This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/armature.c
Joshua Leung 32b733dafb Patch #17500: fixes: multiple IK's on bone + targetless IK
Submitted by: Teppo Kansala (teppoka)

See patch report for details of fixes.
https://projects.blender.org/tracker/index.php?func=detail&aid=17500&group_id=9&atid=127

Note: the patch submitter's test files were quite nice, and would be good to have in our regression suite.
2008-09-29 04:00:42 +00:00

2340 lines
65 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Full recode, Ton Roosendaal, Crete 2005
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <ctype.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <float.h>
#include "MEM_guardedalloc.h"
#include "nla.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "DNA_armature_types.h"
#include "DNA_action_types.h"
#include "DNA_constraint_types.h"
#include "DNA_mesh_types.h"
#include "DNA_lattice_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_nla_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_view3d_types.h"
#include "BKE_armature.h"
#include "BKE_action.h"
#include "BKE_blender.h"
#include "BKE_constraint.h"
#include "BKE_curve.h"
#include "BKE_deform.h"
#include "BKE_depsgraph.h"
#include "BKE_DerivedMesh.h"
#include "BKE_displist.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "BKE_lattice.h"
#include "BKE_main.h"
#include "BKE_object.h"
#include "BKE_object.h"
#include "BKE_utildefines.h"
#include "BIF_editdeform.h"
#include "IK_solver.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/* **************** Generic Functions, data level *************** */
bArmature *get_armature(Object *ob)
{
if(ob==NULL) return NULL;
if(ob->type==OB_ARMATURE) return ob->data;
else return NULL;
}
bArmature *add_armature(char *name)
{
bArmature *arm;
arm= alloc_libblock (&G.main->armature, ID_AR, name);
arm->deformflag = ARM_DEF_VGROUP|ARM_DEF_ENVELOPE;
arm->layer= 1;
return arm;
}
void free_boneChildren(Bone *bone)
{
Bone *child;
if (bone) {
child=bone->childbase.first;
if (child){
while (child){
free_boneChildren (child);
child=child->next;
}
BLI_freelistN (&bone->childbase);
}
}
}
void free_bones (bArmature *arm)
{
Bone *bone;
/* Free children (if any) */
bone= arm->bonebase.first;
if (bone) {
while (bone){
free_boneChildren (bone);
bone=bone->next;
}
}
BLI_freelistN(&arm->bonebase);
}
void free_armature(bArmature *arm)
{
if (arm) {
/* unlink_armature(arm);*/
free_bones(arm);
}
}
void make_local_armature(bArmature *arm)
{
int local=0, lib=0;
Object *ob;
bArmature *newArm;
if (arm->id.lib==0)
return;
if (arm->id.us==1) {
arm->id.lib= 0;
arm->id.flag= LIB_LOCAL;
new_id(0, (ID*)arm, 0);
return;
}
if(local && lib==0) {
arm->id.lib= 0;
arm->id.flag= LIB_LOCAL;
new_id(0, (ID *)arm, 0);
}
else if(local && lib) {
newArm= copy_armature(arm);
newArm->id.us= 0;
ob= G.main->object.first;
while(ob) {
if(ob->data==arm) {
if(ob->id.lib==0) {
ob->data= newArm;
newArm->id.us++;
arm->id.us--;
}
}
ob= ob->id.next;
}
}
}
static void copy_bonechildren (Bone* newBone, Bone* oldBone)
{
Bone *curBone, *newChildBone;
/* Copy this bone's list*/
duplicatelist (&newBone->childbase, &oldBone->childbase);
/* For each child in the list, update it's children*/
newChildBone=newBone->childbase.first;
for (curBone=oldBone->childbase.first;curBone;curBone=curBone->next){
newChildBone->parent=newBone;
copy_bonechildren(newChildBone,curBone);
newChildBone=newChildBone->next;
}
}
bArmature *copy_armature(bArmature *arm)
{
bArmature *newArm;
Bone *oldBone, *newBone;
newArm= copy_libblock (arm);
duplicatelist(&newArm->bonebase, &arm->bonebase);
/* Duplicate the childrens' lists*/
newBone=newArm->bonebase.first;
for (oldBone=arm->bonebase.first;oldBone;oldBone=oldBone->next){
newBone->parent=NULL;
copy_bonechildren (newBone, oldBone);
newBone=newBone->next;
};
return newArm;
}
static Bone *get_named_bone_bonechildren (Bone *bone, const char *name)
{
Bone *curBone, *rbone;
if (!strcmp (bone->name, name))
return bone;
for (curBone=bone->childbase.first; curBone; curBone=curBone->next){
rbone=get_named_bone_bonechildren (curBone, name);
if (rbone)
return rbone;
}
return NULL;
}
Bone *get_named_bone (bArmature *arm, const char *name)
/*
Walk the list until the bone is found
*/
{
Bone *bone=NULL, *curBone;
if (!arm) return NULL;
for (curBone=arm->bonebase.first; curBone; curBone=curBone->next){
bone = get_named_bone_bonechildren (curBone, name);
if (bone)
return bone;
}
return bone;
}
#define IS_SEPARATOR(a) (a=='.' || a==' ' || a=='-' || a=='_')
/* finds the best possible flipped name. For renaming; check for unique names afterwards */
/* if strip_number: removes number extensions */
void bone_flip_name (char *name, int strip_number)
{
int len;
char prefix[128]={""}; /* The part before the facing */
char suffix[128]={""}; /* The part after the facing */
char replace[128]={""}; /* The replacement string */
char number[128]={""}; /* The number extension string */
char *index=NULL;
len= strlen(name);
if(len<3) return; // we don't do names like .R or .L
/* We first check the case with a .### extension, let's find the last period */
if(isdigit(name[len-1])) {
index= strrchr(name, '.'); // last occurrance
if (index && isdigit(index[1]) ) { // doesnt handle case bone.1abc2 correct..., whatever!
if(strip_number==0)
strcpy(number, index);
*index= 0;
len= strlen(name);
}
}
strcpy (prefix, name);
/* first case; separator . - _ with extensions r R l L */
if( IS_SEPARATOR(name[len-2]) ) {
switch(name[len-1]) {
case 'l':
prefix[len-1]= 0;
strcpy(replace, "r");
break;
case 'r':
prefix[len-1]= 0;
strcpy(replace, "l");
break;
case 'L':
prefix[len-1]= 0;
strcpy(replace, "R");
break;
case 'R':
prefix[len-1]= 0;
strcpy(replace, "L");
break;
}
}
/* case; beginning with r R l L , with separator after it */
else if( IS_SEPARATOR(name[1]) ) {
switch(name[0]) {
case 'l':
strcpy(replace, "r");
strcpy(suffix, name+1);
prefix[0]= 0;
break;
case 'r':
strcpy(replace, "l");
strcpy(suffix, name+1);
prefix[0]= 0;
break;
case 'L':
strcpy(replace, "R");
strcpy(suffix, name+1);
prefix[0]= 0;
break;
case 'R':
strcpy(replace, "L");
strcpy(suffix, name+1);
prefix[0]= 0;
break;
}
}
else if(len > 5) {
/* hrms, why test for a separator? lets do the rule 'ultimate left or right' */
index = BLI_strcasestr(prefix, "right");
if (index==prefix || index==prefix+len-5) {
if(index[0]=='r')
strcpy (replace, "left");
else {
if(index[1]=='I')
strcpy (replace, "LEFT");
else
strcpy (replace, "Left");
}
*index= 0;
strcpy (suffix, index+5);
}
else {
index = BLI_strcasestr(prefix, "left");
if (index==prefix || index==prefix+len-4) {
if(index[0]=='l')
strcpy (replace, "right");
else {
if(index[1]=='E')
strcpy (replace, "RIGHT");
else
strcpy (replace, "Right");
}
*index= 0;
strcpy (suffix, index+4);
}
}
}
sprintf (name, "%s%s%s%s", prefix, replace, suffix, number);
}
/* Finds the best possible extension to the name on a particular axis. (For renaming, check for unique names afterwards)
* This assumes that bone names are at most 32 chars long!
* strip_number: removes number extensions (TODO: not used)
* axis: the axis to name on
* head/tail: the head/tail co-ordinate of the bone on the specified axis
*/
void bone_autoside_name (char *name, int strip_number, short axis, float head, float tail)
{
int len;
char basename[32]={""};
char extension[5]={""};
len= strlen(name);
if (len == 0) return;
strcpy(basename, name);
/* Figure out extension to append:
* - The extension to append is based upon the axis that we are working on.
