This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/displist.c
Bastien Montagne 98ecab1af0 Fix T56906: Mesh from Curve not working on curves beveled by curves.
Not exactly sure why we did not have cached displist for bevel object
here... But anyway, that conversion operation should really happen
outside of depsgraph evaluation area, so makes sense to do it as when
generating geometry for rendering, imho. Also solves issues like loosing
hidden parts of the curve/surface, etc. Still using viewport resolution
for curves, though.
2018-11-28 18:16:48 +01:00

1886 lines
48 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/displist.c
* \ingroup bke
*/
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
#include "DNA_mesh_types.h"
#include "DNA_scene_types.h"
#include "DNA_object_types.h"
#include "DNA_vfont_types.h"
#include "BLI_blenlib.h"
#include "BLI_memarena.h"
#include "BLI_math.h"
#include "BLI_scanfill.h"
#include "BLI_utildefines.h"
#include "BKE_global.h"
#include "BKE_displist.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_object.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_mball.h"
#include "BKE_mball_tessellate.h"
#include "BKE_mesh.h"
#include "BKE_curve.h"
#include "BKE_key.h"
#include "BKE_anim.h"
#include "BKE_font.h"
#include "BKE_lattice.h"
#include "BKE_modifier.h"
#include "BLI_sys_types.h" // for intptr_t support
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
static void boundbox_displist_object(Object *ob);
void BKE_displist_elem_free(DispList *dl)
{
if (dl) {
if (dl->verts) MEM_freeN(dl->verts);
if (dl->nors) MEM_freeN(dl->nors);
if (dl->index) MEM_freeN(dl->index);
if (dl->bevel_split) MEM_freeN(dl->bevel_split);
MEM_freeN(dl);
}
}
void BKE_displist_free(ListBase *lb)
{
DispList *dl;
while ((dl = BLI_pophead(lb))) {
BKE_displist_elem_free(dl);
}
}
DispList *BKE_displist_find_or_create(ListBase *lb, int type)
{
DispList *dl;
dl = lb->first;
while (dl) {
if (dl->type == type)
return dl;
dl = dl->next;
}
dl = MEM_callocN(sizeof(DispList), "find_disp");
dl->type = type;
BLI_addtail(lb, dl);
return dl;
}
DispList *BKE_displist_find(ListBase *lb, int type)
{
DispList *dl;
dl = lb->first;
while (dl) {
if (dl->type == type)
return dl;
dl = dl->next;
}
return NULL;
}
bool BKE_displist_has_faces(ListBase *lb)
{
DispList *dl;
for (dl = lb->first; dl; dl = dl->next) {
if (ELEM(dl->type, DL_INDEX3, DL_INDEX4, DL_SURF)) {
return true;
}
}
return false;
}
void BKE_displist_copy(ListBase *lbn, ListBase *lb)
{
DispList *dln, *dl;
BKE_displist_free(lbn);
dl = lb->first;
while (dl) {
dln = MEM_dupallocN(dl);
BLI_addtail(lbn, dln);
dln->verts = MEM_dupallocN(dl->verts);
dln->nors = MEM_dupallocN(dl->nors);
dln->index = MEM_dupallocN(dl->index);
if (dl->bevel_split) {
dln->bevel_split = MEM_dupallocN(dl->bevel_split);
}
dl = dl->next;
}
}
void BKE_displist_normals_add(ListBase *lb)
{
DispList *dl = NULL;
float *vdata, *ndata, nor[3];
float *v1, *v2, *v3, *v4;
float *n1, *n2, *n3, *n4;
int a, b, p1, p2, p3, p4;
dl = lb->first;
while (dl) {
if (dl->type == DL_INDEX3) {
if (dl->nors == NULL) {
dl->nors = MEM_callocN(sizeof(float) * 3, "dlnors");
if (dl->flag & DL_BACK_CURVE) {
dl->nors[2] = -1.0f;
}
else {
dl->nors[2] = 1.0f;
}
}
}
else if (dl->type == DL_SURF) {
if (dl->nors == NULL) {
dl->nors = MEM_callocN(sizeof(float) * 3 * dl->nr * dl->parts, "dlnors");
vdata = dl->verts;
ndata = dl->nors;
for (a = 0; a < dl->parts; a++) {
if (BKE_displist_surfindex_get(dl, a, &b, &p1, &p2, &p3, &p4) == 0)
break;
v1 = vdata + 3 * p1;
n1 = ndata + 3 * p1;
v2 = vdata + 3 * p2;
n2 = ndata + 3 * p2;
v3 = vdata + 3 * p3;
n3 = ndata + 3 * p3;
v4 = vdata + 3 * p4;
n4 = ndata + 3 * p4;
for (; b < dl->nr; b++) {
normal_quad_v3(nor, v1, v3, v4, v2);
add_v3_v3(n1, nor);
add_v3_v3(n2, nor);
add_v3_v3(n3, nor);
add_v3_v3(n4, nor);
v2 = v1; v1 += 3;
v4 = v3; v3 += 3;
n2 = n1; n1 += 3;
n4 = n3; n3 += 3;
}
}
a = dl->parts * dl->nr;
v1 = ndata;
while (a--) {
normalize_v3(v1);
v1 += 3;
}
}
}
dl = dl->next;
}
}
void BKE_displist_count(ListBase *lb, int *totvert, int *totface, int *tottri)
{
DispList *dl;
for (dl = lb->first; dl; dl = dl->next) {
int vert_tot = 0;
int face_tot = 0;
int tri_tot = 0;
switch (dl->type) {
case DL_SURF:
{
