3(mat, mat, wmat);
|
|
}
|
|
|
|
static float dist_bone_deform(bPoseChannel *pchan, float *vec, DualQuat *dq, float mat[][3], float *co)
|
|
{
|
|
Bone *bone= pchan->bone;
|
|
float fac, contrib=0.0;
|
|
float cop[3], bbonemat[3][3];
|
|
DualQuat bbonedq;
|
|
|
|
if(bone==NULL) return 0.0f;
|
|
|
|
VECCOPY (cop, co);
|
|
|
|
fac= distfactor_to_bone(cop, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
|
|
|
|
if (fac>0.0) {
|
|
|
|
fac*=bone->weight;
|
|
contrib= fac;
|
|
if(contrib>0.0) {
|
|
if(vec) {
|
|
if(bone->segments>1)
|
|
// applies on cop and bbonemat
|
|
b_bone_deform(pchan, bone, cop, NULL, (mat)?bbonemat:NULL);
|
|
else
|
|
Mat4MulVecfl(pchan->chan_mat, cop);
|
|
|
|
// Make this a delta from the base position
|
|
VecSubf (cop, cop, co);
|
|
cop[0]*=fac; cop[1]*=fac; cop[2]*=fac;
|
|
VecAddf (vec, vec, cop);
|
|
|
|
if(mat)
|
|
pchan_deform_mat_add(pchan, fac, bbonemat, mat);
|
|
}
|
|
else {
|
|
if(bone->segments>1) {
|
|
b_bone_deform(pchan, bone, cop, &bbonedq, NULL);
|
|
DQuatAddWeighted(dq, &bbonedq, fac);
|
|
}
|
|
else
|
|
DQuatAddWeighted(dq, pchan->dual_quat, fac);
|
|
}
|
|
}
|
|
}
|
|
|
|
return contrib;
|
|
}
|
|
|
|
static void pchan_bone_deform(bPoseChannel *pchan, float weight, float *vec, DualQuat *dq, float mat[][3], float *co, float *contrib)
|
|
{
|
|
float cop[3], bbonemat[3][3];
|
|
DualQuat bbonedq;
|
|
|
|
if (!weight)
|
|
return;
|
|
|
|
VECCOPY(cop, co);
|
|
|
|
if(vec) {
|
|
if(pchan->bone->segments>1)
|
|
// applies on cop and bbonemat
|
|
b_bone_deform(pchan, pchan->bone, cop, NULL, (mat)?bbonemat:NULL);
|
|
else
|
|
Mat4MulVecfl(pchan->chan_mat, cop);
|
|
|
|
vec[0]+=(cop[0]-co[0])*weight;
|
|
vec[1]+=(cop[1]-co[1])*weight;
|
|
vec[2]+=(cop[2]-co[2])*weight;
|
|
|
|
if(mat)
|
|
pchan_deform_mat_add(pchan, weight, bbonemat, mat);
|
|
}
|
|
else {
|
|
if(pchan->bone->segments>1) {
|
|
b_bone_deform(pchan, pchan->bone, cop, &bbonedq, NULL);
|
|
DQuatAddWeighted(dq, &bbonedq, weight);
|
|
}
|
|
else
|
|
DQuatAddWeighted(dq, pchan->dual_quat, weight);
|
|
}
|
|
|
|
(*contrib)+=weight;
|
|
}
|
|
|
|
void armature_deform_verts(Object *armOb, Object *target, DerivedMesh *dm,
|
|
float (*vertexCos)[3], float (*defMats)[3][3],
|
|
int numVerts, int deformflag,
|
|
float (*prevCos)[3], const char *defgrp_name)
|
|
{
|
|
bPoseChannel *pchan, **defnrToPC = NULL;
|
|
MDeformVert *dverts = NULL;
|
|
bDeformGroup *dg;
|
|
DualQuat *dualquats= NULL;
|
|
float obinv[4][4], premat[4][4], postmat[4][4];
|
|
int use_envelope = deformflag & ARM_DEF_ENVELOPE;
|
|
int use_quaternion = deformflag & ARM_DEF_QUATERNION;
|
|
int bbone_rest_def = deformflag & ARM_DEF_B_BONE_REST;
|
|
int invert_vgroup= deformflag & ARM_DEF_INVERT_VGROUP;
|
|
int numGroups = 0; /* safety for vertexgroup index overflow */
|
|
int i, target_totvert = 0; /* safety for vertexgroup overflow */
|
|
int use_dverts = 0;
|
|
int armature_def_nr = -1;
|
|
int totchan;
|
|
|
|
if(armOb == G.obedit) return;
|
|
|
|
Mat4Invert(obinv, target->obmat);
|
|
Mat4CpyMat4(premat, target->obmat);
|
|
Mat4MulMat4(postmat, armOb->obmat, obinv);
|
|
Mat4Invert(premat, postmat);
|
|
|
|
/* bone defmats are already in the channels, chan_mat */
|
|
|
|
/* initialize B_bone matrices and dual quaternions */
|
|
if(use_quaternion) {
|
|
totchan= BLI_countlist(&armOb->pose->chanbase);
|
|
dualquats= MEM_callocN(sizeof(DualQuat)*totchan, "dualquats");
|
|
}
|
|
|
|
totchan= 0;
|
|
for(pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next) {
|
|
if(!(pchan->bone->flag & BONE_NO_DEFORM)) {
|
|
if(pchan->bone->segments > 1)
|
|
pchan_b_bone_defmats(pchan, use_quaternion, bbone_rest_def);
|
|
|
|
if(use_quaternion) {
|
|
pchan->dual_quat= &dualquats[totchan++];
|
|
Mat4ToDQuat(pchan->bone->arm_mat, pchan->chan_mat, pchan->dual_quat);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* get the def_nr for the overall armature vertex group if present */
|
|
for(i = 0, dg = target->defbase.first; dg; i++, dg = dg->next)
|
|
if(defgrp_name && strcmp(defgrp_name, dg->name) == 0)
|
|
armature_def_nr = i;
|
|
|
|
/* get a vertex-deform-index to posechannel array */
|
|
if(deformflag & ARM_DEF_VGROUP) {
|
|
if(ELEM(target->type, OB_MESH, OB_LATTICE)) {
|
|
numGroups = BLI_countlist(&target->defbase);
|
|
|
|
if(target->type==OB_MESH) {
|
|
Mesh *me= target->data;
|
|
dverts = me->dvert;
|
|
target_totvert = me->totvert;
|
|
}
|
|
else {
|
|
Lattice *lt= target->data;
|
|
dverts = lt->dvert;
|
|
if(dverts)
|
|
target_totvert = lt->pntsu*lt->pntsv*lt->pntsw;
|
|
}
|
|
/* if we have a DerivedMesh, only use dverts if it has them */
|
|
if(dm)
|
|
if(dm->getVertData(dm, 0, CD_MDEFORMVERT))
|
|
use_dverts = 1;
|
|
else use_dverts = 0;
|
|
else if(dverts) use_dverts = 1;
|
|
|
|
if(use_dverts) {
|
|
defnrToPC = MEM_callocN(sizeof(*defnrToPC) * numGroups,
|
|
"defnrToBone");
|
|
for(i = 0, dg = target->defbase.first; dg;
|
|
i++, dg = dg->next) {
|
|
defnrToPC[i] = get_pose_channel(armOb->pose, dg->name);
|
|
/* exclude non-deforming bones */
|
|
if(defnrToPC[i]) {
|
|
if(defnrToPC[i]->bone->flag & BONE_NO_DEFORM)
|
|
defnrToPC[i]= NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for(i = 0; i < numVerts; i++) {
|
|
MDeformVert *dvert;
|
|
DualQuat sumdq, *dq = NULL;
|
|
float *co, dco[3];
|
|
float sumvec[3], summat[3][3];
|
|
float *vec = NULL, (*smat)[3] = NULL;
|
|
float contrib = 0.0f;
|
|
float armature_weight = 1.0f; /* default to 1 if no overall def group */
|
|
float prevco_weight = 1.0f; /* weight for optional cached vertexcos */
|
|
int j;
|
|
|
|
if(use_quaternion) {
|
|
memset(&sumdq, 0, sizeof(DualQuat));
|
|
dq= &sumdq;
|
|
}
|
|
else {
|
|
sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
|
|
vec= sumvec;
|
|
|
|
if(defMats) {
|
|
Mat3Clr((float*)summat);
|
|
smat = summat;
|
|
}
|
|
}
|
|
|
|
if(use_dverts || armature_def_nr >= 0) {
|
|
if(dm) dvert = dm->getVertData(dm, i, CD_MDEFORMVERT);
|
|
else if(dverts && i < target_totvert) dvert = dverts + i;
|
|
else dvert = NULL;
|
|
} else
|
|
dvert = NULL;
|
|
|
|
if(armature_def_nr >= 0 && dvert) {
|
|
armature_weight = 0.0f; /* a def group was given, so default to 0 */
|
|
for(j = 0; j < dvert->totweight; j++) {
|
|
if(dvert->dw[j].def_nr == armature_def_nr) {
|
|
armature_weight = dvert->dw[j].weight;
|
|
break;
|
|
}
|
|
}
|
|
/* hackish: the blending factor can be used for blending with prevCos too */
|
|
if(prevCos) {
|
|
if(invert_vgroup)
|
|
prevco_weight= 1.0f-armature_weight;
|
|
else
|
|
prevco_weight= armature_weight;
|
|
armature_weight= 1.0f;
|
|
}
|
|
}
|
|
|
|
/* check if there's any point in calculating for this vert */
|
|
if(armature_weight == 0.0f) continue;
|
|
|
|
/* get the coord we work on */
|
|
co= prevCos?prevCos[i]:vertexCos[i];
|
|
|
|
/* Apply the object's matrix */
|
|
Mat4MulVecfl(premat, co);
|
|
|
|
if(use_dverts && dvert && dvert->totweight) { // use weight groups ?