* - If head happens to be on 0, then we must consider the tail position as well to decide
* which side the bone is on
* -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
* -> Otherwise, extension is added from perspective of object based on which side tail goes to
* - If head is non-zero, extension is added from perspective of object based on side head is on
*/
if (axis == 2) {
/* z-axis - vertical (top/bottom) */
if (IS_EQ(head, 0)) {
if (tail < 0)
strcpy(extension, "Bot");
else if (tail > 0)
strcpy(extension, "Top");
}
else {
if (head < 0)
strcpy(extension, "Bot");
else
strcpy(extension, "Top");
}
}
else if (axis == 1) {
/* y-axis - depth (front/back) */
if (IS_EQ(head, 0)) {
if (tail < 0)
strcpy(extension, "Fr");
else if (tail > 0)
strcpy(extension, "Bk");
}
else {
if (head < 0)
strcpy(extension, "Fr");
else
strcpy(extension, "Bk");
}
}
else {
/* x-axis - horizontal (left/right) */
if (IS_EQ(head, 0)) {
if (tail < 0)
strcpy(extension, "R");
else if (tail > 0)
strcpy(extension, "L");
}
else {
if (head < 0)
strcpy(extension, "R");
else if (head > 0)
strcpy(extension, "L");
}
}
/* Simple name truncation
* - truncate if there is an extension and it wouldn't be able to fit
* - otherwise, just append to end
*/
if (extension[0]) {
int change = 1;
while (change) { /* remove extensions */
change = 0;
if (len > 2 && basename[len-2]=='.') {
if (basename[len-1]=='L' || basename[len-1] == 'R' ) { /* L R */
basename[len-2] = '\0';
len-=2;
change= 1;
}
} else if (len > 3 && basename[len-3]=='.') {
if ( (basename[len-2]=='F' && basename[len-1] == 'r') || /* Fr */
(basename[len-2]=='B' && basename[len-1] == 'k') /* Bk */
) {
basename[len-3] = '\0';
len-=3;
change= 1;
}
} else if (len > 4 && basename[len-4]=='.') {
if ( (basename[len-3]=='T' && basename[len-2]=='o' && basename[len-1] == 'p') || /* Top */
(basename[len-3]=='B' && basename[len-2]=='o' && basename[len-1] == 't') /* Bot */
) {
basename[len-4] = '\0';
len-=4;
change= 1;
}
}
}
if ((32 - len) < strlen(extension) + 1) { /* add 1 for the '.' */
strncpy(name, basename, len-strlen(extension));
}
}
sprintf(name, "%s.%s", basename, extension);
}
/* ************* B-Bone support ******************* */
#define MAX_BBONE_SUBDIV 32
/* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
static void equalize_bezier(float *data, int desired)
{
float *fp, totdist, ddist, dist, fac1, fac2;
float pdist[MAX_BBONE_SUBDIV+1];
float temp[MAX_BBONE_SUBDIV+1][4];
int a, nr;
pdist[0]= 0.0f;
for(a=0, fp= data; a<MAX_BBONE_SUBDIV; a++, fp+=4) {
QUATCOPY(temp[a], fp);
pdist[a+1]= pdist[a]+VecLenf(fp, fp+4);
}
/* do last point */
QUATCOPY(temp[a], fp);
totdist= pdist[a];
/* go over distances and calculate new points */
ddist= totdist/((float)desired);
nr= 1;
for(a=1, fp= data+4; a<desired; a++, fp+=4) {
dist= ((float)a)*ddist;
/* we're looking for location (distance) 'dist' in the array */
while((dist>= pdist[nr]) && nr<MAX_BBONE_SUBDIV) {
nr++;
}
fac1= pdist[nr]- pdist[nr-1];
fac2= pdist[nr]-dist;
fac1= fac2/fac1;
fac2= 1.0f-fac1;
fp[0]= fac1*temp[nr-1][0]+ fac2*temp[nr][0];
fp[1]= fac1*temp[nr-1][1]+ fac2*temp[nr][1];
fp[2]= fac1*temp[nr-1][2]+ fac2*temp[nr][2];
fp[3]= fac1*temp[nr-1][3]+ fac2*temp[nr][3];
}
/* set last point, needed for orientation calculus */
QUATCOPY(fp, temp[MAX_BBONE_SUBDIV]);
}
/* returns pointer to static array, filled with desired amount of bone->segments elements */
/* this calculation is done within unit bone space */
Mat4 *b_bone_spline_setup(bPoseChannel *pchan, int rest)
{
static Mat4 bbone_array[MAX_BBONE_SUBDIV];
static Mat4 bbone_rest_array[MAX_BBONE_SUBDIV];
Mat4 *result_array= (rest)? bbone_rest_array: bbone_array;
bPoseChannel *next, *prev;
Bone *bone= pchan->bone;
float h1[3], h2[3], scale[3], length, hlength1, hlength2, roll1=0.0f, roll2;
float mat3[3][3], imat[4][4], posemat[4][4], scalemat[4][4], iscalemat[4][4];
float data[MAX_BBONE_SUBDIV+1][4], *fp;
int a, doscale= 0;
length= bone->length;
if(!rest) {
/* check if we need to take non-uniform bone scaling into account */
scale[0]= VecLength(pchan->pose_mat[0]);
scale[1]= VecLength(pchan->pose_mat[1]);
scale[2]= VecLength(pchan->pose_mat[2]);
if(fabs(scale[0] - scale[1]) > 1e-6f || fabs(scale[1] - scale[2]) > 1e-6f) {
Mat4One(scalemat);
scalemat[0][0]= scale[0];
scalemat[1][1]= scale[1];
scalemat[2][2]= scale[2];
Mat4Invert(iscalemat, scalemat);
length *= scale[1];
doscale = 1;
}
}
hlength1= bone->ease1*length*0.390464f; // 0.5*sqrt(2)*kappa, the handle length for near-perfect circles
hlength2= bone->ease2*length*0.390464f;
/* evaluate next and prev bones */
if(bone->flag & BONE_CONNECTED)
prev= pchan->parent;
else
prev= NULL;
next= pchan->child;
/* find the handle points, since this is inside bone space, the
first point = (0,0,0)
last point = (0, length, 0) */
if(rest) {
Mat4Invert(imat, pchan->bone->arm_mat);
}
else if(doscale) {
Mat4CpyMat4(posemat, pchan->pose_mat);
Mat4Ortho(posemat);
Mat4Invert(imat, posemat);
}
else
Mat4Invert(imat, pchan->pose_mat);
if(prev) {
float difmat[4][4], result[3][3], imat3[3][3];
/* transform previous point inside this bone space */
if(rest)
VECCOPY(h1, prev->bone->arm_head)
else
VECCOPY(h1, prev->pose_head)
Mat4MulVecfl(imat, h1);
if(prev->bone->segments>1) {
/* if previous bone is B-bone too, use average handle direction */
h1[1]-= length;
roll1= 0.0f;
}
Normalize(h1);
VecMulf(h1, -hlength1);
if(prev->bone->segments==1) {
/* find the previous roll to interpolate */
if(rest)
Mat4MulMat4(difmat, prev->bone->arm_mat, imat);
else
Mat4MulMat4(difmat, prev->pose_mat, imat);
Mat3CpyMat4(result, difmat); // the desired rotation at beginning of next bone
vec_roll_to_mat3(h1, 0.0f, mat3); // the result of vec_roll without roll
Mat3Inv(imat3, mat3);
Mat3MulMat3(mat3, result, imat3); // the matrix transforming vec_roll to desired roll
roll1= atan2(mat3[2][0], mat3[2][2]);
}
}
else {
h1[0]= 0.0f; h1[1]= hlength1; h1[2]= 0.0f;
roll1= 0.0f;
}
if(next) {
float difmat[4][4], result[3][3], imat3[3][3];
/* transform next point inside this bone space */
if(rest)
VECCOPY(h2, next->bone->arm_tail)
else
VECCOPY(h2, next->pose_tail)
Mat4MulVecfl(imat, h2);
/* if next bone is B-bone too, use average handle direction */
if(next->bone->segments>1);
else h2[1]-= length;
Normalize(h2);
/* find the next roll to interpolate as well */
if(rest)
Mat4MulMat4(difmat, next->bone->arm_mat, imat);
else
Mat4MulMat4(difmat, next->pose_mat, imat);
Mat3CpyMat4(result, difmat); // the desired rotation at beginning of next bone
vec_roll_to_mat3(h2, 0.0f, mat3); // the result of vec_roll without roll
Mat3Inv(imat3, mat3);
Mat3MulMat3(mat3, imat3, result); // the matrix transforming vec_roll to desired roll
roll2= atan2(mat3[2][0], mat3[2][2]);
/* and only now negate handle */
VecMulf(h2, -hlength2);
}
else {
h2[0]= 0.0f; h2[1]= -hlength2; h2[2]= 0.0f;
roll2= 0.0;
}
/* make curve */
if(bone->segments > MAX_BBONE_SUBDIV)
bone->segments= MAX_BBONE_SUBDIV;
forward_diff_bezier(0.0, h1[0], h2[0], 0.0, data[0], MAX_BBONE_SUBDIV, 4);
forward_diff_bezier(0.0, h1[1], length + h2[1], length, data[0]+1, MAX_BBONE_SUBDIV, 4);
forward_diff_bezier(0.0, h1[2], h2[2], 0.0, data[0]+2, MAX_BBONE_SUBDIV, 4);
forward_diff_bezier(roll1, roll1 + 0.390464f*(roll2-roll1), roll2 - 0.390464f*(roll2-roll1), roll2, data[0]+3, MAX_BBONE_SUBDIV, 4);
equalize_bezier(data[0], bone->segments); // note: does stride 4!