vert_tot = dl->nr * dl->parts;
face_tot = (dl->nr - 1) * (dl->parts - 1);
tri_tot = face_tot * 2;
break;
}
case DL_INDEX3:
{
vert_tot = dl->nr;
face_tot = dl->parts;
tri_tot = face_tot;
break;
}
case DL_INDEX4:
{
vert_tot = dl->nr;
face_tot = dl->parts;
tri_tot = face_tot * 2;
break;
}
case DL_POLY:
case DL_SEGM:
{
vert_tot = dl->nr * dl->parts;
break;
}
}
*totvert += vert_tot;
*totface += face_tot;
*tottri += tri_tot;
}
}
bool BKE_displist_surfindex_get(DispList *dl, int a, int *b, int *p1, int *p2, int *p3, int *p4)
{
if ((dl->flag & DL_CYCL_V) == 0 && a == (dl->parts) - 1) {
return false;
}
if (dl->flag & DL_CYCL_U) {
(*p1) = dl->nr * a;
(*p2) = (*p1) + dl->nr - 1;
(*p3) = (*p1) + dl->nr;
(*p4) = (*p2) + dl->nr;
(*b) = 0;
}
else {
(*p2) = dl->nr * a;
(*p1) = (*p2) + 1;
(*p4) = (*p2) + dl->nr;
(*p3) = (*p1) + dl->nr;
(*b) = 1;
}
if ((dl->flag & DL_CYCL_V) && a == dl->parts - 1) {
(*p3) -= dl->nr * dl->parts;
(*p4) -= dl->nr * dl->parts;
}
return true;
}
/* ****************** make displists ********************* */
#ifdef __INTEL_COMPILER
/* ICC with the optimization -02 causes crashes. */
# pragma intel optimization_level 1
#endif
static void curve_to_displist(Curve *cu, ListBase *nubase, ListBase *dispbase,
const bool for_render, const bool use_render_resolution)
{
Nurb *nu;
DispList *dl;
BezTriple *bezt, *prevbezt;
BPoint *bp;
float *data;
int a, len, resolu;
const bool editmode = (!for_render && (cu->editnurb || cu->editfont));
nu = nubase->first;
while (nu) {
if (nu->hide == 0 || editmode == false) {
if (use_render_resolution && cu->resolu_ren != 0)
resolu = cu->resolu_ren;
else
resolu = nu->resolu;
if (!BKE_nurb_check_valid_u(nu)) {
/* pass */
}
else if (nu->type == CU_BEZIER) {
/* count */
len = 0;
a = nu->pntsu - 1;
if (nu->flagu & CU_NURB_CYCLIC) a++;
prevbezt = nu->bezt;
bezt = prevbezt + 1;
while (a--) {
if (a == 0 && (nu->flagu & CU_NURB_CYCLIC))
bezt = nu->bezt;
if (prevbezt->h2 == HD_VECT && bezt->h1 == HD_VECT)
len++;
else
len += resolu;
if (a == 0 && (nu->flagu & CU_NURB_CYCLIC) == 0)
len++;
prevbezt = bezt;
bezt++;
}
dl = MEM_callocN(sizeof(DispList), "makeDispListbez");
/* len+1 because of 'forward_diff_bezier' function */
dl->verts = MEM_mallocN((len + 1) * sizeof(float[3]), "dlverts");
BLI_addtail(dispbase, dl);
dl->parts = 1;
dl->nr = len;
dl->col = nu->mat_nr;
dl->charidx = nu->charidx;
data = dl->verts;
/* check that (len != 2) so we don't immediately loop back on ourselves */
if (nu->flagu & CU_NURB_CYCLIC && (dl->nr != 2)) {
dl->type = DL_POLY;
a = nu->pntsu;
}
else {
dl->type = DL_SEGM;
a = nu->pntsu - 1;
}
prevbezt = nu->bezt;
bezt = prevbezt + 1;
while (a--) {
if (a == 0 && dl->type == DL_POLY)
bezt = nu->bezt;
if (prevbezt->h2 == HD_VECT && bezt->h1 == HD_VECT) {
copy_v3_v3(data, prevbezt->vec[1]);
data += 3;
}
else {
int j;
for (j = 0; j < 3; j++) {
BKE_curve_forward_diff_bezier(prevbezt->vec[1][j],
prevbezt->vec[2][j],
bezt->vec[0][j],
bezt->vec[1][j],
data + j, resolu, 3 * sizeof(float));
}
data += 3 * resolu;
}
if (a == 0 && dl->type == DL_SEGM) {
copy_v3_v3(data, bezt->vec[1]);
}
prevbezt = bezt;
bezt++;
}
}
else if (nu->type == CU_NURBS) {
len = (resolu * SEGMENTSU(nu));
dl = MEM_callocN(sizeof(DispList), "makeDispListsurf");
dl->verts = MEM_mallocN(len * sizeof(float[3]), "dlverts");
BLI_addtail(dispbase, dl);
dl->parts = 1;
dl->nr = len;
dl->col = nu->mat_nr;
dl->charidx = nu->charidx;
data = dl->verts;
if (nu->flagu & CU_NURB_CYCLIC)
dl->type = DL_POLY;
else dl->type = DL_SEGM;
BKE_nurb_makeCurve(nu, data, NULL, NULL, NULL, resolu, 3 * sizeof(float));
}
else if (nu->type == CU_POLY) {
len = nu->pntsu;
dl = MEM_callocN(sizeof(DispList), "makeDispListpoly");
dl->verts = MEM_mallocN(len * sizeof(float[3]), "dlverts");
BLI_addtail(dispbase, dl);
dl->parts = 1;
dl->nr = len;
dl->col = nu->mat_nr;
dl->charidx = nu->charidx;
data = dl->verts;
if ((nu->flagu & CU_NURB_CYCLIC) && (dl->nr != 2)) {
dl->type = DL_POLY;
}
else {
dl->type = DL_SEGM;
}
a = len;
bp = nu->bp;
while (a--) {
copy_v3_v3(data, bp->vec);
bp++;
data += 3;
}
}
}
nu = nu->next;
}
}
/**
* \param normal_proj Optional normal thats used to project the scanfill verts into 2d coords.
* Pass this along if known since it saves time calculating the normal.