|
|
int deformed = 0;
|
|
|
|
for(j = 0; j < dvert->totweight; j++){
|
|
int index = dvert->dw[j].def_nr;
|
|
pchan = index < numGroups?defnrToPC[index]:NULL;
|
|
if(pchan) {
|
|
float weight = dvert->dw[j].weight;
|
|
Bone *bone = pchan->bone;
|
|
|
|
deformed = 1;
|
|
|
|
if(bone && bone->flag & BONE_MULT_VG_ENV) {
|
|
weight *= distfactor_to_bone(co, bone->arm_head,
|
|
bone->arm_tail,
|
|
bone->rad_head,
|
|
bone->rad_tail,
|
|
bone->dist);
|
|
}
|
|
pchan_bone_deform(pchan, weight, vec, dq, smat, co, &contrib);
|
|
}
|
|
}
|
|
/* if there are vertexgroups but not groups with bones
|
|
* (like for softbody groups)
|
|
*/
|
|
if(deformed == 0 && use_envelope) {
|
|
for(pchan = armOb->pose->chanbase.first; pchan;
|
|
pchan = pchan->next) {
|
|
if(!(pchan->bone->flag & BONE_NO_DEFORM))
|
|
contrib += dist_bone_deform(pchan, vec, dq, smat, co);
|
|
}
|
|
}
|
|
}
|
|
else if(use_envelope) {
|
|
for(pchan = armOb->pose->chanbase.first; pchan;
|
|
pchan = pchan->next) {
|
|
if(!(pchan->bone->flag & BONE_NO_DEFORM))
|
|
contrib += dist_bone_deform(pchan, vec, dq, smat, co);
|
|
}
|
|
}
|
|
|
|
/* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
|
|
if(contrib > 0.0001f) {
|
|
if(use_quaternion) {
|
|
DQuatNormalize(dq, contrib);
|
|
|
|
if(armature_weight != 1.0f) {
|
|
VECCOPY(dco, co);
|
|
DQuatMulVecfl(dq, dco, (defMats)? summat: NULL);
|
|
VecSubf(dco, dco, co);
|
|
VecMulf(dco, armature_weight);
|
|
VecAddf(co, co, dco);
|
|
}
|
|
else
|
|
DQuatMulVecfl(dq, co, (defMats)? summat: NULL);
|
|
|
|
smat = summat;
|
|
}
|
|
else {
|
|
VecMulf(vec, armature_weight/contrib);
|
|
VecAddf(co, vec, co);
|
|
}
|
|
|
|
if(defMats) {
|
|
float pre[3][3], post[3][3], tmpmat[3][3];
|
|
|
|
Mat3CpyMat4(pre, premat);
|
|
Mat3CpyMat4(post, postmat);
|
|
Mat3CpyMat3(tmpmat, defMats[i]);
|
|
|
|
if(!use_quaternion) /* quaternion already is scale corrected */
|
|
Mat3MulFloat((float*)smat, armature_weight/contrib);
|
|
|
|
Mat3MulSerie(defMats[i], tmpmat, pre, smat, post,
|
|
NULL, NULL, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
/* always, check above code */
|
|
Mat4MulVecfl(postmat, co);
|
|
|
|
|
|
/* interpolate with previous modifier position using weight group */
|
|
if(prevCos) {
|
|
float mw= 1.0f - prevco_weight;
|
|
vertexCos[i][0]= prevco_weight*vertexCos[i][0] + mw*co[0];
|
|
vertexCos[i][1]= prevco_weight*vertexCos[i][1] + mw*co[1];
|
|
vertexCos[i][2]= prevco_weight*vertexCos[i][2] + mw*co[2];
|
|
}
|
|
}
|
|
|
|
if(dualquats) MEM_freeN(dualquats);
|
|
if(defnrToPC) MEM_freeN(defnrToPC);
|
|
|
|
/* free B_bone matrices */
|
|
for(pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next) {
|
|
if(pchan->b_bone_mats) {
|
|
MEM_freeN(pchan->b_bone_mats);
|
|
pchan->b_bone_mats = NULL;
|
|
}
|
|
if(pchan->b_bone_dual_quats) {
|
|
MEM_freeN(pchan->b_bone_dual_quats);
|
|
pchan->b_bone_dual_quats = NULL;
|
|
}
|
|
|
|
pchan->dual_quat = NULL;
|
|
}
|
|
}
|
|
|
|
/* ************ END Armature Deform ******************* */
|
|
|
|
void get_objectspace_bone_matrix (struct Bone* bone, float M_accumulatedMatrix[][4], int root, int posed)
|
|
{
|
|
Mat4CpyMat4(M_accumulatedMatrix, bone->arm_mat);
|
|
}
|
|
|
|
/* **************** Space to Space API ****************** */
|
|
|
|
/* Convert World-Space Matrix to Pose-Space Matrix */
|
|
void armature_mat_world_to_pose(Object *ob, float inmat[][4], float outmat[][4])
|
|
{
|
|
float obmat[4][4];
|
|
|
|
/* prevent crashes */
|
|
if (ob==NULL) return;
|
|
|
|
/* get inverse of (armature) object's matrix */
|
|
Mat4Invert(obmat, ob->obmat);
|
|
|
|
/* multiply given matrix by object's-inverse to find pose-space matrix */
|
|
Mat4MulMat4(outmat, obmat, inmat);
|
|
}
|
|
|
|
/* Convert Wolrd-Space Location to Pose-Space Location
|
|
* NOTE: this cannot be used to convert to pose-space location of the supplied
|
|
* pose-channel into its local space (i.e. 'visual'-keyframing)
|
|
*/
|
|
void armature_loc_world_to_pose(Object *ob, float *inloc, float *outloc)
|
|
{
|
|
float xLocMat[4][4];
|
|
float nLocMat[4][4];
|
|
|
|
/* build matrix for location */
|
|
Mat4One(xLocMat);
|
|
VECCOPY(xLocMat[3], inloc);
|
|
|
|
/* get bone-space cursor matrix and extract location */
|
|
armature_mat_world_to_pose(ob, xLocMat, nLocMat);
|
|
VECCOPY(outloc, nLocMat[3]);
|
|
}
|
|
|
|
/* Convert Pose-Space Matrix to Bone-Space Matrix
|
|
* NOTE: this cannot be used to convert to pose-space transforms of the supplied
|
|
* pose-channel into its local space (i.e. 'visual'-keyframing)
|
|
*/
|
|
void armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[][4], float outmat[][4])
|
|
{
|
|
float pc_trans[4][4], inv_trans[4][4];
|
|
float pc_posemat[4][4], inv_posemat[4][4];
|
|
|
|
/* paranoia: prevent crashes with no pose-channel supplied */
|
|
if (pchan==NULL) return;
|
|
|
|
/* get the inverse matrix of the pchan's transforms */
|
|
LocQuatSizeToMat4(pc_trans, pchan->loc, pchan->quat, pchan->size);
|
|
Mat4Invert(inv_trans, pc_trans);
|
|
|
|
/* Remove the pchan's transforms from it's pose_mat.