/* make transformation matrices for the segments for drawing */
for(a=0, fp= data[0]; a<bone->segments; a++, fp+=4) {
VecSubf(h1, fp+4, fp);
vec_roll_to_mat3(h1, fp[3], mat3); // fp[3] is roll
Mat4CpyMat3(result_array[a].mat, mat3);
VECCOPY(result_array[a].mat[3], fp);
if(doscale) {
/* correct for scaling when this matrix is used in scaled space */
Mat4MulSerie(result_array[a].mat, iscalemat, result_array[a].mat,
scalemat, NULL, NULL, NULL, NULL, NULL);
}
}
return result_array;
}
/* ************ Armature Deform ******************* */
static void pchan_b_bone_defmats(bPoseChannel *pchan, int use_quaternion, int rest_def)
{
Bone *bone= pchan->bone;
Mat4 *b_bone= b_bone_spline_setup(pchan, 0);
Mat4 *b_bone_rest= (rest_def)? NULL: b_bone_spline_setup(pchan, 1);
Mat4 *b_bone_mats;
DualQuat *b_bone_dual_quats= NULL;
float tmat[4][4];
int a;
/* allocate b_bone matrices and dual quats */
b_bone_mats= MEM_mallocN((1+bone->segments)*sizeof(Mat4), "BBone defmats");
pchan->b_bone_mats= b_bone_mats;
if(use_quaternion) {
b_bone_dual_quats= MEM_mallocN((bone->segments)*sizeof(DualQuat), "BBone dqs");
pchan->b_bone_dual_quats= b_bone_dual_quats;
}
/* first matrix is the inverse arm_mat, to bring points in local bone space
for finding out which segment it belongs to */
Mat4Invert(b_bone_mats[0].mat, bone->arm_mat);
/* then we make the b_bone_mats:
- first transform to local bone space
- translate over the curve to the bbone mat space
- transform with b_bone matrix
- transform back into global space */
Mat4One(tmat);
for(a=0; a<bone->segments; a++) {
if(b_bone_rest)
Mat4Invert(tmat, b_bone_rest[a].mat);
else
tmat[3][1] = -a*(bone->length/(float)bone->segments);
Mat4MulSerie(b_bone_mats[a+1].mat, pchan->chan_mat, bone->arm_mat,
b_bone[a].mat, tmat, b_bone_mats[0].mat, NULL, NULL, NULL);
if(use_quaternion)
Mat4ToDQuat(bone->arm_mat, b_bone_mats[a+1].mat, &b_bone_dual_quats[a]);
}
}
static void b_bone_deform(bPoseChannel *pchan, Bone *bone, float *co, DualQuat *dq, float defmat[][3])
{
Mat4 *b_bone= pchan->b_bone_mats;
float (*mat)[4]= b_bone[0].mat;
float segment, y;
int a;
/* need to transform co back to bonespace, only need y */
y= mat[0][1]*co[0] + mat[1][1]*co[1] + mat[2][1]*co[2] + mat[3][1];
/* now calculate which of the b_bones are deforming this */
segment= bone->length/((float)bone->segments);
a= (int)(y/segment);
/* note; by clamping it extends deform at endpoints, goes best with
straight joints in restpos. */
CLAMP(a, 0, bone->segments-1);
if(dq) {
DQuatCpyDQuat(dq, &((DualQuat*)pchan->b_bone_dual_quats)[a]);
}
else {
Mat4MulVecfl(b_bone[a+1].mat, co);
if(defmat)
Mat3CpyMat4(defmat, b_bone[a+1].mat);
}
}
/* using vec with dist to bone b1 - b2 */
float distfactor_to_bone (float vec[3], float b1[3], float b2[3], float rad1, float rad2, float rdist)
{
float dist=0.0f;
float bdelta[3];
float pdelta[3];
float hsqr, a, l, rad;
VecSubf (bdelta, b2, b1);
l = Normalize (bdelta);
VecSubf (pdelta, vec, b1);
a = bdelta[0]*pdelta[0] + bdelta[1]*pdelta[1] + bdelta[2]*pdelta[2];
hsqr = ((pdelta[0]*pdelta[0]) + (pdelta[1]*pdelta[1]) + (pdelta[2]*pdelta[2]));
if (a < 0.0F){
/* If we're past the end of the bone, do a spherical field attenuation thing */
dist= ((b1[0]-vec[0])*(b1[0]-vec[0]) +(b1[1]-vec[1])*(b1[1]-vec[1]) +(b1[2]-vec[2])*(b1[2]-vec[2])) ;
rad= rad1;
}
else if (a > l){
/* If we're past the end of the bone, do a spherical field attenuation thing */
dist= ((b2[0]-vec[0])*(b2[0]-vec[0]) +(b2[1]-vec[1])*(b2[1]-vec[1]) +(b2[2]-vec[2])*(b2[2]-vec[2])) ;
rad= rad2;
}
else {
dist= (hsqr - (a*a));
if(l!=0.0f) {
rad= a/l;
rad= rad*rad2 + (1.0-rad)*rad1;
}
else rad= rad1;
}
a= rad*rad;
if(dist < a)
return 1.0f;
else {
l= rad+rdist;
l*= l;
if(rdist==0.0f || dist >= l)
return 0.0f;
else {
a= sqrt(dist)-rad;
return 1.0-( a*a )/( rdist*rdist );
}
}
}
static void pchan_deform_mat_add(bPoseChannel *pchan, float weight, float bbonemat[][3], float mat[][3])
{
float wmat[3][3];
if(pchan->bone->segments>1)
Mat3CpyMat3(wmat, bbonemat);
else
Mat3CpyMat4(wmat, pchan->chan_mat);
Mat3MulFloat((float*)wmat, weight);
Mat3AddMat3(mat, mat, wmat);
}
static float dist_bone_deform(bPoseChannel *pchan, float *vec, DualQuat *dq, float mat[][3], float *co)
{
Bone *bone= pchan->bone;
float fac, contrib=0.0;
float cop[3], bbonemat[3][3];
DualQuat bbonedq;
if(bone==NULL) return 0.0f;
VECCOPY (cop, co);
fac= distfactor_to_bone(cop, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
if (fac>0.0) {
fac*=bone->weight;
contrib= fac;
if(contrib>0.0) {
if(vec) {
if(bone->segments>1)
// applies on cop and bbonemat
b_bone_deform(pchan, bone, cop, NULL, (mat)?bbonemat:NULL);
else
Mat4MulVecfl(pchan->chan_mat, cop);
// Make this a delta from the base position
VecSubf (cop, cop, co);
cop[0]*=fac; cop[1]*=fac; cop[2]*=fac;
VecAddf (vec, vec, cop);
if(mat)
pchan_deform_mat_add(pchan, fac, bbonemat, mat);
}
else {
if(bone->segments>1) {
b_bone_deform(pchan, bone, cop, &bbonedq, NULL);
DQuatAddWeighted(dq, &bbonedq, fac);
}
else
DQuatAddWeighted(dq, pchan->dual_quat, fac);
}
}
}
return contrib;
}
static void pchan_bone_deform(bPoseChannel *pchan, float weight, float *vec, DualQuat *dq, float mat[][3], float *co, float *contrib)
{
float cop[3], bbonemat[3][3];
DualQuat bbonedq;
if (!weight)
return;
VECCOPY(cop, co);
if(vec) {
if(pchan->bone->segments>1)
// applies on cop and bbonemat
b_bone_deform(pchan, pchan->bone, cop, NULL, (mat)?bbonemat:NULL);
else
Mat4MulVecfl(pchan->chan_mat, cop);
vec[0]+=(cop[0]-co[0])*weight;
vec[1]+=(cop[1]-co[1])*weight;
vec[2]+=(cop[2]-co[2])*weight;
if(mat)
pchan_deform_mat_add(pchan, weight, bbonemat, mat);
}
else {
if(pchan->bone->segments>1) {
b_bone_deform(pchan, pchan->bone, cop, &bbonedq, NULL);
DQuatAddWeighted(dq, &bbonedq, weight);
}
else
DQuatAddWeighted(dq, pchan->dual_quat, weight);
}
(*contrib)+=weight;
}
void armature_deform_verts(Object *armOb, Object *target, DerivedMesh *dm,
float (*vertexCos)[3], float (*defMats)[3][3],
int numVerts, int deformflag,
float (*prevCos)[3], const char *defgrp_name)
{
bPoseChannel *pchan, **defnrToPC = NULL;
MDeformVert *dverts = NULL;
bDeformGroup *dg;
DualQuat *dualquats= NULL;
float obinv[4][4], premat[4][4], postmat[4][4];
int use_envelope = deformflag & ARM_DEF_ENVELOPE;
int use_quaternion = deformflag & ARM_DEF_QUATERNION;
int bbone_rest_def = deformflag & ARM_DEF_B_BONE_REST;
int invert_vgroup= deformflag & ARM_DEF_INVERT_VGROUP;
int numGroups = 0; /* safety for vertexgroup index overflow */
int i, target_totvert = 0; /* safety for vertexgroup overflow */
int use_dverts = 0;
int armature_def_nr = -1;
int totchan;
if(armOb == G.obedit) return;
Mat4Invert(obinv, target->obmat);
Mat4CpyMat4(premat, target->obmat);
Mat4MulMat4(postmat, armOb->obmat, obinv);
Mat4Invert(premat, postmat);
/* bone defmats are already in the channels, chan_mat */
/* initialize B_bone matrices and dual quaternions */
if(use_quaternion) {
totchan= BLI_countlist(&armOb->pose->chanbase);
dualquats= MEM_callocN(sizeof(DualQuat)*totchan, "dualquats");
}
totchan= 0;
for(pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next) {
if(!(pchan->bone->flag & BONE_NO_DEFORM)) {
if(pchan->bone->segments > 1)
pchan_b_bone_defmats(pchan, use_quaternion, bbone_rest_def);
if(use_quaternion) {
pchan->dual_quat= &dualquats[totchan++];
Mat4ToDQuat(pchan->bone->arm_mat, pchan->chan_mat, pchan->dual_quat);
}
}
}
/* get the def_nr for the overall armature vertex group if present */
for(i = 0, dg = target->defbase.first; dg; i++, dg = dg->next)
if(defgrp_name && strcmp(defgrp_name, dg->name) == 0)
armature_def_nr = i;
/* get a vertex-deform-index to posechannel array */