* \param flipnormal Flip the normal (same as passing \a normal_proj negated)
*/
void BKE_displist_fill(ListBase *dispbase, ListBase *to, const float normal_proj[3], const bool flipnormal)
{
ScanFillContext sf_ctx;
ScanFillVert *sf_vert, *sf_vert_new, *sf_vert_last;
ScanFillFace *sf_tri;
MemArena *sf_arena;
DispList *dlnew = NULL, *dl;
float *f1;
int colnr = 0, charidx = 0, cont = 1, tot, a, *index, nextcol = 0;
int totvert;
const int scanfill_flag = BLI_SCANFILL_CALC_REMOVE_DOUBLES | BLI_SCANFILL_CALC_POLYS | BLI_SCANFILL_CALC_HOLES;
if (dispbase == NULL)
return;
if (BLI_listbase_is_empty(dispbase))
return;
sf_arena = BLI_memarena_new(BLI_SCANFILL_ARENA_SIZE, __func__);
while (cont) {
int dl_flag_accum = 0;
cont = 0;
totvert = 0;
nextcol = 0;
BLI_scanfill_begin_arena(&sf_ctx, sf_arena);
dl = dispbase->first;
while (dl) {
if (dl->type == DL_POLY) {
if (charidx < dl->charidx)
cont = 1;
else if (charidx == dl->charidx) { /* character with needed index */
if (colnr == dl->col) {
sf_ctx.poly_nr++;
/* make editverts and edges */
f1 = dl->verts;
a = dl->nr;
sf_vert = sf_vert_new = NULL;
while (a--) {
sf_vert_last = sf_vert;
sf_vert = BLI_scanfill_vert_add(&sf_ctx, f1);
totvert++;
if (sf_vert_last == NULL)
sf_vert_new = sf_vert;
else {
BLI_scanfill_edge_add(&sf_ctx, sf_vert_last, sf_vert);
}
f1 += 3;
}
if (sf_vert != NULL && sf_vert_new != NULL) {
BLI_scanfill_edge_add(&sf_ctx, sf_vert, sf_vert_new);
}
}
else if (colnr < dl->col) {
/* got poly with next material at current char */
cont = 1;
nextcol = 1;
}
}
dl_flag_accum |= dl->flag;
}
dl = dl->next;
}
/* XXX (obedit && obedit->actcol) ? (obedit->actcol - 1) : 0)) { */
if (totvert && (tot = BLI_scanfill_calc_ex(&sf_ctx,
scanfill_flag,
normal_proj)))
{
if (tot) {
dlnew = MEM_callocN(sizeof(DispList), "filldisplist");
dlnew->type = DL_INDEX3;
dlnew->flag = (dl_flag_accum & (DL_BACK_CURVE | DL_FRONT_CURVE));
dlnew->col = colnr;
dlnew->nr = totvert;
dlnew->parts = tot;
dlnew->index = MEM_mallocN(tot * 3 * sizeof(int), "dlindex");
dlnew->verts = MEM_mallocN(totvert * 3 * sizeof(float), "dlverts");
/* vert data */
f1 = dlnew->verts;
totvert = 0;
for (sf_vert = sf_ctx.fillvertbase.first; sf_vert; sf_vert = sf_vert->next) {
copy_v3_v3(f1, sf_vert->co);
f1 += 3;
/* index number */
sf_vert->tmp.i = totvert;
totvert++;
}
/* index data */
index = dlnew->index;
for (sf_tri = sf_ctx.fillfacebase.first; sf_tri; sf_tri = sf_tri->next) {
index[0] = sf_tri->v1->tmp.i;
index[1] = sf_tri->v2->tmp.i;
index[2] = sf_tri->v3->tmp.i;
if (flipnormal)
SWAP(int, index[0], index[2]);
index += 3;
}
}
BLI_addhead(to, dlnew);
}
BLI_scanfill_end_arena(&sf_ctx, sf_arena);
if (nextcol) {
/* stay at current char but fill polys with next material */
colnr++;
}
else {
/* switch to next char and start filling from first material */
charidx++;
colnr = 0;
}
}
BLI_memarena_free(sf_arena);
/* do not free polys, needed for wireframe display */
}
static void bevels_to_filledpoly(Curve *cu, ListBase *dispbase)
{
const float z_up[3] = {0.0f, 0.0f, 1.0f};
ListBase front, back;
DispList *dl, *dlnew;
float *fp, *fp1;
int a, dpoly;
BLI_listbase_clear(&front);
BLI_listbase_clear(&back);
dl = dispbase->first;
while (dl) {
if (dl->type == DL_SURF) {
if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U) == 0) {
if ((cu->flag & CU_BACK) && (dl->flag & DL_BACK_CURVE)) {
dlnew = MEM_callocN(sizeof(DispList), "filldisp");
BLI_addtail(&front, dlnew);
dlnew->verts = fp1 = MEM_mallocN(sizeof(float) * 3 * dl->parts, "filldisp1");
dlnew->nr = dl->parts;
dlnew->parts = 1;
dlnew->type = DL_POLY;
dlnew->flag = DL_BACK_CURVE;
dlnew->col = dl->col;
dlnew->charidx = dl->charidx;
fp = dl->verts;
dpoly = 3 * dl->nr;
a = dl->parts;
while (a--) {
copy_v3_v3(fp1, fp);
fp1 += 3;
fp += dpoly;
}
}
if ((cu->flag & CU_FRONT) && (dl->flag & DL_FRONT_CURVE)) {
dlnew = MEM_callocN(sizeof(DispList), "filldisp");
BLI_addtail(&back, dlnew);
dlnew->verts = fp1 = MEM_mallocN(sizeof(float) * 3 * dl->parts, "filldisp1");
dlnew->nr = dl->parts;
dlnew->parts = 1;
dlnew->type = DL_POLY;
dlnew->flag = DL_FRONT_CURVE;
dlnew->col = dl->col;
dlnew->charidx = dl->charidx;
fp = dl->verts + 3 * (dl->nr - 1);
dpoly = 3 * dl->nr;
a = dl->parts;
while (a--) {
copy_v3_v3(fp1, fp);
fp1 += 3;
fp += dpoly;
}
}
}
}
dl = dl->next;
}
BKE_displist_fill(&front, dispbase, z_up, true);
BKE_displist_fill(&back, dispbase, z_up, false);
BKE_displist_free(&front);
BKE_displist_free(&back);
BKE_displist_fill(dispbase, dispbase, z_up, false);
}
static void curve_to_filledpoly(Curve *cu, ListBase *UNUSED(nurb), ListBase *dispbase)
{
if (!CU_DO_2DFILL(cu))
return;
if (dispbase->first && ((DispList *) dispbase->first)->type == DL_SURF) {