|
|
* This should leave behind the effects of restpose +
|
|
* parenting + constraints
|
|
*/
|
|
Mat4MulMat4(pc_posemat, inv_trans, pchan->pose_mat);
|
|
|
|
/* get the inverse of the leftovers so that we can remove
|
|
* that component from the supplied matrix
|
|
*/
|
|
Mat4Invert(inv_posemat, pc_posemat);
|
|
|
|
/* get the new matrix */
|
|
Mat4MulMat4(outmat, inmat, inv_posemat);
|
|
}
|
|
|
|
/* Convert Pose-Space Location to Bone-Space Location
|
|
* NOTE: this cannot be used to convert to pose-space location of the supplied
|
|
* pose-channel into its local space (i.e. 'visual'-keyframing)
|
|
*/
|
|
void armature_loc_pose_to_bone(bPoseChannel *pchan, float *inloc, float *outloc)
|
|
{
|
|
float xLocMat[4][4];
|
|
float nLocMat[4][4];
|
|
|
|
/* build matrix for location */
|
|
Mat4One(xLocMat);
|
|
VECCOPY(xLocMat[3], inloc);
|
|
|
|
/* get bone-space cursor matrix and extract location */
|
|
armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
|
|
VECCOPY(outloc, nLocMat[3]);
|
|
}
|
|
|
|
/* Remove rest-position effects from pose-transform for obtaining
|
|
* 'visual' transformation of pose-channel.
|
|
* (used by the Visual-Keyframing stuff)
|
|
*/
|
|
void armature_mat_pose_to_delta(float delta_mat[][4], float pose_mat[][4], float arm_mat[][4])
|
|
{
|
|
float imat[4][4];
|
|
|
|
Mat4Invert(imat, arm_mat);
|
|
Mat4MulMat4(delta_mat, pose_mat, imat);
|
|
}
|
|
|
|
|
|
/* **************** The new & simple (but OK!) armature evaluation ********* */
|
|
|
|
/* ****************** And how it works! ****************************************
|
|
|
|
This is the bone transformation trick; they're hierarchical so each bone(b)
|
|
is in the coord system of bone(b-1):
|
|
|
|
arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
|
|
|
|
-> yoffs is just the y axis translation in parent's coord system
|
|
-> d_root is the translation of the bone root, also in parent's coord system
|
|
|
|
pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
|
|
|
|
we then - in init deform - store the deform in chan_mat, such that:
|
|
|
|
pose_mat(b)= arm_mat(b) * chan_mat(b)
|
|
|
|
*************************************************************************** */
|
|
/* Computes vector and roll based on a rotation. "mat" must
|
|
contain only a rotation, and no scaling. */
|
|
void mat3_to_vec_roll(float mat[][3], float *vec, float *roll)
|
|
{
|
|
if (vec)
|
|
VecCopyf(vec, mat[1]);
|
|
|
|
if (roll) {
|
|
float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];
|
|
|
|
vec_roll_to_mat3(mat[1], 0.0f, vecmat);
|
|
Mat3Inv(vecmatinv, vecmat);
|
|
Mat3MulMat3(rollmat, vecmatinv, mat);
|
|
|
|
*roll= atan2(rollmat[2][0], rollmat[2][2]);
|
|
}
|
|
}
|
|
|
|
/* Calculates the rest matrix of a bone based
|
|
On its vector and a roll around that vector */
|
|
void vec_roll_to_mat3(float *vec, float roll, float mat[][3])
|
|
{
|
|
float nor[3], axis[3], target[3]={0,1,0};
|
|
float theta;
|
|
float rMatrix[3][3], bMatrix[3][3];
|
|
|
|
VECCOPY (nor, vec);
|
|
Normalize (nor);
|
|
|
|
/* Find Axis & Amount for bone matrix*/
|
|
Crossf (axis,target,nor);
|
|
|
|
if (Inpf(axis,axis) > 0.0000000000001) {
|
|
/* if nor is *not* a multiple of target ... */
|
|
Normalize (axis);
|
|
|
|
theta= NormalizedVecAngle2(target, nor);
|
|
|
|
/* Make Bone matrix*/
|
|
VecRotToMat3(axis, theta, bMatrix);
|
|
}
|
|
else {
|
|
/* if nor is a multiple of target ... */
|
|
float updown;
|
|
|
|
/* point same direction, or opposite? */
|
|
updown = ( Inpf (target,nor) > 0 ) ? 1.0 : -1.0;
|
|
|
|
/* I think this should work ... */
|
|
bMatrix[0][0]=updown; bMatrix[0][1]=0.0; bMatrix[0][2]=0.0;
|
|
bMatrix[1][0]=0.0; bMatrix[1][1]=updown; bMatrix[1][2]=0.0;
|
|
bMatrix[2][0]=0.0; bMatrix[2][1]=0.0; bMatrix[2][2]=1.0;
|
|
}
|
|
|
|
/* Make Roll matrix*/
|
|
VecRotToMat3(nor, roll, rMatrix);
|
|
|
|
/* Combine and output result*/
|
|
Mat3MulMat3 (mat, rMatrix, bMatrix);
|
|
}
|
|
|
|
|
|
/* recursive part, calculates restposition of entire tree of children */
|
|
/* used by exiting editmode too */
|
|
void where_is_armature_bone(Bone *bone, Bone *prevbone)
|
|
{
|
|
float vec[3];
|
|
|
|
/* Bone Space */
|
|
VecSubf (vec, bone->tail, bone->head);
|
|
vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
|
|
|
|
bone->length= VecLenf(bone->head, bone->tail);
|
|
|
|
/* this is called on old file reading too... */
|
|
if(bone->xwidth==0.0) {
|
|
bone->xwidth= 0.1f;
|
|
bone->zwidth= 0.1f;
|
|
bone->segments= 1;
|
|
}
|
|
|
|
if(prevbone) {
|
|
float offs_bone[4][4]; // yoffs(b-1) + root(b) + bonemat(b)
|
|
|
|
/* bone transform itself */
|
|
Mat4CpyMat3(offs_bone, bone->bone_mat);
|
|
|
|
/* The bone's root offset (is in the parent's coordinate system) */
|
|
VECCOPY(offs_bone[3], bone->head);
|
|
|
|
/* Get the length translation of parent (length along y axis) */
|
|
offs_bone[3][1]+= prevbone->length;
|
|
|
|
/* Compose the matrix for this bone */
|
|
Mat4MulMat4(bone->arm_mat, offs_bone, prevbone->arm_mat);
|
|
}
|
|
else {
|
|
Mat4CpyMat3(bone->arm_mat, bone->bone_mat);
|
|
VECCOPY(bone->arm_mat[3], bone->head);
|
|
}
|
|
|
|
/* head */
|
|
VECCOPY(bone->arm_head, bone->arm_mat[3]);
|
|
/* tail is in current local coord system */
|
|
VECCOPY(vec, bone->arm_mat[1]);
|
|
VecMulf(vec, bone->length);
|
|
VecAddf(bone->arm_tail, bone->arm_head, vec);
|
|
|
|
/* and the kiddies */
|
|
prevbone= bone;
|
|
for(bone= bone->childbase.first; bone; bone= bone->next) {
|
|
where_is_armature_bone(bone, prevbone);
|
|
}
|
|
}
|
|
|
|
/* updates vectors and matrices on rest-position level, only needed
|
|
after editing armature itself, now only on reading file */
|
|
void where_is_armature (bArmature *arm)
|
|
{
|
|
Bone *bone;
|
|
|
|
/* hierarchical from root to children */
|
|
for(bone= arm->bonebase.first; bone; bone= bone->next) {
|
|
where_is_armature_bone(bone, NULL);
|
|
}
|
|
}
|
|
|
|
/* if bone layer is protected, copy the data from from->pose */
|
|
static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