if(deformflag & ARM_DEF_VGROUP) {
if(ELEM(target->type, OB_MESH, OB_LATTICE)) {
numGroups = BLI_countlist(&target->defbase);
if(target->type==OB_MESH) {
Mesh *me= target->data;
dverts = me->dvert;
target_totvert = me->totvert;
}
else {
Lattice *lt= target->data;
dverts = lt->dvert;
if(dverts)
target_totvert = lt->pntsu*lt->pntsv*lt->pntsw;
}
/* if we have a DerivedMesh, only use dverts if it has them */
if(dm)
if(dm->getVertData(dm, 0, CD_MDEFORMVERT))
use_dverts = 1;
else use_dverts = 0;
else if(dverts) use_dverts = 1;
if(use_dverts) {
defnrToPC = MEM_callocN(sizeof(*defnrToPC) * numGroups,
"defnrToBone");
for(i = 0, dg = target->defbase.first; dg;
i++, dg = dg->next) {
defnrToPC[i] = get_pose_channel(armOb->pose, dg->name);
/* exclude non-deforming bones */
if(defnrToPC[i]) {
if(defnrToPC[i]->bone->flag & BONE_NO_DEFORM)
defnrToPC[i]= NULL;
}
}
}
}
}
for(i = 0; i < numVerts; i++) {
MDeformVert *dvert;
DualQuat sumdq, *dq = NULL;
float *co, dco[3];
float sumvec[3], summat[3][3];
float *vec = NULL, (*smat)[3] = NULL;
float contrib = 0.0f;
float armature_weight = 1.0f; /* default to 1 if no overall def group */
float prevco_weight = 1.0f; /* weight for optional cached vertexcos */
int j;
if(use_quaternion) {
memset(&sumdq, 0, sizeof(DualQuat));
dq= &sumdq;
}
else {
sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
vec= sumvec;
if(defMats) {
Mat3Clr((float*)summat);
smat = summat;
}
}
if(use_dverts || armature_def_nr >= 0) {
if(dm) dvert = dm->getVertData(dm, i, CD_MDEFORMVERT);
else if(dverts && i < target_totvert) dvert = dverts + i;
else dvert = NULL;
} else
dvert = NULL;
if(armature_def_nr >= 0 && dvert) {
armature_weight = 0.0f; /* a def group was given, so default to 0 */
for(j = 0; j < dvert->totweight; j++) {
if(dvert->dw[j].def_nr == armature_def_nr) {
armature_weight = dvert->dw[j].weight;
break;
}
}
/* hackish: the blending factor can be used for blending with prevCos too */
if(prevCos) {
if(invert_vgroup)
prevco_weight= 1.0f-armature_weight;
else
prevco_weight= armature_weight;
armature_weight= 1.0f;
}
}
/* check if there's any point in calculating for this vert */
if(armature_weight == 0.0f) continue;
/* get the coord we work on */
co= prevCos?prevCos[i]:vertexCos[i];
/* Apply the object's matrix */
Mat4MulVecfl(premat, co);
if(use_dverts && dvert && dvert->totweight) { // use weight groups ?
int deformed = 0;
for(j = 0; j < dvert->totweight; j++){
int index = dvert->dw[j].def_nr;
pchan = index < numGroups?defnrToPC[index]:NULL;
if(pchan) {
float weight = dvert->dw[j].weight;
Bone *bone = pchan->bone;
deformed = 1;
if(bone && bone->flag & BONE_MULT_VG_ENV) {
weight *= distfactor_to_bone(co, bone->arm_head,
bone->arm_tail,
bone->rad_head,
bone->rad_tail,
bone->dist);
}
pchan_bone_deform(pchan, weight, vec, dq, smat, co, &contrib);
}
}
/* if there are vertexgroups but not groups with bones
* (like for softbody groups)
*/
if(deformed == 0 && use_envelope) {
for(pchan = armOb->pose->chanbase.first; pchan;
pchan = pchan->next) {
if(!(pchan->bone->flag & BONE_NO_DEFORM))
contrib += dist_bone_deform(pchan, vec, dq, smat, co);
}
}
}
else if(use_envelope) {
for(pchan = armOb->pose->chanbase.first; pchan;
pchan = pchan->next) {
if(!(pchan->bone->flag & BONE_NO_DEFORM))
contrib += dist_bone_deform(pchan, vec, dq, smat, co);
}
}
/* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
if(contrib > 0.0001f) {
if(use_quaternion) {
DQuatNormalize(dq, contrib);
if(armature_weight != 1.0f) {
VECCOPY(dco, co);
DQuatMulVecfl(dq, dco, (defMats)? summat: NULL);
VecSubf(dco, dco, co);
VecMulf(dco, armature_weight);
VecAddf(co, co, dco);
}
else
DQuatMulVecfl(dq, co, (defMats)? summat: NULL);
smat = summat;
}
else {
VecMulf(vec, armature_weight/contrib);
VecAddf(co, vec, co);
}
if(defMats) {
float pre[3][3], post[3][3], tmpmat[3][3];
Mat3CpyMat4(pre, premat);
Mat3CpyMat4(post, postmat);
Mat3CpyMat3(tmpmat, defMats[i]);
if(!use_quaternion) /* quaternion already is scale corrected */
Mat3MulFloat((float*)smat, armature_weight/contrib);
Mat3MulSerie(defMats[i], tmpmat, pre, smat, post,
NULL, NULL, NULL, NULL);
}
}
/* always, check above code */
Mat4MulVecfl(postmat, co);
/* interpolate with previous modifier position using weight group */
if(prevCos) {
float mw= 1.0f - prevco_weight;
vertexCos[i][0]= prevco_weight*vertexCos[i][0] + mw*co[0];
vertexCos[i][1]= prevco_weight*vertexCos[i][1] + mw*co[1];
vertexCos[i][2]= prevco_weight*vertexCos[i][2] + mw*co[2];
}
}
if(dualquats) MEM_freeN(dualquats);
if(defnrToPC) MEM_freeN(defnrToPC);
/* free B_bone matrices */
for(pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next) {
if(pchan->b_bone_mats) {
MEM_freeN(pchan->b_bone_mats);
pchan->b_bone_mats = NULL;
}
if(pchan->b_bone_dual_quats) {
MEM_freeN(pchan->b_bone_dual_quats);
pchan->b_bone_dual_quats = NULL;
}
pchan->dual_quat = NULL;
}
}
/* ************ END Armature Deform ******************* */
void get_objectspace_bone_matrix (struct Bone* bone, float M_accumulatedMatrix[][4], int root, int posed)
{
Mat4CpyMat4(M_accumulatedMatrix, bone->arm_mat);
}
/* **************** Space to Space API ****************** */
/* Convert World-Space Matrix to Pose-Space Matrix */
void armature_mat_world_to_pose(Object *ob, float inmat[][4], float outmat[][4])
{
float obmat[4][4];
/* prevent crashes */
if (ob==NULL) return;
/* get inverse of (armature) object's matrix */
Mat4Invert(obmat, ob->obmat);
/* multiply given matrix by object's-inverse to find pose-space matrix */
Mat4MulMat4(outmat, obmat, inmat);
}
/* Convert Wolrd-Space Location to Pose-Space Location
* NOTE: this cannot be used to convert to pose-space location of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing)
*/
void armature_loc_world_to_pose(Object *ob, float *inloc, float *outloc)
{
float xLocMat[4][4];
float nLocMat[4][4];
/* build matrix for location */
Mat4One(xLocMat);
VECCOPY(xLocMat[3], inloc);
/* get bone-space cursor matrix and extract location */
armature_mat_world_to_pose(ob, xLocMat, nLocMat);
VECCOPY(outloc, nLocMat[3]);
}
/* Convert Pose-Space Matrix to Bone-Space Matrix
* NOTE: this cannot be used to convert to pose-space transforms of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing)
*/
void armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[][4], float outmat[][4])
{
float pc_trans[4][4], inv_trans[4][4];
float pc_posemat[4][4], inv_posemat[4][4];
/* paranoia: prevent crashes with no pose-channel supplied */
if (pchan==NULL) return;
/* get the inverse matrix of the pchan's transforms */
LocQuatSizeToMat4(pc_trans, pchan->loc, pchan->quat, pchan->size);
Mat4Invert(inv_trans, pc_trans);
/* Remove the pchan's transforms from it's pose_mat.
* This should leave behind the effects of restpose +
* parenting + constraints
*/
Mat4MulMat4(pc_posemat, inv_trans, pchan->pose_mat);
/* get the inverse of the leftovers so that we can remove
* that component from the supplied matrix
*/
Mat4Invert(inv_posemat, pc_posemat);
/* get the new matrix */
Mat4MulMat4(outmat, inmat, inv_posemat);
}
/* Convert Pose-Space Location to Bone-Space Location
* NOTE: this cannot be used to convert to pose-space location of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing)
*/
void armature_loc_pose_to_bone(bPoseChannel *pchan, float *inloc, float *outloc)
{
float xLocMat[4][4];
float nLocMat[4][4];
/* build matrix for location */
Mat4One(xLocMat);
VECCOPY(xLocMat[3], inloc);
/* get bone-space cursor matrix and extract location */
armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
VECCOPY(outloc, nLocMat[3]);
}
/* Remove rest-position effects from pose-transform for obtaining
* 'visual' transformation of pose-channel.