bevels_to_filledpoly(cu, dispbase);
}
else {
const float z_up[3] = {0.0f, 0.0f, 1.0f};
BKE_displist_fill(dispbase, dispbase, z_up, false);
}
}
/* taper rules:
* - only 1 curve
* - first point left, last point right
* - based on subdivided points in original curve, not on points in taper curve (still)
*/
static float displist_calc_taper(Depsgraph *depsgraph, Scene *scene, Object *taperobj, float fac)
{
DispList *dl;
if (taperobj == NULL || taperobj->type != OB_CURVE)
return 1.0;
dl = taperobj->runtime.curve_cache ? taperobj->runtime.curve_cache->disp.first : NULL;
if (dl == NULL) {
BKE_displist_make_curveTypes(depsgraph, scene, taperobj, false, false);
dl = taperobj->runtime.curve_cache->disp.first;
}
if (dl) {
float minx, dx, *fp;
int a;
/* horizontal size */
minx = dl->verts[0];
dx = dl->verts[3 * (dl->nr - 1)] - minx;
if (dx > 0.0f) {
fp = dl->verts;
for (a = 0; a < dl->nr; a++, fp += 3) {
if ((fp[0] - minx) / dx >= fac) {
/* interpolate with prev */
if (a > 0) {
float fac1 = (fp[-3] - minx) / dx;
float fac2 = (fp[0] - minx) / dx;
if (fac1 != fac2)
return fp[1] * (fac1 - fac) / (fac1 - fac2) + fp[-2] * (fac - fac2) / (fac1 - fac2);
}
return fp[1];
}
}
return fp[-2]; // last y coord
}
}
return 1.0;
}
float BKE_displist_calc_taper(Depsgraph *depsgraph, Scene *scene, Object *taperobj, int cur, int tot)
{
float fac = ((float)cur) / (float)(tot - 1);
return displist_calc_taper(depsgraph, scene, taperobj, fac);
}
void BKE_displist_make_mball(Depsgraph *depsgraph, Scene *scene, Object *ob)
{
if (!ob || ob->type != OB_MBALL)
return;
if (ob == BKE_mball_basis_find(scene, ob)) {
if (ob->runtime.curve_cache) {
BKE_displist_free(&(ob->runtime.curve_cache->disp));
}
else {
ob->runtime.curve_cache = MEM_callocN(sizeof(CurveCache), "CurveCache for MBall");
}
BKE_mball_polygonize(depsgraph, scene, ob, &ob->runtime.curve_cache->disp);
BKE_mball_texspace_calc(ob);
object_deform_mball(ob, &ob->runtime.curve_cache->disp);
/* NOP for MBALLs anyway... */
boundbox_displist_object(ob);
}
}
void BKE_displist_make_mball_forRender(Depsgraph *depsgraph, Scene *scene, Object *ob, ListBase *dispbase)
{
BKE_mball_polygonize(depsgraph, scene, ob, dispbase);
BKE_mball_texspace_calc(ob);
object_deform_mball(ob, dispbase);
}
static ModifierData *curve_get_tessellate_point(Scene *scene, Object *ob,
const bool use_render_resolution, const bool editmode)
{
VirtualModifierData virtualModifierData;
ModifierData *md = modifiers_getVirtualModifierList(ob, &virtualModifierData);
ModifierData *pretessellatePoint;
int required_mode;
if (use_render_resolution)
required_mode = eModifierMode_Render;
else
required_mode = eModifierMode_Realtime;
if (editmode)
required_mode |= eModifierMode_Editmode;
pretessellatePoint = NULL;
for (; md; md = md->next) {
const ModifierTypeInfo *mti = modifierType_getInfo(md->type);
if (!modifier_isEnabled(scene, md, required_mode))
continue;
if (mti->type == eModifierTypeType_Constructive)
return pretessellatePoint;
if (ELEM(md->type, eModifierType_Hook, eModifierType_Softbody, eModifierType_MeshDeform)) {
pretessellatePoint = md;
/* this modifiers are moving point of tessellation automatically
* (some of them even can't be applied on tessellated curve), set flag
* for information button in modifier's header
*/
md->mode |= eModifierMode_ApplyOnSpline;
}
else if (md->mode & eModifierMode_ApplyOnSpline) {
pretessellatePoint = md;
}
}
return pretessellatePoint;
}
static void curve_calc_modifiers_pre(
Depsgraph *depsgraph, Scene *scene, Object *ob, ListBase *nurb,
const bool for_render, const bool use_render_resolution)
{
VirtualModifierData virtualModifierData;
ModifierData *md = modifiers_getVirtualModifierList(ob, &virtualModifierData);
ModifierData *pretessellatePoint;
Curve *cu = ob->data;
int numElems = 0, numVerts = 0;
const bool editmode = (!for_render && (cu->editnurb || cu->editfont));
ModifierApplyFlag app_flag = 0;
float (*deformedVerts)[3] = NULL;
float *keyVerts = NULL;
int required_mode;
modifiers_clearErrors(ob);
if (editmode)
app_flag |= MOD_APPLY_USECACHE;
if (use_render_resolution) {
app_flag |= MOD_APPLY_RENDER;
required_mode = eModifierMode_Render;
}
else
required_mode = eModifierMode_Realtime;
const ModifierEvalContext mectx = {depsgraph, ob, app_flag};
pretessellatePoint = curve_get_tessellate_point(scene, ob, use_render_resolution, editmode);
if (editmode)
required_mode |= eModifierMode_Editmode;
if (!editmode) {
keyVerts = BKE_key_evaluate_object(ob, &numElems);
if (keyVerts) {
BLI_assert(BKE_keyblock_curve_element_count(nurb) == numElems);
/* split coords from key data, the latter also includes
* tilts, which is passed through in the modifier stack.