|
|
{
|
|
bPose *pose= ob->pose, *frompose= from->pose;
|
|
bPoseChannel *pchan, *pchanp, pchanw;
|
|
bConstraint *con;
|
|
|
|
if (frompose==NULL) return;
|
|
|
|
/* exception, armature local layer should be proxied too */
|
|
if (pose->proxy_layer)
|
|
((bArmature *)ob->data)->layer= pose->proxy_layer;
|
|
|
|
/* clear all transformation values from library */
|
|
rest_pose(frompose);
|
|
|
|
/* copy over all of the proxy's bone groups */
|
|
/* TODO for later - implement 'local' bone groups as for constraints
|
|
* Note: this isn't trivial, as bones reference groups by index not by pointer,
|
|
* so syncing things correctly needs careful attention
|
|
*/
|
|
BLI_freelistN(&pose->agroups);
|
|
duplicatelist(&pose->agroups, &frompose->agroups);
|
|
pose->active_group= frompose->active_group;
|
|
|
|
for (pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
if (pchan->bone->layer & layer_protected) {
|
|
ListBase proxylocal_constraints = {NULL, NULL};
|
|
pchanp= get_pose_channel(frompose, pchan->name);
|
|
|
|
/* copy posechannel to temp, but restore important pointers */
|
|
pchanw= *pchanp;
|
|
pchanw.prev= pchan->prev;
|
|
pchanw.next= pchan->next;
|
|
pchanw.parent= pchan->parent;
|
|
pchanw.child= pchan->child;
|
|
pchanw.path= NULL;
|
|
|
|
/* constraints - proxy constraints are flushed... local ones are added after
|
|
* 1. extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints
|
|
* 2. copy proxy-pchan's constraints on-to new
|
|
* 3. add extracted local constraints back on top
|
|
*/
|
|
extract_proxylocal_constraints(&proxylocal_constraints, &pchan->constraints);
|
|
copy_constraints(&pchanw.constraints, &pchanp->constraints);
|
|
addlisttolist(&pchanw.constraints, &proxylocal_constraints);
|
|
|
|
/* constraints - set target ob pointer to own object */
|
|
for (con= pchanw.constraints.first; con; con= con->next) {
|
|
bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
|
|
ListBase targets = {NULL, NULL};
|
|
bConstraintTarget *ct;
|
|
|
|
if (cti && cti->get_constraint_targets) {
|
|
cti->get_constraint_targets(con, &targets);
|
|
|
|
for (ct= targets.first; ct; ct= ct->next) {
|
|
if (ct->tar == from)
|
|
ct->tar = ob;
|
|
}
|
|
|
|
if (cti->flush_constraint_targets)
|
|
cti->flush_constraint_targets(con, &targets, 0);
|
|
}
|
|
}
|
|
|
|
/* free stuff from current channel */
|
|
if (pchan->path) MEM_freeN(pchan->path);
|
|
free_constraints(&pchan->constraints);
|
|
|
|
/* the final copy */
|
|
*pchan= pchanw;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
|
|
{
|
|
bPoseChannel *pchan = verify_pose_channel (pose, bone->name); // verify checks and/or adds
|
|
|
|
pchan->bone= bone;
|
|
pchan->parent= parchan;
|
|
|
|
counter++;
|
|
|
|
for(bone= bone->childbase.first; bone; bone= bone->next) {
|
|
counter= rebuild_pose_bone(pose, bone, pchan, counter);
|
|
/* for quick detecting of next bone in chain, only b-bone uses it now */
|
|
if(bone->flag & BONE_CONNECTED)
|
|
pchan->child= get_pose_channel(pose, bone->name);
|
|
}
|
|
|
|
return counter;
|
|
}
|
|
|
|
/* only after leave editmode, duplicating, validating older files, library syncing */
|
|
/* NOTE: pose->flag is set for it */
|
|
void armature_rebuild_pose(Object *ob, bArmature *arm)
|
|
{
|
|
Bone *bone;
|
|
bPose *pose;
|
|
bPoseChannel *pchan, *next;
|
|
int counter=0;
|
|
|
|
/* only done here */
|
|
if(ob->pose==NULL) ob->pose= MEM_callocN(sizeof(bPose), "new pose");
|
|
pose= ob->pose;
|
|
|
|
/* clear */
|
|
for(pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
pchan->bone= NULL;
|
|
pchan->child= NULL;
|
|
}
|
|
|
|
/* first step, check if all channels are there */
|
|
for(bone= arm->bonebase.first; bone; bone= bone->next) {
|
|
counter= rebuild_pose_bone(pose, bone, NULL, counter);
|
|
}
|
|
|
|
/* and a check for garbage */
|
|
for(pchan= pose->chanbase.first; pchan; pchan= next) {
|
|
next= pchan->next;
|
|
if(pchan->bone==NULL) {
|
|
if(pchan->path)
|
|
MEM_freeN(pchan->path);
|
|
free_constraints(&pchan->constraints);
|
|
BLI_freelinkN(&pose->chanbase, pchan);
|
|
}
|
|
}
|
|
// printf("rebuild pose %s, %d bones\n", ob->id.name, counter);
|
|
|
|
/* synchronize protected layers with proxy */
|
|
if(ob->proxy)
|
|
pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
|
|
|
|
update_pose_constraint_flags(ob->pose); // for IK detection for example
|
|
|
|
/* the sorting */
|
|
if(counter>1)
|
|
DAG_pose_sort(ob);
|
|
|
|
ob->pose->flag &= ~POSE_RECALC;
|
|
}
|
|
|
|
|
|
/* ********************** THE IK SOLVER ******************* */
|
|
|
|
|
|
|
|
/* allocates PoseTree, and links that to root bone/channel */
|
|
/* Note: detecting the IK chain is duplicate code... in drawarmature.c and in transform_conversions.c */
|
|
static void initialize_posetree(struct Object *ob, bPoseChannel *pchan_tip)
|
|
{
|
|
bPoseChannel *curchan, *pchan_root=NULL, *chanlist[256], **oldchan;
|
|
PoseTree *tree;
|
|
PoseTarget *target;
|
|
bConstraint *con;
|
|
bKinematicConstraint *data;
|
|
int a, segcount= 0, size, newsize, *oldparent, parent;
|
|
|
|
/* find IK constraint, and validate it */
|
|
for(con= pchan_tip->constraints.first; con; con= con->next) {
|
|
if(con->type==CONSTRAINT_TYPE_KINEMATIC) {
|
|
data=(bKinematicConstraint*)con->data;
|
|
if (data->flag & CONSTRAINT_IK_AUTO) break;
|
|
if (data->tar==NULL) continue;
|
|
if (data->tar->type==OB_ARMATURE && data->subtarget[0]==0) continue;
|
|
if ((con->flag & CONSTRAINT_DISABLE)==0 && (con->enforce!=0.0)) break;
|
|
}
|
|
}
|
|
if(con==NULL) return;
|
|
|
|
/* exclude tip from chain? */
|
|
if(!(data->flag & CONSTRAINT_IK_TIP))
|
|
pchan_tip= pchan_tip->parent;
|
|
|
|
/* Find the chain's root & count the segments needed */
|
|
for (curchan = pchan_tip; curchan; curchan=curchan->parent){
|
|
pchan_root = curchan;
|
|
|
|
curchan->flag |= POSE_CHAIN; // don't forget to clear this
|
|
chanlist[segcount]=curchan;
|
|
segcount++;
|
|
|
|
if(segcount==data->rootbone || segcount>255) break; // 255 is weak