* (used by the Visual-Keyframing stuff)
*/
void armature_mat_pose_to_delta(float delta_mat[][4], float pose_mat[][4], float arm_mat[][4])
{
float imat[4][4];
Mat4Invert(imat, arm_mat);
Mat4MulMat4(delta_mat, pose_mat, imat);
}
/* **************** The new & simple (but OK!) armature evaluation ********* */
/* ****************** And how it works! ****************************************
This is the bone transformation trick; they're hierarchical so each bone(b)
is in the coord system of bone(b-1):
arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
-> yoffs is just the y axis translation in parent's coord system
-> d_root is the translation of the bone root, also in parent's coord system
pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
we then - in init deform - store the deform in chan_mat, such that:
pose_mat(b)= arm_mat(b) * chan_mat(b)
*************************************************************************** */
/* Computes vector and roll based on a rotation. "mat" must
contain only a rotation, and no scaling. */
void mat3_to_vec_roll(float mat[][3], float *vec, float *roll)
{
if (vec)
VecCopyf(vec, mat[1]);
if (roll) {
float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];
vec_roll_to_mat3(mat[1], 0.0f, vecmat);
Mat3Inv(vecmatinv, vecmat);
Mat3MulMat3(rollmat, vecmatinv, mat);
*roll= atan2(rollmat[2][0], rollmat[2][2]);
}
}
/* Calculates the rest matrix of a bone based
On its vector and a roll around that vector */
void vec_roll_to_mat3(float *vec, float roll, float mat[][3])
{
float nor[3], axis[3], target[3]={0,1,0};
float theta;
float rMatrix[3][3], bMatrix[3][3];
VECCOPY (nor, vec);
Normalize (nor);
/* Find Axis & Amount for bone matrix*/
Crossf (axis,target,nor);
if (Inpf(axis,axis) > 0.0000000000001) {
/* if nor is *not* a multiple of target ... */
Normalize (axis);
theta= NormalizedVecAngle2(target, nor);
/* Make Bone matrix*/
VecRotToMat3(axis, theta, bMatrix);
}
else {
/* if nor is a multiple of target ... */
float updown;
/* point same direction, or opposite? */
updown = ( Inpf (target,nor) > 0 ) ? 1.0 : -1.0;
/* I think this should work ... */
bMatrix[0][0]=updown; bMatrix[0][1]=0.0; bMatrix[0][2]=0.0;
bMatrix[1][0]=0.0; bMatrix[1][1]=updown; bMatrix[1][2]=0.0;
bMatrix[2][0]=0.0; bMatrix[2][1]=0.0; bMatrix[2][2]=1.0;
}
/* Make Roll matrix*/
VecRotToMat3(nor, roll, rMatrix);
/* Combine and output result*/
Mat3MulMat3 (mat, rMatrix, bMatrix);
}
/* recursive part, calculates restposition of entire tree of children */
/* used by exiting editmode too */
void where_is_armature_bone(Bone *bone, Bone *prevbone)
{
float vec[3];
/* Bone Space */
VecSubf (vec, bone->tail, bone->head);
vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
bone->length= VecLenf(bone->head, bone->tail);
/* this is called on old file reading too... */
if(bone->xwidth==0.0) {
bone->xwidth= 0.1f;
bone->zwidth= 0.1f;
bone->segments= 1;
}
if(prevbone) {
float offs_bone[4][4]; // yoffs(b-1) + root(b) + bonemat(b)
/* bone transform itself */
Mat4CpyMat3(offs_bone, bone->bone_mat);
/* The bone's root offset (is in the parent's coordinate system) */
VECCOPY(offs_bone[3], bone->head);
/* Get the length translation of parent (length along y axis) */
offs_bone[3][1]+= prevbone->length;
/* Compose the matrix for this bone */
Mat4MulMat4(bone->arm_mat, offs_bone, prevbone->arm_mat);
}
else {
Mat4CpyMat3(bone->arm_mat, bone->bone_mat);
VECCOPY(bone->arm_mat[3], bone->head);
}
/* head */
VECCOPY(bone->arm_head, bone->arm_mat[3]);
/* tail is in current local coord system */
VECCOPY(vec, bone->arm_mat[1]);
VecMulf(vec, bone->length);
VecAddf(bone->arm_tail, bone->arm_head, vec);
/* and the kiddies */
prevbone= bone;
for(bone= bone->childbase.first; bone; bone= bone->next) {
where_is_armature_bone(bone, prevbone);
}
}
/* updates vectors and matrices on rest-position level, only needed
after editing armature itself, now only on reading file */
void where_is_armature (bArmature *arm)
{
Bone *bone;
/* hierarchical from root to children */
for(bone= arm->bonebase.first; bone; bone= bone->next) {
where_is_armature_bone(bone, NULL);
}
}
/* if bone layer is protected, copy the data from from->pose */
static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
{
bPose *pose= ob->pose, *frompose= from->pose;
bPoseChannel *pchan, *pchanp, pchanw;
bConstraint *con;
if (frompose==NULL) return;
/* exception, armature local layer should be proxied too */
if (pose->proxy_layer)
((bArmature *)ob->data)->layer= pose->proxy_layer;
/* clear all transformation values from library */
rest_pose(frompose);
/* copy over all of the proxy's bone groups */
/* TODO for later - implement 'local' bone groups as for constraints
* Note: this isn't trivial, as bones reference groups by index not by pointer,
* so syncing things correctly needs careful attention
*/
BLI_freelistN(&pose->agroups);
duplicatelist(&pose->agroups, &frompose->agroups);
pose->active_group= frompose->active_group;
for (pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
if (pchan->bone->layer & layer_protected) {
ListBase proxylocal_constraints = {NULL, NULL};
pchanp= get_pose_channel(frompose, pchan->name);
/* copy posechannel to temp, but restore important pointers */
pchanw= *pchanp;
pchanw.prev= pchan->prev;
pchanw.next= pchan->next;
pchanw.parent= pchan->parent;
pchanw.child= pchan->child;
pchanw.path= NULL;
/* constraints - proxy constraints are flushed... local ones are added after
* 1. extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints
* 2. copy proxy-pchan's constraints on-to new
* 3. add extracted local constraints back on top
*/
extract_proxylocal_constraints(&proxylocal_constraints, &pchan->constraints);
copy_constraints(&pchanw.constraints, &pchanp->constraints);
addlisttolist(&pchanw.constraints, &proxylocal_constraints);
/* constraints - set target ob pointer to own object */
for (con= pchanw.constraints.first; con; con= con->next) {
bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
ListBase targets = {NULL, NULL};
bConstraintTarget *ct;
if (cti && cti->get_constraint_targets) {
cti->get_constraint_targets(con, &targets);
for (ct= targets.first; ct; ct= ct->next) {
if (ct->tar == from)
ct->tar = ob;
}
if (cti->flush_constraint_targets)
cti->flush_constraint_targets(con, &targets, 0);
}
}
/* free stuff from current channel */
if (pchan->path) MEM_freeN(pchan->path);
free_constraints(&pchan->constraints);
/* the final copy */
*pchan= pchanw;
}
}
}
static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
{
bPoseChannel *pchan = verify_pose_channel (pose, bone->name); // verify checks and/or adds
pchan->bone= bone;
pchan->parent= parchan;
counter++;
for(bone= bone->childbase.first; bone; bone= bone->next) {
counter= rebuild_pose_bone(pose, bone, pchan, counter);
/* for quick detecting of next bone in chain, only b-bone uses it now */
if(bone->flag & BONE_CONNECTED)
pchan->child= get_pose_channel(pose, bone->name);
}
return counter;
}
/* only after leave editmode, duplicating, validating older files, library syncing */
/* NOTE: pose->flag is set for it */
void armature_rebuild_pose(Object *ob, bArmature *arm)
{
Bone *bone;
bPose *pose;
bPoseChannel *pchan, *next;
int counter=0;
/* only done here */
if(ob->pose==NULL) ob->pose= MEM_callocN(sizeof(bPose), "new pose");
pose= ob->pose;
/* clear */
for(pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
pchan->bone= NULL;
pchan->child= NULL;
}
/* first step, check if all channels are there */
for(bone= arm->bonebase.first; bone; bone= bone->next) {
counter= rebuild_pose_bone(pose, bone, NULL, counter);
}
/* and a check for garbage */