* this is also the reason curves do not use a virtual
* shape key modifier yet. */
deformedVerts = BKE_curve_nurbs_keyVertexCos_get(nurb, keyVerts);
numVerts = BKE_nurbList_verts_count(nurb);
}
}
if (pretessellatePoint) {
for (; md; md = md->next) {
const ModifierTypeInfo *mti = modifierType_getInfo(md->type);
if (!modifier_isEnabled(scene, md, required_mode))
continue;
if (mti->type != eModifierTypeType_OnlyDeform)
continue;
if (!deformedVerts) {
deformedVerts = BKE_curve_nurbs_vertexCos_get(nurb, &numVerts);
}
mti->deformVerts(md, &mectx, NULL, deformedVerts, numVerts);
if (md == pretessellatePoint)
break;
}
}
if (deformedVerts) {
BK_curve_nurbs_vertexCos_apply(nurb, deformedVerts);
MEM_freeN(deformedVerts);
}
if (keyVerts) /* these are not passed through modifier stack */
BKE_curve_nurbs_keyVertexTilts_apply(nurb, keyVerts);
if (keyVerts)
MEM_freeN(keyVerts);
}
static float (*displist_get_allverts(ListBase *dispbase, int *totvert))[3]
{
DispList *dl;
float (*allverts)[3], *fp;
*totvert = 0;
for (dl = dispbase->first; dl; dl = dl->next)
*totvert += (dl->type == DL_INDEX3) ? dl->nr : dl->parts * dl->nr;
allverts = MEM_mallocN((*totvert) * sizeof(float) * 3, "displist_get_allverts allverts");
fp = (float *)allverts;
for (dl = dispbase->first; dl; dl = dl->next) {
int offs = 3 * ((dl->type == DL_INDEX3) ? dl->nr : dl->parts * dl->nr);
memcpy(fp, dl->verts, sizeof(float) * offs);
fp += offs;
}
return allverts;
}
static void displist_apply_allverts(ListBase *dispbase, float (*allverts)[3])
{
DispList *dl;
const float *fp;
fp = (float *)allverts;
for (dl = dispbase->first; dl; dl = dl->next) {
int offs = 3 * ((dl->type == DL_INDEX3) ? dl->nr : dl->parts * dl->nr);
memcpy(dl->verts, fp, sizeof(float) * offs);
fp += offs;
}
}
static void curve_calc_modifiers_post(
Depsgraph *depsgraph, Scene *scene, Object *ob, ListBase *nurb,
ListBase *dispbase, Mesh **r_final,
const bool for_render, const bool use_render_resolution)
{
VirtualModifierData virtualModifierData;
ModifierData *md = modifiers_getVirtualModifierList(ob, &virtualModifierData);
ModifierData *pretessellatePoint;
Curve *cu = ob->data;
int required_mode = 0, totvert = 0;
const bool editmode = (!for_render && (cu->editnurb || cu->editfont));
Mesh *modified = NULL, *mesh_applied;
float (*vertCos)[3] = NULL;
int useCache = !for_render;
ModifierApplyFlag app_flag = 0;
if (use_render_resolution) {
app_flag |= MOD_APPLY_RENDER;
required_mode = eModifierMode_Render;
}
else
required_mode = eModifierMode_Realtime;
const ModifierEvalContext mectx_deform = {depsgraph, ob,
editmode ? app_flag | MOD_APPLY_USECACHE : app_flag};
const ModifierEvalContext mectx_apply = {depsgraph, ob,
useCache ? app_flag | MOD_APPLY_USECACHE : app_flag};
pretessellatePoint = curve_get_tessellate_point(scene, ob, use_render_resolution, editmode);
if (editmode)
required_mode |= eModifierMode_Editmode;
if (pretessellatePoint) {
md = pretessellatePoint->next;
}
if (r_final && *r_final) {
BKE_id_free(NULL, r_final);
}
for (; md; md = md->next) {
const ModifierTypeInfo *mti = modifierType_getInfo(md->type);
if (!modifier_isEnabled(scene, md, required_mode))
continue;
if (mti->type == eModifierTypeType_OnlyDeform ||
(mti->type == eModifierTypeType_DeformOrConstruct && !modified))
{
if (modified) {
if (!vertCos) {
vertCos = BKE_mesh_vertexCos_get(modified, &totvert);
}
mti->deformVerts(md, &mectx_deform, modified, vertCos, totvert);
}
else {
if (!vertCos) {
vertCos = displist_get_allverts(dispbase, &totvert);
}
mti->deformVerts(md, &mectx_deform, NULL, vertCos, totvert);
}
}
else {
if (!r_final) {
/* makeDisplistCurveTypes could be used for beveling, where derived mesh
* is totally unnecessary, so we could stop modifiers applying
* when we found constructive modifier but derived mesh is unwanted result
*/
break;
}
if (modified) {
if (vertCos) {
Mesh *temp_mesh;
BKE_id_copy_ex(NULL, &modified->id, (ID **)&temp_mesh,
LIB_ID_CREATE_NO_MAIN | LIB_ID_CREATE_NO_USER_REFCOUNT |
LIB_ID_CREATE_NO_DEG_TAG | LIB_ID_COPY_NO_PREVIEW,
false);
BKE_id_free(NULL, modified);
modified = temp_mesh;
BKE_mesh_apply_vert_coords(modified, vertCos);
}
}
else {
if (vertCos) {
displist_apply_allverts(dispbase, vertCos);
}
if (ELEM(ob->type, OB_CURVE, OB_FONT) && (cu->flag & CU_DEFORM_FILL)) {
curve_to_filledpoly(cu, nurb, dispbase);
}
modified = BKE_mesh_new_nomain_from_curve_displist(ob, dispbase);
}
if (vertCos) {