|
|
}
|
|
if (!segcount) return;
|
|
|
|
/* setup the chain data */
|
|
|
|
/* we make tree-IK, unless all existing targets are in this chain */
|
|
for(tree= pchan_root->iktree.first; tree; tree= tree->next) {
|
|
for(target= tree->targets.first; target; target= target->next) {
|
|
curchan= tree->pchan[target->tip];
|
|
if(curchan->flag & POSE_CHAIN)
|
|
curchan->flag &= ~POSE_CHAIN;
|
|
else
|
|
break;
|
|
}
|
|
if(target) break;
|
|
}
|
|
|
|
/* create a target */
|
|
target= MEM_callocN(sizeof(PoseTarget), "posetarget");
|
|
target->con= con;
|
|
pchan_tip->flag &= ~POSE_CHAIN;
|
|
|
|
if(tree==NULL) {
|
|
/* make new tree */
|
|
tree= MEM_callocN(sizeof(PoseTree), "posetree");
|
|
|
|
tree->iterations= data->iterations;
|
|
tree->totchannel= segcount;
|
|
tree->stretch = (data->flag & CONSTRAINT_IK_STRETCH);
|
|
|
|
tree->pchan= MEM_callocN(segcount*sizeof(void*), "ik tree pchan");
|
|
tree->parent= MEM_callocN(segcount*sizeof(int), "ik tree parent");
|
|
for(a=0; a<segcount; a++) {
|
|
tree->pchan[a]= chanlist[segcount-a-1];
|
|
tree->parent[a]= a-1;
|
|
}
|
|
target->tip= segcount-1;
|
|
|
|
/* AND! link the tree to the root */
|
|
BLI_addtail(&pchan_root->iktree, tree);
|
|
}
|
|
else {
|
|
tree->iterations= MAX2(data->iterations, tree->iterations);
|
|
tree->stretch= tree->stretch && !(data->flag & CONSTRAINT_IK_STRETCH);
|
|
|
|
/* skip common pose channels and add remaining*/
|
|
size= MIN2(segcount, tree->totchannel);
|
|
for(a=0; a<size && tree->pchan[a]==chanlist[segcount-a-1]; a++);
|
|
parent= a-1;
|
|
|
|
segcount= segcount-a;
|
|
target->tip= tree->totchannel + segcount - 1;
|
|
|
|
if (segcount > 0) {
|
|
/* resize array */
|
|
newsize= tree->totchannel + segcount;
|
|
oldchan= tree->pchan;
|
|
oldparent= tree->parent;
|
|
|
|
tree->pchan= MEM_callocN(newsize*sizeof(void*), "ik tree pchan");
|
|
tree->parent= MEM_callocN(newsize*sizeof(int), "ik tree parent");
|
|
memcpy(tree->pchan, oldchan, sizeof(void*)*tree->totchannel);
|
|
memcpy(tree->parent, oldparent, sizeof(int)*tree->totchannel);
|
|
MEM_freeN(oldchan);
|
|
MEM_freeN(oldparent);
|
|
|
|
/* add new pose channels at the end, in reverse order */
|
|
for(a=0; a<segcount; a++) {
|
|
tree->pchan[tree->totchannel+a]= chanlist[segcount-a-1];
|
|
tree->parent[tree->totchannel+a]= tree->totchannel+a-1;
|
|
}
|
|
tree->parent[tree->totchannel]= parent;
|
|
|
|
tree->totchannel= newsize;
|
|
}
|
|
|
|
/* move tree to end of list, for correct evaluation order */
|
|
BLI_remlink(&pchan_root->iktree, tree);
|
|
BLI_addtail(&pchan_root->iktree, tree);
|
|
}
|
|
|
|
/* add target to the tree */
|
|
BLI_addtail(&tree->targets, target);
|
|
}
|
|
|
|
/* called from within the core where_is_pose loop, all animsystems and constraints
|
|
were executed & assigned. Now as last we do an IK pass */
|
|
static void execute_posetree(Object *ob, PoseTree *tree)
|
|
{
|
|
float R_parmat[3][3], identity[3][3];
|
|
float iR_parmat[3][3];
|
|
float R_bonemat[3][3];
|
|
float goalrot[3][3], goalpos[3];
|
|
float rootmat[4][4], imat[4][4];
|
|
float goal[4][4], goalinv[4][4];
|
|
float irest_basis[3][3], full_basis[3][3];
|
|
float end_pose[4][4], world_pose[4][4];
|
|
float length, basis[3][3], rest_basis[3][3], start[3], *ikstretch=NULL;
|
|
float resultinf=0.0f;
|
|
int a, flag, hasstretch=0, resultblend=0;
|
|
bPoseChannel *pchan;
|
|
IK_Segment *seg, *parent, **iktree, *iktarget;
|
|
IK_Solver *solver;
|
|
PoseTarget *target;
|
|
bKinematicConstraint *data, *poleangledata=NULL;
|
|
Bone *bone;
|
|
|
|
if (tree->totchannel == 0)
|
|
return;
|
|
|
|
iktree= MEM_mallocN(sizeof(void*)*tree->totchannel, "ik tree");
|
|
|
|
for(a=0; a<tree->totchannel; a++) {
|
|
pchan= tree->pchan[a];
|
|
bone= pchan->bone;
|
|
|
|
/* set DoF flag */
|
|
flag= 0;
|
|
if(!(pchan->ikflag & BONE_IK_NO_XDOF) && !(pchan->ikflag & BONE_IK_NO_XDOF_TEMP))
|
|
flag |= IK_XDOF;
|
|
if(!(pchan->ikflag & BONE_IK_NO_YDOF) && !(pchan->ikflag & BONE_IK_NO_YDOF_TEMP))
|
|
flag |= IK_YDOF;
|
|
if(!(pchan->ikflag & BONE_IK_NO_ZDOF) && !(pchan->ikflag & BONE_IK_NO_ZDOF_TEMP))
|
|
flag |= IK_ZDOF;
|
|
|
|
if(tree->stretch && (pchan->ikstretch > 0.0)) {
|
|
flag |= IK_TRANS_YDOF;
|
|
hasstretch = 1;
|
|
}
|
|
|
|
seg= iktree[a]= IK_CreateSegment(flag);
|
|
|
|
/* find parent */
|
|
if(a == 0)
|
|
parent= NULL;
|
|
else
|
|
parent= iktree[tree->parent[a]];
|
|
|
|
IK_SetParent(seg, parent);
|
|
|
|
/* get the matrix that transforms from prevbone into this bone */
|
|
Mat3CpyMat4(R_bonemat, pchan->pose_mat);
|
|
|
|
/* gather transformations for this IK segment */
|
|
|
|
if (pchan->parent)
|
|
Mat3CpyMat4(R_parmat, pchan->parent->pose_mat);
|
|
else
|
|
Mat3One(R_parmat);
|
|
|
|
/* bone offset */
|
|
if (pchan->parent && (a > 0))
|
|
VecSubf(start, pchan->pose_head, pchan->parent->pose_tail);
|
|
else
|
|
/* only root bone (a = 0) has no parent */
|
|
start[0]= start[1]= start[2]= 0.0f;
|
|
|
|
/* change length based on bone size */
|
|
length= bone->length*VecLength(R_bonemat[1]);
|
|
|
|
/* compute rest basis and its inverse */
|
|
Mat3CpyMat3(rest_basis, bone->bone_mat);
|
|
Mat3CpyMat3(irest_basis, bone->bone_mat);
|
|
Mat3Transp(irest_basis);
|
|
|
|
/* compute basis with rest_basis removed */
|
|
Mat3Inv(iR_parmat, R_parmat);
|
|
Mat3MulMat3(full_basis, iR_parmat, R_bonemat);
|
|
Mat3MulMat3(basis, irest_basis, full_basis);
|
|
|
|
/* basis must be pure rotation */
|
|
Mat3Ortho(basis);
|
|
|
|
/* transform offset into local bone space */
|
|
Mat3Ortho(iR_parmat);
|
|
Mat3MulVecfl(iR_parmat, start);
|
|
|
|
IK_SetTransform(seg, start, rest_basis, basis, length);
|
|
|
|
if (pchan->ikflag & BONE_IK_XLIMIT)
|
|
IK_SetLimit(seg, IK_X, pchan->limitmin[0], pchan->limitmax[0]);
|
|
if (pchan->ikflag & BONE_IK_YLIMIT)
|
|
IK_SetLimit(seg, IK_Y, pchan->limitmin[1], pchan->limitmax[1]);
|
|
if (pchan->ikflag & BONE_IK_ZLIMIT)
|
|
IK_SetLimit(seg, IK_Z, pchan->limitmin[2], pchan->limitmax[2]);
|
|
|
|