for(pchan= pose->chanbase.first; pchan; pchan= next) {
next= pchan->next;
if(pchan->bone==NULL) {
if(pchan->path)
MEM_freeN(pchan->path);
free_constraints(&pchan->constraints);
BLI_freelinkN(&pose->chanbase, pchan);
}
}
// printf("rebuild pose %s, %d bones\n", ob->id.name, counter);
/* synchronize protected layers with proxy */
if(ob->proxy)
pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
update_pose_constraint_flags(ob->pose); // for IK detection for example
/* the sorting */
if(counter>1)
DAG_pose_sort(ob);
ob->pose->flag &= ~POSE_RECALC;
}
/* ********************** THE IK SOLVER ******************* */
/* allocates PoseTree, and links that to root bone/channel */
/* Note: detecting the IK chain is duplicate code... in drawarmature.c and in transform_conversions.c */
static void initialize_posetree(struct Object *ob, bPoseChannel *pchan_tip)
{
bPoseChannel *curchan, *pchan_root=NULL, *chanlist[256], **oldchan;
PoseTree *tree;
PoseTarget *target;
bConstraint *con;
bKinematicConstraint *data;
int a, segcount= 0, size, newsize, *oldparent, parent;
/* find IK constraint, and validate it */
for(con= pchan_tip->constraints.first; con; con= con->next) {
if(con->type==CONSTRAINT_TYPE_KINEMATIC) {
data=(bKinematicConstraint*)con->data;
if (data->flag & CONSTRAINT_IK_AUTO) break;
if (data->tar==NULL) continue;
if (data->tar->type==OB_ARMATURE && data->subtarget[0]==0) continue;
if ((con->flag & CONSTRAINT_DISABLE)==0 && (con->enforce!=0.0)) break;
}
}
if(con==NULL) return;
/* exclude tip from chain? */
if(!(data->flag & CONSTRAINT_IK_TIP))
pchan_tip= pchan_tip->parent;
/* Find the chain's root & count the segments needed */
for (curchan = pchan_tip; curchan; curchan=curchan->parent){
pchan_root = curchan;
curchan->flag |= POSE_CHAIN; // don't forget to clear this
chanlist[segcount]=curchan;
segcount++;
if(segcount==data->rootbone || segcount>255) break; // 255 is weak
}
if (!segcount) return;
/* setup the chain data */
/* we make tree-IK, unless all existing targets are in this chain */
for(tree= pchan_root->iktree.first; tree; tree= tree->next) {
for(target= tree->targets.first; target; target= target->next) {
curchan= tree->pchan[target->tip];
if(curchan->flag & POSE_CHAIN)
curchan->flag &= ~POSE_CHAIN;
else
break;
}
if(target) break;
}
/* create a target */
target= MEM_callocN(sizeof(PoseTarget), "posetarget");
target->con= con;
pchan_tip->flag &= ~POSE_CHAIN;
if(tree==NULL) {
/* make new tree */
tree= MEM_callocN(sizeof(PoseTree), "posetree");
tree->iterations= data->iterations;
tree->totchannel= segcount;
tree->stretch = (data->flag & CONSTRAINT_IK_STRETCH);
tree->pchan= MEM_callocN(segcount*sizeof(void*), "ik tree pchan");
tree->parent= MEM_callocN(segcount*sizeof(int), "ik tree parent");
for(a=0; a<segcount; a++) {
tree->pchan[a]= chanlist[segcount-a-1];
tree->parent[a]= a-1;
}
target->tip= segcount-1;
/* AND! link the tree to the root */
BLI_addtail(&pchan_root->iktree, tree);
}
else {
tree->iterations= MAX2(data->iterations, tree->iterations);
tree->stretch= tree->stretch && !(data->flag & CONSTRAINT_IK_STRETCH);
/* skip common pose channels and add remaining*/
size= MIN2(segcount, tree->totchannel);
for(a=0; a<size && tree->pchan[a]==chanlist[segcount-a-1]; a++);
parent= a-1;
segcount= segcount-a;
target->tip= tree->totchannel + segcount - 1;
if (segcount > 0) {
/* resize array */
newsize= tree->totchannel + segcount;
oldchan= tree->pchan;
oldparent= tree->parent;
tree->pchan= MEM_callocN(newsize*sizeof(void*), "ik tree pchan");
tree->parent= MEM_callocN(newsize*sizeof(int), "ik tree parent");
memcpy(tree->pchan, oldchan, sizeof(void*)*tree->totchannel);
memcpy(tree->parent, oldparent, sizeof(int)*tree->totchannel);
MEM_freeN(oldchan);
MEM_freeN(oldparent);
/* add new pose channels at the end, in reverse order */
for(a=0; a<segcount; a++) {
tree->pchan[tree->totchannel+a]= chanlist[segcount-a-1];
tree->parent[tree->totchannel+a]= tree->totchannel+a-1;
}
tree->parent[tree->totchannel]= parent;
tree->totchannel= newsize;
}
/* move tree to end of list, for correct evaluation order */
BLI_remlink(&pchan_root->iktree, tree);
BLI_addtail(&pchan_root->iktree, tree);
}
/* add target to the tree */
BLI_addtail(&tree->targets, target);
}
/* called from within the core where_is_pose loop, all animsystems and constraints
were executed & assigned. Now as last we do an IK pass */
static void execute_posetree(Object *ob, PoseTree *tree)
{
float R_parmat[3][3], identity[3][3];
float iR_parmat[3][3];
float R_bonemat[3][3];
float goalrot[3][3], goalpos[3];
float rootmat[4][4], imat[4][4];
float goal[4][4], goalinv[4][4];
float irest_basis[3][3], full_basis[3][3];
float end_pose[4][4], world_pose[4][4];
float length, basis[3][3], rest_basis[3][3], start[3], *ikstretch=NULL;
float resultinf=0.0f;
int a, flag, hasstretch=0, resultblend=0;
bPoseChannel *pchan;
IK_Segment *seg, *parent, **iktree, *iktarget;
IK_Solver *solver;
PoseTarget *target;
bKinematicConstraint *data, *poleangledata=NULL;
Bone *bone;
if (tree->totchannel == 0)
return;
iktree= MEM_mallocN(sizeof(void*)*tree->totchannel, "ik tree");
for(a=0; a<tree->totchannel; a++) {
pchan= tree->pchan[a];
bone= pchan->bone;
/* set DoF flag */
flag= 0;
if(!(pchan->ikflag & BONE_IK_NO_XDOF) && !(pchan->ikflag & BONE_IK_NO_XDOF_TEMP))
flag |= IK_XDOF;
if(!(pchan->ikflag & BONE_IK_NO_YDOF) && !(pchan->ikflag & BONE_IK_NO_YDOF_TEMP))
flag |= IK_YDOF;
if(!(pchan->ikflag & BONE_IK_NO_ZDOF) && !(pchan->ikflag & BONE_IK_NO_ZDOF_TEMP))
flag |= IK_ZDOF;
if(tree->stretch && (pchan->ikstretch > 0.0)) {
flag |= IK_TRANS_YDOF;
hasstretch = 1;
}
seg= iktree[a]= IK_CreateSegment(flag);
/* find parent */
if(a == 0)
parent= NULL;
else
parent= iktree[tree->parent[a]];
IK_SetParent(seg, parent);
/* get the matrix that transforms from prevbone into this bone */
Mat3CpyMat4(R_bonemat, pchan->pose_mat);
/* gather transformations for this IK segment */
if (pchan->parent)
Mat3CpyMat4(R_parmat, pchan->parent->pose_mat);
else
Mat3One(R_parmat);
/* bone offset */
if (pchan->parent && (a > 0))
VecSubf(start, pchan->pose_head, pchan->parent->pose_tail);
else
/* only root bone (a = 0) has no parent */
start[0]= start[1]= start[2]= 0.0f;
/* change length based on bone size */
length= bone->length*VecLength(R_bonemat[1]);
/* compute rest basis and its inverse */
Mat3CpyMat3(rest_basis, bone->bone_mat);
Mat3CpyMat3(irest_basis, bone->bone_mat);
Mat3Transp(irest_basis);
/* compute basis with rest_basis removed */
Mat3Inv(iR_parmat, R_parmat);
Mat3MulMat3(full_basis, iR_parmat, R_bonemat);
Mat3MulMat3(basis, irest_basis, full_basis);
/* basis must be pure rotation */
Mat3Ortho(basis);
/* transform offset into local bone space */
Mat3Ortho(iR_parmat);
Mat3MulVecfl(iR_parmat, start);
IK_SetTransform(seg, start, rest_basis, basis, length);
if (pchan->ikflag & BONE_IK_XLIMIT)
IK_SetLimit(seg, IK_X, pchan->limitmin[0], pchan->limitmax[0]);
if (pchan->ikflag & BONE_IK_YLIMIT)
IK_SetLimit(seg, IK_Y, pchan->limitmin[1], pchan->limitmax[1]);
if (pchan->ikflag & BONE_IK_ZLIMIT)
IK_SetLimit(seg, IK_Z, pchan->limitmin[2], pchan->limitmax[2]);
IK_SetStiffness(seg, IK_X, pchan->stiffness[0]);
IK_SetStiffness(seg, IK_Y, pchan->stiffness[1]);
IK_SetStiffness(seg, IK_Z, pchan->stiffness[2]);
if(tree->stretch && (pchan->ikstretch > 0.0)) {
float ikstretch = pchan->ikstretch*pchan->ikstretch;
IK_SetStiffness(seg, IK_TRANS_Y, MIN2(1.0-ikstretch, 0.99));
IK_SetLimit(seg, IK_TRANS_Y, 0.001, 1e10);
}
}
solver= IK_CreateSolver(iktree[0]);
/* set solver goals */
/* first set the goal inverse transform, assuming the root of tree was done ok! */