/* Vertex coordinates were applied to necessary data, could free it */
MEM_freeN(vertCos);
vertCos = NULL;
}
mesh_applied = mti->applyModifier(md, &mectx_apply, modified);
if (mesh_applied) {
/* Modifier returned a new derived mesh */
if (modified && modified != mesh_applied) /* Modifier */
BKE_id_free(NULL, modified);
modified = mesh_applied;
}
}
}
if (vertCos) {
if (modified) {
Mesh *temp_mesh;
BKE_id_copy_ex(NULL, &modified->id, (ID **)&temp_mesh,
LIB_ID_CREATE_NO_MAIN | LIB_ID_CREATE_NO_USER_REFCOUNT |
LIB_ID_CREATE_NO_DEG_TAG | LIB_ID_COPY_NO_PREVIEW,
false);
BKE_id_free(NULL, modified);
modified = temp_mesh;
BKE_mesh_apply_vert_coords(modified, vertCos);
BKE_mesh_calc_normals_mapping_simple(modified);
MEM_freeN(vertCos);
}
else {
displist_apply_allverts(dispbase, vertCos);
MEM_freeN(vertCos);
vertCos = NULL;
}
}
if (r_final) {
if (modified) {
/* see: mesh_calc_modifiers */
if (modified->totface == 0) {
BKE_mesh_tessface_calc(modified);
}
/* Even if tessellation is not needed, some modifiers might have modified CD layers
* (like mloopcol or mloopuv), hence we have to update those. */
else if (modified->runtime.cd_dirty_vert & CD_MASK_TESSLOOPNORMAL) {
BKE_mesh_tessface_calc(modified);
}
/* XXX2.8(Sybren): make sure the face normals are recalculated as well */
BKE_mesh_ensure_normals(modified);
(*r_final) = modified;
}
else {
(*r_final) = NULL;
}
}
}
static void displist_surf_indices(DispList *dl)
{
int a, b, p1, p2, p3, p4;
int *index;
dl->totindex = 0;
index = dl->index = MEM_mallocN(4 * sizeof(int) * (dl->parts + 1) * (dl->nr + 1), "index array nurbs");
for (a = 0; a < dl->parts; a++) {
if (BKE_displist_surfindex_get(dl, a, &b, &p1, &p2, &p3, &p4) == 0)
break;
for (; b < dl->nr; b++, index += 4) {
index[0] = p1;
index[1] = p2;
index[2] = p4;
index[3] = p3;
dl->totindex++;
p2 = p1; p1++;
p4 = p3; p3++;
}
}
}
/* XXX2.8(Sybren): unused function; impossible to test after porting to Mesh */
#ifdef WITH_DERIVEDMESH_DEPRECATED_FUNCS
static DerivedMesh *create_orco_dm(Depsgraph *depsgraph, Scene *scene, Object *ob)
{
DerivedMesh *dm;
ListBase disp = {NULL, NULL};
/* OrcoDM should be created from underformed disp lists */
BKE_displist_make_curveTypes_forOrco(depsgraph, scene, ob, &disp);
dm = CDDM_from_curve_displist(ob, &disp);
BKE_displist_free(&disp);
return dm;
}
static void add_orco_dm(Object *ob, DerivedMesh *dm, DerivedMesh *orcodm)
{
float (*orco)[3], (*layerorco)[3];
int totvert, a;
Curve *cu = ob->data;
totvert = dm->getNumVerts(dm);
orco = MEM_callocN(sizeof(float) * 3 * totvert, "dm orco");
if (orcodm->getNumVerts(orcodm) == totvert)
orcodm->getVertCos(orcodm, orco);
else
dm->getVertCos(dm, orco);
for (a = 0; a < totvert; a++) {
float *co = orco[a];
co[0] = (co[0] - cu->loc[0]) / cu->size[0];
co[1] = (co[1] - cu->loc[1]) / cu->size[1];
co[2] = (co[2] - cu->loc[2]) / cu->size[2];
}
if ((layerorco = DM_get_vert_data_layer(dm, CD_ORCO))) {
memcpy(layerorco, orco, sizeof(float) * totvert);
MEM_freeN(orco);
}
else
DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, orco);
}
#endif
/* XXX2.8(Sybren): unused function; impossible to test after porting to Mesh */
#ifdef WITH_DERIVEDMESH_DEPRECATED_FUNCS
static void curve_calc_orcodm(
Depsgraph *depsgraph, Scene *scene, Object *ob, DerivedMesh *dm_final,
const bool for_render, const bool use_render_resolution)
{
/* this function represents logic of mesh's orcodm calculation
* for displist-based objects
*/
VirtualModifierData virtualModifierData;
ModifierData *md = modifiers_getVirtualModifierList(ob, &virtualModifierData);
ModifierData *pretessellatePoint;
Curve *cu = ob->data;
int required_mode;
const bool editmode = (!for_render && (cu->editnurb || cu->editfont));
DerivedMesh *ndm, *orcodm = NULL;
ModifierApplyFlag app_flag = MOD_APPLY_ORCO;
if (use_render_resolution) {
app_flag |= MOD_APPLY_RENDER;
required_mode = eModifierMode_Render;
}
else
required_mode = eModifierMode_Realtime;
const ModifierEvalContext mectx = {depsgraph, ob, app_flag};
pretessellatePoint = curve_get_tessellate_point(scene, ob, use_render_resolution, editmode);
if (editmode)
required_mode |= eModifierMode_Editmode;
if (pretessellatePoint) {
md = pretessellatePoint->next;
}
/* If modifiers are disabled, we wouldn't be here because
* this function is only called if there're enabled constructive
* modifiers applied on the curve.
*
* This means we can create ORCO DM in advance and assume it's
* never NULL.