IK_SetStiffness(seg, IK_X, pchan->stiffness[0]);
|
|
IK_SetStiffness(seg, IK_Y, pchan->stiffness[1]);
|
|
IK_SetStiffness(seg, IK_Z, pchan->stiffness[2]);
|
|
|
|
if(tree->stretch && (pchan->ikstretch > 0.0)) {
|
|
float ikstretch = pchan->ikstretch*pchan->ikstretch;
|
|
IK_SetStiffness(seg, IK_TRANS_Y, MIN2(1.0-ikstretch, 0.99));
|
|
IK_SetLimit(seg, IK_TRANS_Y, 0.001, 1e10);
|
|
}
|
|
}
|
|
|
|
solver= IK_CreateSolver(iktree[0]);
|
|
|
|
/* set solver goals */
|
|
|
|
/* first set the goal inverse transform, assuming the root of tree was done ok! */
|
|
pchan= tree->pchan[0];
|
|
if (pchan->parent)
|
|
/* transform goal by parent mat, so this rotation is not part of the
|
|
segment's basis. otherwise rotation limits do not work on the
|
|
local transform of the segment itself. */
|
|
Mat4CpyMat4(rootmat, pchan->parent->pose_mat);
|
|
else
|
|
Mat4One(rootmat);
|
|
VECCOPY(rootmat[3], pchan->pose_head);
|
|
|
|
Mat4MulMat4 (imat, rootmat, ob->obmat);
|
|
Mat4Invert (goalinv, imat);
|
|
|
|
for (target=tree->targets.first; target; target=target->next) {
|
|
float polepos[3];
|
|
int poleconstrain= 0;
|
|
|
|
data= (bKinematicConstraint*)target->con->data;
|
|
|
|
/* 1.0=ctime, we pass on object for auto-ik (owner-type here is object, even though
|
|
* strictly speaking, it is a posechannel)
|
|
*/
|
|
get_constraint_target_matrix(target->con, 0, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);
|
|
|
|
/* and set and transform goal */
|
|
Mat4MulMat4(goal, rootmat, goalinv);
|
|
|
|
VECCOPY(goalpos, goal[3]);
|
|
Mat3CpyMat4(goalrot, goal);
|
|
|
|
/* same for pole vector target */
|
|
if(data->poletar) {
|
|
get_constraint_target_matrix(target->con, 1, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);
|
|
|
|
if(data->flag & CONSTRAINT_IK_SETANGLE) {
|
|
/* don't solve IK when we are setting the pole angle */
|
|
break;
|
|
}
|
|
else {
|
|
Mat4MulMat4(goal, rootmat, goalinv);
|
|
VECCOPY(polepos, goal[3]);
|
|
poleconstrain= 1;
|
|
|
|
/* for pole targets, we blend the result of the ik solver
|
|
* instead of the target position, otherwise we can't get
|
|
* a smooth transition */
|
|
resultblend= 1;
|
|
resultinf= target->con->enforce;
|
|
|
|
if(data->flag & CONSTRAINT_IK_GETANGLE) {
|
|
poleangledata= data;
|
|
data->flag &= ~CONSTRAINT_IK_GETANGLE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* do we need blending? */
|
|
if (!resultblend && target->con->enforce!=1.0) {
|
|
float q1[4], q2[4], q[4];
|
|
float fac= target->con->enforce;
|
|
float mfac= 1.0-fac;
|
|
|
|
pchan= tree->pchan[target->tip];
|
|
|
|
/* end effector in world space */
|
|
Mat4CpyMat4(end_pose, pchan->pose_mat);
|
|
VECCOPY(end_pose[3], pchan->pose_tail);
|
|
Mat4MulSerie(world_pose, goalinv, ob->obmat, end_pose, 0, 0, 0, 0, 0);
|
|
|
|
/* blend position */
|
|
goalpos[0]= fac*goalpos[0] + mfac*world_pose[3][0];
|
|
goalpos[1]= fac*goalpos[1] + mfac*world_pose[3][1];
|
|
goalpos[2]= fac*goalpos[2] + mfac*world_pose[3][2];
|
|
|
|
/* blend rotation */
|
|
Mat3ToQuat(goalrot, q1);
|
|
Mat4ToQuat(world_pose, q2);
|
|
QuatInterpol(q, q1, q2, mfac);
|
|
QuatToMat3(q, goalrot);
|
|
}
|
|
|
|
iktarget= iktree[target->tip];
|
|
|
|
if(data->weight != 0.0) {
|
|
if(poleconstrain)
|
|
IK_SolverSetPoleVectorConstraint(solver, iktarget, goalpos,
|
|
polepos, data->poleangle*M_PI/180, (poleangledata == data));
|
|
IK_SolverAddGoal(solver, iktarget, goalpos, data->weight);
|
|
}
|
|
if((data->flag & CONSTRAINT_IK_ROT) && (data->orientweight != 0.0))
|
|
if((data->flag & CONSTRAINT_IK_AUTO)==0)
|
|
IK_SolverAddGoalOrientation(solver, iktarget, goalrot,
|
|
data->orientweight);
|
|
}
|
|
|
|
/* solve */
|
|
IK_Solve(solver, 0.0f, tree->iterations);
|
|
|
|
if(poleangledata)
|
|
poleangledata->poleangle= IK_SolverGetPoleAngle(solver)*180/M_PI;
|
|
|
|
IK_FreeSolver(solver);
|
|
|
|
/* gather basis changes */
|
|
tree->basis_change= MEM_mallocN(sizeof(float[3][3])*tree->totchannel, "ik basis change");
|
|
if(hasstretch)
|
|
ikstretch= MEM_mallocN(sizeof(float)*tree->totchannel, "ik stretch");
|
|
|
|
for(a=0; a<tree->totchannel; a++) {
|
|
IK_GetBasisChange(iktree[a], tree->basis_change[a]);
|
|
|
|
if(hasstretch) {
|
|
/* have to compensate for scaling received from parent */
|
|
float parentstretch, stretch;
|
|
|
|
pchan= tree->pchan[a];
|
|
parentstretch= (tree->parent[a] >= 0)? ikstretch[tree->parent[a]]: 1.0;
|
|
|
|
if(tree->stretch && (pchan->ikstretch > 0.0)) {
|
|
float trans[3], length;
|
|
|
|
IK_GetTranslationChange(iktree[a], trans);
|
|
length= pchan->bone->length*VecLength(pchan->pose_mat[1]);
|
|
|
|
ikstretch[a]= (length == 0.0)? 1.0: (trans[1]+length)/length;
|
|
}
|
|
else
|
|
ikstretch[a] = 1.0;
|
|
|
|
stretch= (parentstretch == 0.0)? 1.0: ikstretch[a]/parentstretch;
|
|
|
|
VecMulf(tree->basis_change[a][0], stretch);
|
|
VecMulf(tree->basis_change[a][1], stretch);
|
|
VecMulf(tree->basis_change[a][2], stretch);
|
|
}
|
|
|
|
if(resultblend && resultinf!=1.0f) {
|
|
Mat3One(identity);
|
|
Mat3BlendMat3(tree->basis_change[a], identity,
|
|
tree->basis_change[a], resultinf);
|
|
}
|
|
|
|
IK_FreeSegment(iktree[a]);
|
|
}
|
|
|
|
MEM_freeN(iktree);
|
|
if(ikstretch) MEM_freeN(ikstretch);
|
|
}
|
|
|
|
void free_posetree(PoseTree *tree)
|
|
{
|
|
BLI_freelistN(&tree->targets);
|
|
if(tree->pchan) MEM_freeN(tree->pchan);
|
|
if(tree->parent) MEM_freeN(tree->parent);
|
|
if(tree->basis_change) MEM_freeN(tree->basis_change);
|
|
MEM_freeN(tree);
|
|
}
|
|
|
|
/* ********************** THE POSE SOLVER ******************* */
|
|
|
|
|
|
/* loc/rot/size to mat4 */
|
|
/* used in constraint.c too */
|
|
void chan_calc_mat(bPoseChannel *chan)
|
|
{
|
|
float smat[3][3];
|
|
float rmat[3][3];
|
|
float tmat[3][3];
|
|
|
|
SizeToMat3(chan->size, smat);
|
|
|
|
NormalQuat(chan->quat);
|
|
|
|
QuatToMat3(chan->quat, rmat);
|
|
|
|
Mat3MulMat3(tmat, rmat, smat);
|
|
|
|
Mat4CpyMat3(chan->chan_mat, tmat);
|
|
|
|
/* prevent action channels breaking chains */
|
|
/* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
|
|
if (chan->bone==NULL || !(chan->bone->flag & BONE_CONNECTED)) {
|
|
VECCOPY(chan->chan_mat[3], chan->loc);
|
|
}
|
|
|
|
}
|
|
|
|
/* transform from bone(b) to bone(b+1), store in chan_mat */
|
|
static void make_dmats(bPoseChannel *pchan)
|
|
{
|
|
if (pchan->parent) {
|
|
float iR_parmat[4][4];
|
|
Mat4Invert(iR_parmat, pchan->parent->pose_mat);
|
|
Mat4MulMat4(pchan->chan_mat, pchan->pose_mat, iR_parmat); // delta mat
|
|
}
|
|
else Mat4CpyMat4(pchan->chan_mat, pchan->pose_mat);
|
|
}
|
|
|
|
/* applies IK matrix to pchan, IK is done separated */
|
|
/* formula: pose_mat(b) = pose_mat(b-1) * diffmat(b-1, b) * ik_mat(b) */
|
|
/* to make this work, the diffmats have to be precalculated! Stored in chan_mat */
|
|
static void where_is_ik_bone(bPoseChannel *pchan, float ik_mat[][3]) // nr = to detect if this is first bone
|
|
{
|
|
float vec[3], ikmat[4][4];
|
|
|
|
Mat4CpyMat3(ikmat, ik_mat);
|
|
|
|
if (pchan->parent)
|
|
Mat4MulSerie(pchan->pose_mat, pchan->parent->pose_mat, pchan->chan_mat, ikmat, NULL, NULL, NULL, NULL, NULL);
|
|
else
|
|
Mat4MulMat4(pchan->pose_mat, ikmat, pchan->chan_mat);
|
|
|
|
/* calculate head */
|
|
VECCOPY(pchan->pose_head, pchan->pose_mat[3]);
|
|
/* calculate tail */
|
|
VECCOPY(vec, pchan->pose_mat[1]);
|
|
VecMulf(vec, pchan->bone->length);
|
|
VecAddf(pchan->pose_tail, pchan->pose_head, vec);
|
|
|
|
pchan->flag |= POSE_DONE;
|
|
}
|
|
|
|
/* NLA strip modifiers */
|
|
static void do_strip_modifiers(Object *armob, Bone *bone, bPoseChannel *pchan)
|
|
{
|
|
bActionModifier *amod;
|
|
bActionStrip *strip, *strip2;
|
|
float scene_cfra= G.scene->r.cfra;
|
|
int do_modif;
|
|
|
|
for (strip=armob->nlastrips.first; strip; strip=strip->next) {
|
|
do_modif=0;
|
|
|
|
if (scene_cfra>=strip->start && scene_cfra<=strip->end)
|
|
do_modif=1;
|
|
|
|
if ((scene_cfra > strip->end) && (strip->flag & ACTSTRIP_HOLDLASTFRAME)) {
|
|
do_modif=1;
|
|
|
|
/* if there are any other strips active, ignore modifiers for this strip -
|
|
* 'hold' option should only hold action modifiers if there are
|
|
* no other active strips */
|
|
for (strip2=strip->next; strip2; strip2=strip2->next) {
|
|
if (strip2 == strip) continue;
|
|
|
|
if (scene_cfra>=strip2->start && scene_cfra<=strip2->end) {
|
|
if (!(strip2->flag & ACTSTRIP_MUTE))
|
|
do_modif=0;
|
|
}
|
|
}
|
|
|
|
/* if there are any later, activated, strips with 'hold' set, they take precedence,
|
|
* so ignore modifiers for this strip */
|
|
for (strip2=strip->next; strip2; strip2=strip2->next) {
|
|
if (scene_cfra < strip2->start) continue;
|
|
if ((strip2->flag & ACTSTRIP_HOLDLASTFRAME) && !(strip2->flag & ACTSTRIP_MUTE)) {
|
|
do_modif=0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (do_modif) {
|
|
/* temporal solution to prevent 2 strips accumulating */
|
|
if(scene_cfra==strip->end && strip->next && strip->next->start==scene_cfra)
|
|
continue;
|
|
|
|
for(amod= strip->modifiers.first; amod; amod= amod->next) {
|
|
switch (amod->type) {
|
|
case ACTSTRIP_MOD_DEFORM:
|
|
{
|
|
/* validate first */
|
|
if(amod->ob && amod->ob->type==OB_CURVE && amod->channel[0]) {
|
|
|
|
if( strcmp(pchan->name, amod->channel)==0 ) {
|
|
float mat4[4][4], mat3[3][3];
|
|
|
|
curve_deform_vector(amod->ob, armob, bone->arm_mat[3], pchan->pose_mat[3], mat3, amod->no_rot_axis);
|
|
Mat4CpyMat4(mat4, pchan->pose_mat);
|
|
Mat4MulMat34(pchan->pose_mat, mat3, mat4);
|
|
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case ACTSTRIP_MOD_NOISE:
|
|
{
|
|
if( strcmp(pchan->name, amod->channel)==0 ) {
|
|
float nor[3], loc[3], ofs;
|
|
float eul[3], size[3], eulo[3], sizeo[3];
|
|
|
|
/* calculate turbulance */
|
|
ofs = amod->turbul / 200.0f;
|
|
|
|
/* make a copy of starting conditions */
|
|
VECCOPY(loc, pchan->pose_mat[3]);
|
|
Mat4ToEul(pchan->pose_mat, eul);
|
|
Mat4ToSize(pchan->pose_mat, size);
|
|
VECCOPY(eulo, eul);
|
|
VECCOPY(sizeo, size);
|
|
|
|
/* apply noise to each set of channels */
|
|
if (amod->channels & 4) {
|
|
/* for scaling */
|
|
nor[0] = BLI_gNoise(amod->noisesize, size[0]+ofs, size[1], size[2], 0, 0) - ofs;
|
|
nor[1] = BLI_gNoise(amod->noisesize, size[0], size[1]+ofs, size[2], 0, 0) - ofs;
|
|
nor[2] = BLI_gNoise(amod->noisesize, size[0], size[1], size[2]+ofs, 0, 0) - ofs;
|
|
VecAddf(size, size, nor);
|
|
|
|
if (sizeo[0] != 0)
|
|
VecMulf(pchan->pose_mat[0], size[0] / sizeo[0]);
|
|
if (sizeo[1] != 0)
|
|
VecMulf(pchan->pose_mat[1], size[1] / sizeo[1]);
|
|
if (sizeo[2] != 0)
|
|
VecMulf(pchan->pose_mat[2], size[2] / sizeo[2]);
|
|
}
|
|
if (amod->channels & 2) {
|
|
/* for rotation */
|
|
nor[0] = BLI_gNoise(amod->noisesize, eul[0]+ofs, eul[1], eul[2], 0, 0) - ofs;
|
|
nor[1] = BLI_gNoise(amod->noisesize, eul[0], eul[1]+ofs, eul[2], 0, 0) - ofs;
|
|
nor[2] = BLI_gNoise(amod->noisesize, eul[0], eul[1], eul[2]+ofs, 0, 0) - ofs;
|
|
|
|
compatible_eul(nor, eulo);
|
|
VecAddf(eul, eul, nor);
|
|
compatible_eul(eul, eulo);
|
|
|
|
LocEulSizeToMat4(pchan->pose_mat, loc, eul, size);
|
|
}
|
|
if (amod->channels & 1) {
|
|
/* for location */
|
|
nor[0] = BLI_gNoise(amod->noisesize, loc[0]+ofs, loc[1], loc[2], 0, 0) - ofs;
|
|
nor[1] = BLI_gNoise(amod->noisesize, loc[0], loc[1]+ofs, loc[2], 0, 0) - ofs;
|
|
nor[2] = BLI_gNoise(amod->noisesize, loc[0], loc[1], loc[2]+ofs, 0, 0) - ofs;
|
|
|
|
VecAddf(pchan->pose_mat[3], loc, nor);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* The main armature solver, does all constraints excluding IK */
|
|
/* pchan is validated, as having bone and parent pointer */
|
|
static void where_is_pose_bone(Object *ob, bPoseChannel *pchan, float ctime)
|
|
{
|
|
Bone *bone, *parbone;
|
|
bPoseChannel *parchan;
|
|
float vec[3];
|
|
|
|
/* set up variables for quicker access below */
|
|
bone= pchan->bone;
|
|
parbone= bone->parent;
|
|
parchan= pchan->parent;
|
|
|
|
/* this gives a chan_mat with actions (ipos) results */
|
|
chan_calc_mat(pchan);
|
|
|
|