pchan= tree->pchan[0];
if (pchan->parent)
/* transform goal by parent mat, so this rotation is not part of the
segment's basis. otherwise rotation limits do not work on the
local transform of the segment itself. */
Mat4CpyMat4(rootmat, pchan->parent->pose_mat);
else
Mat4One(rootmat);
VECCOPY(rootmat[3], pchan->pose_head);
Mat4MulMat4 (imat, rootmat, ob->obmat);
Mat4Invert (goalinv, imat);
for (target=tree->targets.first; target; target=target->next) {
float polepos[3];
int poleconstrain= 0;
data= (bKinematicConstraint*)target->con->data;
/* 1.0=ctime, we pass on object for auto-ik (owner-type here is object, even though
* strictly speaking, it is a posechannel)
*/
get_constraint_target_matrix(target->con, 0, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);
/* and set and transform goal */
Mat4MulMat4(goal, rootmat, goalinv);
VECCOPY(goalpos, goal[3]);
Mat3CpyMat4(goalrot, goal);
/* same for pole vector target */
if(data->poletar) {
get_constraint_target_matrix(target->con, 1, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);
if(data->flag & CONSTRAINT_IK_SETANGLE) {
/* don't solve IK when we are setting the pole angle */
break;
}
else {
Mat4MulMat4(goal, rootmat, goalinv);
VECCOPY(polepos, goal[3]);
poleconstrain= 1;
/* for pole targets, we blend the result of the ik solver
* instead of the target position, otherwise we can't get
* a smooth transition */
resultblend= 1;
resultinf= target->con->enforce;
if(data->flag & CONSTRAINT_IK_GETANGLE) {
poleangledata= data;
data->flag &= ~CONSTRAINT_IK_GETANGLE;
}
}
}
/* do we need blending? */
if (!resultblend && target->con->enforce!=1.0) {
float q1[4], q2[4], q[4];
float fac= target->con->enforce;
float mfac= 1.0-fac;
pchan= tree->pchan[target->tip];
/* end effector in world space */
Mat4CpyMat4(end_pose, pchan->pose_mat);
VECCOPY(end_pose[3], pchan->pose_tail);
Mat4MulSerie(world_pose, goalinv, ob->obmat, end_pose, 0, 0, 0, 0, 0);
/* blend position */
goalpos[0]= fac*goalpos[0] + mfac*world_pose[3][0];
goalpos[1]= fac*goalpos[1] + mfac*world_pose[3][1];
goalpos[2]= fac*goalpos[2] + mfac*world_pose[3][2];
/* blend rotation */
Mat3ToQuat(goalrot, q1);
Mat4ToQuat(world_pose, q2);
QuatInterpol(q, q1, q2, mfac);
QuatToMat3(q, goalrot);
}
iktarget= iktree[target->tip];
if(data->weight != 0.0) {
if(poleconstrain)
IK_SolverSetPoleVectorConstraint(solver, iktarget, goalpos,
polepos, data->poleangle*M_PI/180, (poleangledata == data));
IK_SolverAddGoal(solver, iktarget, goalpos, data->weight);
}
if((data->flag & CONSTRAINT_IK_ROT) && (data->orientweight != 0.0))
if((data->flag & CONSTRAINT_IK_AUTO)==0)
IK_SolverAddGoalOrientation(solver, iktarget, goalrot,
data->orientweight);
}
/* solve */
IK_Solve(solver, 0.0f, tree->iterations);
if(poleangledata)
poleangledata->poleangle= IK_SolverGetPoleAngle(solver)*180/M_PI;
IK_FreeSolver(solver);
/* gather basis changes */
tree->basis_change= MEM_mallocN(sizeof(float[3][3])*tree->totchannel, "ik basis change");
if(hasstretch)
ikstretch= MEM_mallocN(sizeof(float)*tree->totchannel, "ik stretch");
for(a=0; a<tree->totchannel; a++) {
IK_GetBasisChange(iktree[a], tree->basis_change[a]);
if(hasstretch) {
/* have to compensate for scaling received from parent */
float parentstretch, stretch;
pchan= tree->pchan[a];
parentstretch= (tree->parent[a] >= 0)? ikstretch[tree->parent[a]]: 1.0;
if(tree->stretch && (pchan->ikstretch > 0.0)) {
float trans[3], length;
IK_GetTranslationChange(iktree[a], trans);
length= pchan->bone->length*VecLength(pchan->pose_mat[1]);
ikstretch[a]= (length == 0.0)? 1.0: (trans[1]+length)/length;
}
else
ikstretch[a] = 1.0;
stretch= (parentstretch == 0.0)? 1.0: ikstretch[a]/parentstretch;
VecMulf(tree->basis_change[a][0], stretch);
VecMulf(tree->basis_change[a][1], stretch);
VecMulf(tree->basis_change[a][2], stretch);
}
if(resultblend && resultinf!=1.0f) {
Mat3One(identity);
Mat3BlendMat3(tree->basis_change[a], identity,
tree->basis_change[a], resultinf);
}
IK_FreeSegment(iktree[a]);
}
MEM_freeN(iktree);
if(ikstretch) MEM_freeN(ikstretch);
}
void free_posetree(PoseTree *tree)
{
BLI_freelistN(&tree->targets);
if(tree->pchan) MEM_freeN(tree->pchan);
if(tree->parent) MEM_freeN(tree->parent);
if(tree->basis_change) MEM_freeN(tree->basis_change);
MEM_freeN(tree);
}
/* ********************** THE POSE SOLVER ******************* */
/* loc/rot/size to mat4 */
/* used in constraint.c too */
void chan_calc_mat(bPoseChannel *chan)
{
float smat[3][3];
float rmat[3][3];
float tmat[3][3];
SizeToMat3(chan->size, smat);
NormalQuat(chan->quat);
QuatToMat3(chan->quat, rmat);
Mat3MulMat3(tmat, rmat, smat);
Mat4CpyMat3(chan->chan_mat, tmat);
/* prevent action channels breaking chains */
/* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
if (chan->bone==NULL || !(chan->bone->flag & BONE_CONNECTED)) {
VECCOPY(chan->chan_mat[3], chan->loc);
}
}
/* transform from bone(b) to bone(b+1), store in chan_mat */
static void make_dmats(bPoseChannel *pchan)
{
if (pchan->parent) {
float iR_parmat[4][4];
Mat4Invert(iR_parmat, pchan->parent->pose_mat);
Mat4MulMat4(pchan->chan_mat, pchan->pose_mat, iR_parmat); // delta mat
}
else Mat4CpyMat4(pchan->chan_mat, pchan->pose_mat);
}
/* applies IK matrix to pchan, IK is done separated */
/* formula: pose_mat(b) = pose_mat(b-1) * diffmat(b-1, b) * ik_mat(b) */
/* to make this work, the diffmats have to be precalculated! Stored in chan_mat */
static void where_is_ik_bone(bPoseChannel *pchan, float ik_mat[][3]) // nr = to detect if this is first bone
{
float vec[3], ikmat[4][4];
Mat4CpyMat3(ikmat, ik_mat);
if (pchan->parent)
Mat4MulSerie(pchan->pose_mat, pchan->parent->pose_mat, pchan->chan_mat, ikmat, NULL, NULL, NULL, NULL, NULL);
else
Mat4MulMat4(pchan->pose_mat, ikmat, pchan->chan_mat);
/* calculate head */
VECCOPY(pchan->pose_head, pchan->pose_mat[3]);
/* calculate tail */
VECCOPY(vec, pchan->pose_mat[1]);
VecMulf(vec, pchan->bone->length);
VecAddf(pchan->pose_tail, pchan->pose_head, vec);
pchan->flag |= POSE_DONE;
}
/* NLA strip modifiers */
static void do_strip_modifiers(Object *armob, Bone *bone, bPoseChannel *pchan)
{
bActionModifier *amod;
bActionStrip *strip, *strip2;
float scene_cfra= G.scene->r.cfra;
int do_modif;
for (strip=armob->nlastrips.first; strip; strip=strip->next) {
do_modif=0;
if (scene_cfra>=strip->start && scene_cfra<=strip->end)
do_modif=1;
if ((scene_cfra > strip->end) && (strip->flag & ACTSTRIP_HOLDLASTFRAME)) {
do_modif=1;
/* if there are any other strips active, ignore modifiers for this strip -
* 'hold' option should only hold action modifiers if there are
* no other active strips */
for (strip2=strip->next; strip2; strip2=strip2->next) {
if (strip2 == strip) continue;
if (scene_cfra>=strip2->start && scene_cfra<=strip2->end) {
if (!(strip2->flag & ACTSTRIP_MUTE))
do_modif=0;
}
}
/* if there are any later, activated, strips with 'hold' set, they take precedence,
* so ignore modifiers for this strip */
for (strip2=strip->next; strip2; strip2=strip2->next) {
if (scene_cfra < strip2->start) continue;
if ((strip2->flag & ACTSTRIP_HOLDLASTFRAME) && !(strip2->flag & ACTSTRIP_MUTE)) {
do_modif=0;
}
}
}
if (do_modif) {
/* temporal solution to prevent 2 strips accumulating */
if(scene_cfra==strip->end && strip->next && strip->next->start==scene_cfra)
continue;
for(amod= strip->modifiers.first; amod; amod= amod->next) {
switch (amod->type) {
case ACTSTRIP_MOD_DEFORM:
{
/* validate first */
if(amod->ob && amod->ob->type==OB_CURVE && amod->channel[0]) {
if( strcmp(pchan->name, amod->channel)==0 ) {
float mat4[4][4], mat3[3][3];
curve_deform_vector(amod->ob, armob, bone->arm_mat[3], pchan->pose_mat[3], mat3, amod->no_rot_axis);