*/
orcodm = create_orco_dm(depsgraph, scene, ob);
for (; md; md = md->next) {
const ModifierTypeInfo *mti = modifierType_getInfo(md->type);
md->scene = scene;
if (!modifier_isEnabled(scene, md, required_mode))
continue;
if (mti->type != eModifierTypeType_Constructive)
continue;
ndm = modwrap_applyModifier(md, &mectx, orcodm);
if (ndm) {
/* if the modifier returned a new dm, release the old one */
if (orcodm && orcodm != ndm) {
orcodm->release(orcodm);
}
orcodm = ndm;
}
}
/* add an orco layer if needed */
add_orco_dm(ob, dm_final, orcodm);
orcodm->release(orcodm);
}
#endif
void BKE_displist_make_surf(
Depsgraph *depsgraph, Scene *scene, Object *ob, ListBase *dispbase,
Mesh **r_final,
const bool for_render, const bool for_orco, const bool use_render_resolution)
{
ListBase nubase = {NULL, NULL};
Nurb *nu;
Curve *cu = ob->data;
DispList *dl;
float *data;
int len;
if (!for_render && cu->editnurb) {
BKE_nurbList_duplicate(&nubase, BKE_curve_editNurbs_get(cu));
}
else {
BKE_nurbList_duplicate(&nubase, &cu->nurb);
}
if (!for_orco)
curve_calc_modifiers_pre(depsgraph, scene, ob, &nubase, for_render, use_render_resolution);
for (nu = nubase.first; nu; nu = nu->next) {
if ((for_render || nu->hide == 0) && BKE_nurb_check_valid_uv(nu)) {
int resolu = nu->resolu, resolv = nu->resolv;
if (use_render_resolution) {
if (cu->resolu_ren)
resolu = cu->resolu_ren;
if (cu->resolv_ren)
resolv = cu->resolv_ren;
}
if (nu->pntsv == 1) {
len = SEGMENTSU(nu) * resolu;
dl = MEM_callocN(sizeof(DispList), "makeDispListsurf");
dl->verts = MEM_mallocN(len * sizeof(float[3]), "dlverts");
BLI_addtail(dispbase, dl);
dl->parts = 1;
dl->nr = len;
dl->col = nu->mat_nr;
dl->charidx = nu->charidx;
/* dl->rt will be used as flag for render face and */
/* CU_2D conflicts with R_NOPUNOFLIP */
dl->rt = nu->flag & ~CU_2D;
data = dl->verts;
if (nu->flagu & CU_NURB_CYCLIC) dl->type = DL_POLY;
else dl->type = DL_SEGM;
BKE_nurb_makeCurve(nu, data, NULL, NULL, NULL, resolu, 3 * sizeof(float));
}
else {
len = (nu->pntsu * resolu) * (nu->pntsv * resolv);
dl = MEM_callocN(sizeof(DispList), "makeDispListsurf");
dl->verts = MEM_mallocN(len * sizeof(float[3]), "dlverts");
BLI_addtail(dispbase, dl);
dl->col = nu->mat_nr;
dl->charidx = nu->charidx;
/* dl->rt will be used as flag for render face and */
/* CU_2D conflicts with R_NOPUNOFLIP */
dl->rt = nu->flag & ~CU_2D;
data = dl->verts;
dl->type = DL_SURF;
dl->parts = (nu->pntsu * resolu); /* in reverse, because makeNurbfaces works that way */
dl->nr = (nu->pntsv * resolv);
if (nu->flagv & CU_NURB_CYCLIC) dl->flag |= DL_CYCL_U; /* reverse too! */
if (nu->flagu & CU_NURB_CYCLIC) dl->flag |= DL_CYCL_V;
BKE_nurb_makeFaces(nu, data, 0, resolu, resolv);
/* gl array drawing: using indices */
displist_surf_indices(dl);
}
}
}
if (!for_orco) {
BKE_nurbList_duplicate(&ob->runtime.curve_cache->deformed_nurbs, &nubase);
curve_calc_modifiers_post(depsgraph, scene, ob, &nubase, dispbase, r_final,
for_render, use_render_resolution);
}
BKE_nurbList_free(&nubase);
}
static void rotateBevelPiece(Curve *cu, BevPoint *bevp, BevPoint *nbevp, DispList *dlb, float bev_blend, float widfac, float fac, float **r_data)
{
float *fp, *data = *r_data;
int b;
fp = dlb->verts;
for (b = 0; b < dlb->nr; b++, fp += 3, data += 3) {
if (cu->flag & CU_3D) {
float vec[3], quat[4];
vec[0] = fp[1] + widfac;
vec[1] = fp[2];
vec[2] = 0.0;
if (nbevp == NULL) {
copy_v3_v3(data, bevp->vec);
copy_qt_qt(quat, bevp->quat);
}
else {
interp_v3_v3v3(data, bevp->vec, nbevp->vec, bev_blend);
interp_qt_qtqt(quat, bevp->quat, nbevp->quat, bev_blend);
}
mul_qt_v3(quat, vec);
data[0] += fac * vec[0];
data[1] += fac * vec[1];
data[2] += fac * vec[2];
}
else {
float sina, cosa;
if (nbevp == NULL) {
copy_v3_v3(data, bevp->vec);
sina = bevp->sina;
cosa = bevp->cosa;
}
else {
interp_v3_v3v3(data, bevp->vec, nbevp->vec, bev_blend);
/* perhaps we need to interpolate angles instead. but the thing is
* cosa and sina are not actually sine and cosine
*/
sina = nbevp->sina * bev_blend + bevp->sina * (1.0f - bev_blend);
cosa = nbevp->cosa * bev_blend + bevp->cosa * (1.0f - bev_blend);
}
data[0] += fac * (widfac + fp[1]) * sina;
data[1] += fac * (widfac + fp[1]) * cosa;
data[2] += fac * fp[2];
}
}
*r_data = data;
}
static void fillBevelCap(Nurb *nu, DispList *dlb, float *prev_fp, ListBase *dispbase)
{