/* construct the posemat based on PoseChannels, that we do before applying constraints */
|
|
/* pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
|
|
|
|
if(parchan) {
|
|
float offs_bone[4][4]; // yoffs(b-1) + root(b) + bonemat(b)
|
|
|
|
/* bone transform itself */
|
|
Mat4CpyMat3(offs_bone, bone->bone_mat);
|
|
|
|
/* The bone's root offset (is in the parent's coordinate system) */
|
|
VECCOPY(offs_bone[3], bone->head);
|
|
|
|
/* Get the length translation of parent (length along y axis) */
|
|
offs_bone[3][1]+= parbone->length;
|
|
|
|
/* Compose the matrix for this bone */
|
|
if(bone->flag & BONE_HINGE) { // uses restposition rotation, but actual position
|
|
float tmat[4][4];
|
|
|
|
/* the rotation of the parent restposition */
|
|
Mat4CpyMat4(tmat, parbone->arm_mat);
|
|
|
|
/* the location of actual parent transform */
|
|
VECCOPY(tmat[3], offs_bone[3]);
|
|
offs_bone[3][0]= offs_bone[3][1]= offs_bone[3][2]= 0.0f;
|
|
Mat4MulVecfl(parchan->pose_mat, tmat[3]);
|
|
|
|
Mat4MulSerie(pchan->pose_mat, tmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
else if(bone->flag & BONE_NO_SCALE) {
|
|
float orthmat[4][4], vec[3];
|
|
|
|
/* get the official transform, but we only use the vector from it (optimize...) */
|
|
Mat4MulSerie(pchan->pose_mat, parchan->pose_mat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
|
|
VECCOPY(vec, pchan->pose_mat[3]);
|
|
|
|
/* do this again, but with an ortho-parent matrix */
|
|
Mat4CpyMat4(orthmat, parchan->pose_mat);
|
|
Mat4Ortho(orthmat);
|
|
Mat4MulSerie(pchan->pose_mat, orthmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
|
|
|
|
/* copy correct transform */
|
|
VECCOPY(pchan->pose_mat[3], vec);
|
|
}
|
|
else
|
|
Mat4MulSerie(pchan->pose_mat, parchan->pose_mat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
else {
|
|
Mat4MulMat4(pchan->pose_mat, pchan->chan_mat, bone->arm_mat);
|
|
|
|
/* only rootbones get the cyclic offset (unless user doesn't want that) */
|
|
if ((bone->flag & BONE_NO_CYCLICOFFSET) == 0)
|
|
VecAddf(pchan->pose_mat[3], pchan->pose_mat[3], ob->pose->cyclic_offset);
|
|
}
|
|
|
|
/* do NLA strip modifiers - i.e. curve follow */
|
|
do_strip_modifiers(ob, bone, pchan);
|
|
|
|
/* Do constraints */
|
|
if (pchan->constraints.first) {
|
|
bConstraintOb *cob;
|
|
|
|
/* local constraints */
|
|
do_constraint_channels(&pchan->constraints, NULL, ctime, 0);
|
|
|
|
/* make a copy of location of PoseChannel for later */
|
|
VECCOPY(vec, pchan->pose_mat[3]);
|
|
|
|
/* prepare PoseChannel for Constraint solving
|
|
* - makes a copy of matrix, and creates temporary struct to use
|
|
*/
|
|
cob= constraints_make_evalob(ob, pchan, CONSTRAINT_OBTYPE_BONE);
|
|
|
|
/* Solve PoseChannel's Constraints */
|
|
solve_constraints(&pchan->constraints, cob, ctime); // ctime doesnt alter objects
|
|
|
|
/* cleanup after Constraint Solving
|
|
* - applies matrix back to pchan, and frees temporary struct used
|
|
*/
|
|
constraints_clear_evalob(cob);
|
|
|
|
/* prevent constraints breaking a chain */
|
|
if(pchan->bone->flag & BONE_CONNECTED) {
|
|
VECCOPY(pchan->pose_mat[3], vec);
|
|
}
|
|
}
|
|
|
|
/* calculate head */
|
|
VECCOPY(pchan->pose_head, pchan->pose_mat[3]);
|
|
/* calculate tail */
|
|
VECCOPY(vec, pchan->pose_mat[1]);
|
|
VecMulf(vec, bone->length);
|
|
VecAddf(pchan->pose_tail, pchan->pose_head, vec);
|
|
}
|
|
|
|
/* This only reads anim data from channels, and writes to channels */
|
|
/* This is the only function adding poses */
|
|
void where_is_pose (Object *ob)
|
|
{
|
|
bArmature *arm;
|
|
Bone *bone;
|
|
bPoseChannel *pchan;
|
|
float imat[4][4];
|
|
float ctime= bsystem_time(ob, (float)G.scene->r.cfra, 0.0); /* not accurate... */
|
|
|
|
arm = get_armature(ob);
|
|
|
|
if(arm==NULL) return;
|
|
if(ob->pose==NULL || (ob->pose->flag & POSE_RECALC))
|
|
armature_rebuild_pose(ob, arm);
|
|
|
|
/* In restposition we read the data from the bones */
|
|
if(ob==G.obedit || (arm->flag & ARM_RESTPOS)) {
|
|
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
bone= pchan->bone;
|
|
if(bone) {
|
|
Mat4CpyMat4(pchan->pose_mat, bone->arm_mat);
|
|
VECCOPY(pchan->pose_head, bone->arm_head);
|
|
VECCOPY(pchan->pose_tail, bone->arm_tail);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
Mat4Invert(ob->imat, ob->obmat); // imat is needed
|
|
|
|
/* 1. construct the PoseTrees, clear flags */
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
pchan->flag &= ~(POSE_DONE|POSE_CHAIN);
|
|
if(pchan->constflag & PCHAN_HAS_IK) // flag is set on editing constraints
|
|
initialize_posetree(ob, pchan); // will attach it to root!
|
|
}
|
|
|
|
/* 2. the main loop, channels are already hierarchical sorted from root to children */
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
|
|
/* 3. if we find an IK root, we handle it separated */
|
|
if(pchan->iktree.first) {
|
|
while(pchan->iktree.first) {
|
|
PoseTree *tree= pchan->iktree.first;
|
|
int a;
|
|
|
|
/* 4. walk over the tree for regular solving */
|
|
for(a=0; a<tree->totchannel; a++) {
|
|
if(!(tree->pchan[a]->flag & POSE_DONE)) // successive trees can set the flag
|
|
where_is_pose_bone(ob, tree->pchan[a], ctime);
|
|
}
|
|
/* 5. execute the IK solver */
|
|
execute_posetree(ob, tree);
|
|
|
|
/* 6. apply the differences to the channels,
|
|
we need to calculate the original differences first */
|
|
for(a=0; a<tree->totchannel; a++)
|
|
make_dmats(tree->pchan[a]);
|
|
|
|
for(a=0; a<tree->totchannel; a++)
|
|
/* sets POSE_DONE */
|
|
where_is_ik_bone(tree->pchan[a], tree->basis_change[a]);
|
|
|
|
/* 7. and free */
|
|
BLI_remlink(&pchan->iktree, tree);
|
|
free_posetree(tree);
|
|
}
|
|
}
|
|
else if(!(pchan->flag & POSE_DONE)) {
|
|
where_is_pose_bone(ob, pchan, ctime);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* calculating deform matrices */
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
if(pchan->bone) {
|
|
Mat4Invert(imat, pchan->bone->arm_mat);
|
|
Mat4MulMat4(pchan->chan_mat, imat, pchan->pose_mat);
|
|
}
|
|
}
|
|
}
|