Mat4CpyMat4(mat4, pchan->pose_mat);
Mat4MulMat34(pchan->pose_mat, mat3, mat4);
}
}
}
break;
case ACTSTRIP_MOD_NOISE:
{
if( strcmp(pchan->name, amod->channel)==0 ) {
float nor[3], loc[3], ofs;
float eul[3], size[3], eulo[3], sizeo[3];
/* calculate turbulance */
ofs = amod->turbul / 200.0f;
/* make a copy of starting conditions */
VECCOPY(loc, pchan->pose_mat[3]);
Mat4ToEul(pchan->pose_mat, eul);
Mat4ToSize(pchan->pose_mat, size);
VECCOPY(eulo, eul);
VECCOPY(sizeo, size);
/* apply noise to each set of channels */
if (amod->channels & 4) {
/* for scaling */
nor[0] = BLI_gNoise(amod->noisesize, size[0]+ofs, size[1], size[2], 0, 0) - ofs;
nor[1] = BLI_gNoise(amod->noisesize, size[0], size[1]+ofs, size[2], 0, 0) - ofs;
nor[2] = BLI_gNoise(amod->noisesize, size[0], size[1], size[2]+ofs, 0, 0) - ofs;
VecAddf(size, size, nor);
if (sizeo[0] != 0)
VecMulf(pchan->pose_mat[0], size[0] / sizeo[0]);
if (sizeo[1] != 0)
VecMulf(pchan->pose_mat[1], size[1] / sizeo[1]);
if (sizeo[2] != 0)
VecMulf(pchan->pose_mat[2], size[2] / sizeo[2]);
}
if (amod->channels & 2) {
/* for rotation */
nor[0] = BLI_gNoise(amod->noisesize, eul[0]+ofs, eul[1], eul[2], 0, 0) - ofs;
nor[1] = BLI_gNoise(amod->noisesize, eul[0], eul[1]+ofs, eul[2], 0, 0) - ofs;
nor[2] = BLI_gNoise(amod->noisesize, eul[0], eul[1], eul[2]+ofs, 0, 0) - ofs;
compatible_eul(nor, eulo);
VecAddf(eul, eul, nor);
compatible_eul(eul, eulo);
LocEulSizeToMat4(pchan->pose_mat, loc, eul, size);
}
if (amod->channels & 1) {
/* for location */
nor[0] = BLI_gNoise(amod->noisesize, loc[0]+ofs, loc[1], loc[2], 0, 0) - ofs;
nor[1] = BLI_gNoise(amod->noisesize, loc[0], loc[1]+ofs, loc[2], 0, 0) - ofs;
nor[2] = BLI_gNoise(amod->noisesize, loc[0], loc[1], loc[2]+ofs, 0, 0) - ofs;
VecAddf(pchan->pose_mat[3], loc, nor);
}
}
}
break;
}
}
}
}
}
/* The main armature solver, does all constraints excluding IK */
/* pchan is validated, as having bone and parent pointer */
static void where_is_pose_bone(Object *ob, bPoseChannel *pchan, float ctime)
{
Bone *bone, *parbone;
bPoseChannel *parchan;
float vec[3];
/* set up variables for quicker access below */
bone= pchan->bone;
parbone= bone->parent;
parchan= pchan->parent;
/* this gives a chan_mat with actions (ipos) results */
chan_calc_mat(pchan);
/* construct the posemat based on PoseChannels, that we do before applying constraints */
/* pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
if(parchan) {
float offs_bone[4][4]; // yoffs(b-1) + root(b) + bonemat(b)
/* bone transform itself */
Mat4CpyMat3(offs_bone, bone->bone_mat);
/* The bone's root offset (is in the parent's coordinate system) */
VECCOPY(offs_bone[3], bone->head);
/* Get the length translation of parent (length along y axis) */
offs_bone[3][1]+= parbone->length;
/* Compose the matrix for this bone */
if(bone->flag & BONE_HINGE) { // uses restposition rotation, but actual position
float tmat[4][4];
/* the rotation of the parent restposition */
Mat4CpyMat4(tmat, parbone->arm_mat);
/* the location of actual parent transform */
VECCOPY(tmat[3], offs_bone[3]);
offs_bone[3][0]= offs_bone[3][1]= offs_bone[3][2]= 0.0f;
Mat4MulVecfl(parchan->pose_mat, tmat[3]);
Mat4MulSerie(pchan->pose_mat, tmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
}
else if(bone->flag & BONE_NO_SCALE) {
float orthmat[4][4], vec[3];
/* get the official transform, but we only use the vector from it (optimize...) */
Mat4MulSerie(pchan->pose_mat, parchan->pose_mat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
VECCOPY(vec, pchan->pose_mat[3]);
/* do this again, but with an ortho-parent matrix */
Mat4CpyMat4(orthmat, parchan->pose_mat);
Mat4Ortho(orthmat);
Mat4MulSerie(pchan->pose_mat, orthmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
/* copy correct transform */
VECCOPY(pchan->pose_mat[3], vec);
}
else
Mat4MulSerie(pchan->pose_mat, parchan->pose_mat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
}
else {
Mat4MulMat4(pchan->pose_mat, pchan->chan_mat, bone->arm_mat);
/* only rootbones get the cyclic offset (unless user doesn't want that) */
if ((bone->flag & BONE_NO_CYCLICOFFSET) == 0)
VecAddf(pchan->pose_mat[3], pchan->pose_mat[3], ob->pose->cyclic_offset);
}
/* do NLA strip modifiers - i.e. curve follow */
do_strip_modifiers(ob, bone, pchan);
/* Do constraints */
if (pchan->constraints.first) {
bConstraintOb *cob;
/* local constraints */
do_constraint_channels(&pchan->constraints, NULL, ctime, 0);
/* make a copy of location of PoseChannel for later */
VECCOPY(vec, pchan->pose_mat[3]);
/* prepare PoseChannel for Constraint solving
* - makes a copy of matrix, and creates temporary struct to use
*/
cob= constraints_make_evalob(ob, pchan, CONSTRAINT_OBTYPE_BONE);
/* Solve PoseChannel's Constraints */
solve_constraints(&pchan->constraints, cob, ctime); // ctime doesnt alter objects
/* cleanup after Constraint Solving
* - applies matrix back to pchan, and frees temporary struct used
*/
constraints_clear_evalob(cob);
/* prevent constraints breaking a chain */
if(pchan->bone->flag & BONE_CONNECTED) {
VECCOPY(pchan->pose_mat[3], vec);
}
}
/* calculate head */
VECCOPY(pchan->pose_head, pchan->pose_mat[3]);
/* calculate tail */
VECCOPY(vec, pchan->pose_mat[1]);
VecMulf(vec, bone->length);
VecAddf(pchan->pose_tail, pchan->pose_head, vec);
}
/* This only reads anim data from channels, and writes to channels */
/* This is the only function adding poses */
void where_is_pose (Object *ob)
{
bArmature *arm;
Bone *bone;
bPoseChannel *pchan;
float imat[4][4];
float ctime= bsystem_time(ob, (float)G.scene->r.cfra, 0.0); /* not accurate... */
arm = get_armature(ob);
if(arm==NULL) return;
if(ob->pose==NULL || (ob->pose->flag & POSE_RECALC))
armature_rebuild_pose(ob, arm);
/* In restposition we read the data from the bones */
if(ob==G.obedit || (arm->flag & ARM_RESTPOS)) {
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
bone= pchan->bone;
if(bone) {
Mat4CpyMat4(pchan->pose_mat, bone->arm_mat);
VECCOPY(pchan->pose_head, bone->arm_head);
VECCOPY(pchan->pose_tail, bone->arm_tail);
}
}
}
else {
Mat4Invert(ob->imat, ob->obmat); // imat is needed
/* 1. construct the PoseTrees, clear flags */
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
pchan->flag &= ~(POSE_DONE|POSE_CHAIN);
if(pchan->constflag & PCHAN_HAS_IK) // flag is set on editing constraints
initialize_posetree(ob, pchan); // will attach it to root!
}
/* 2. the main loop, channels are already hierarchical sorted from root to children */
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
/* 3. if we find an IK root, we handle it separated */
if(pchan->iktree.first) {
while(pchan->iktree.first) {
PoseTree *tree= pchan->iktree.first;
int a;
/* 4. walk over the tree for regular solving */
for(a=0; a<tree->totchannel; a++) {
if(!(tree->pchan[a]->flag & POSE_DONE)) // successive trees can set the flag
where_is_pose_bone(ob, tree->pchan[a], ctime);
}
/* 5. execute the IK solver */
execute_posetree(ob, tree);
/* 6. apply the differences to the channels,
we need to calculate the original differences first */
for(a=0; a<tree->totchannel; a++)
make_dmats(tree->pchan[a]);
for(a=0; a<tree->totchannel; a++)
/* sets POSE_DONE */
where_is_ik_bone(tree->pchan[a], tree->basis_change[a]);
/* 7. and free */
BLI_remlink(&pchan->iktree, tree);
free_posetree(tree);
}
}
else if(!(pchan->flag & POSE_DONE)) {
where_is_pose_bone(ob, pchan, ctime);
}
}
}
/* calculating deform matrices */
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
if(pchan->bone) {
Mat4Invert(imat, pchan->bone->arm_mat);
Mat4MulMat4(pchan->chan_mat, imat, pchan->pose_mat);
}
}
}