DispList *dl;
dl = MEM_callocN(sizeof(DispList), "makeDispListbev2");
dl->verts = MEM_mallocN(sizeof(float[3]) * dlb->nr, "dlverts");
memcpy(dl->verts, prev_fp, 3 * sizeof(float) * dlb->nr);
dl->type = DL_POLY;
dl->parts = 1;
dl->nr = dlb->nr;
dl->col = nu->mat_nr;
dl->charidx = nu->charidx;
/* dl->rt will be used as flag for render face and */
/* CU_2D conflicts with R_NOPUNOFLIP */
dl->rt = nu->flag & ~CU_2D;
BLI_addtail(dispbase, dl);
}
static void calc_bevfac_segment_mapping(BevList *bl, float bevfac, float spline_length, int *r_bev, float *r_blend)
{
float normlen, normsum = 0.0f;
float *seglen = bl->seglen;
int *segbevcount = bl->segbevcount;
int bevcount = 0, nr = bl->nr;
float bev_fl = bevfac * (bl->nr - 1);
*r_bev = (int)bev_fl;
while (bevcount < nr - 1) {
normlen = *seglen / spline_length;
if (normsum + normlen > bevfac) {
bev_fl = bevcount + (bevfac - normsum) / normlen * *segbevcount;
*r_bev = (int) bev_fl;
*r_blend = bev_fl - *r_bev;
break;
}
normsum += normlen;
bevcount += *segbevcount;
segbevcount++;
seglen++;
}
}
static void calc_bevfac_spline_mapping(BevList *bl, float bevfac,
float spline_length,
int *r_bev, float *r_blend)
{
const float len_target = bevfac * spline_length;
BevPoint *bevp = bl->bevpoints;
float len_next = 0.0f, len = 0.0f;
int i = 0, nr = bl->nr;
while (nr--) {
bevp++;
len_next = len + bevp->offset;
if (len_next > len_target) {
break;
}
len = len_next;
i++;
}
*r_bev = i;
*r_blend = (len_target - len) / bevp->offset;
}
static void calc_bevfac_mapping_default(BevList *bl,
int *r_start, float *r_firstblend,
int *r_steps, float *r_lastblend)
{
*r_start = 0;
*r_steps = bl->nr;
*r_firstblend = 1.0f;
*r_lastblend = 1.0f;
}
static void calc_bevfac_mapping(Curve *cu, BevList *bl, Nurb *nu,
int *r_start, float *r_firstblend, int *r_steps, float *r_lastblend)
{
float tmpf, total_length = 0.0f;
int end = 0, i;
if ((BKE_nurb_check_valid_u(nu) == false) ||
/* not essential, but skips unnecessary calculation */
(min_ff(cu->bevfac1, cu->bevfac2) == 0.0f &&
max_ff(cu->bevfac1, cu->bevfac2) == 1.0f))
{
calc_bevfac_mapping_default(bl, r_start, r_firstblend, r_steps, r_lastblend);
return;
}
if (ELEM(cu->bevfac1_mapping, CU_BEVFAC_MAP_SEGMENT, CU_BEVFAC_MAP_SPLINE) ||
ELEM(cu->bevfac2_mapping, CU_BEVFAC_MAP_SEGMENT, CU_BEVFAC_MAP_SPLINE))
{
for (i = 0; i < SEGMENTSU(nu); i++) {
total_length += bl->seglen[i];
}
}
switch (cu->bevfac1_mapping) {
case CU_BEVFAC_MAP_RESOLU:
{
const float start_fl = cu->bevfac1 * (bl->nr - 1);
*r_start = (int)start_fl;
*r_firstblend = 1.0f - (start_fl - (*r_start));
break;
}
case CU_BEVFAC_MAP_SEGMENT:
{
calc_bevfac_segment_mapping(bl, cu->bevfac1, total_length, r_start, r_firstblend);
*r_firstblend = 1.0f - *r_firstblend;
break;
}
case CU_BEVFAC_MAP_SPLINE:
{
calc_bevfac_spline_mapping(bl, cu->bevfac1, total_length, r_start, r_firstblend);
*r_firstblend = 1.0f - *r_firstblend;
break;
}
}
switch (cu->bevfac2_mapping) {
case CU_BEVFAC_MAP_RESOLU:
{
const float end_fl = cu->bevfac2 * (bl->nr - 1);
end = (int)end_fl;
*r_steps = 2 + end - *r_start;
*r_lastblend = end_fl - end;
break;
}
case CU_BEVFAC_MAP_SEGMENT:
{
calc_bevfac_segment_mapping(bl, cu->bevfac2, total_length, &end, r_lastblend);
*r_steps = end - *r_start + 2;
break;
}
case CU_BEVFAC_MAP_SPLINE:
{
calc_bevfac_spline_mapping(bl, cu->bevfac2, total_length, &end, r_lastblend);
*r_steps = end - *r_start + 2;
break;
}
}
if (end < *r_start || (end == *r_start && *r_lastblend < 1.0f - *r_firstblend )) {
SWAP(int, *r_start, end);
tmpf = *r_lastblend;
*r_lastblend = 1.0f - *r_firstblend;
*r_firstblend = 1.0f - tmpf;
*r_steps = end - *r_start + 2;
}
if (*r_start + *r_steps > bl->nr) {
*r_steps = bl->nr - *r_start;
*r_lastblend = 1.0f;
}
}
static void do_makeDispListCurveTypes(
Depsgraph *depsgraph, Scene *scene, Object *ob, ListBase *dispbase,
Mesh **r_final,
const bool for_render, const bool for_orco, const bool use_render_resolution)
{
Curve *cu = ob->data;
/* we do allow duplis... this is only displist on curve level */
if (!ELEM(ob->type, OB_SURF, OB_CURVE, OB_FONT)) return;
if (ob->type == OB_SURF) {
BKE_displist_make_surf(depsgraph, scene, ob, dispbase, r_final, for_render, for_orco, use_render_resolution);
}
else if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
ListBase dlbev;
ListBase nubase = {NULL, NULL};
BKE_curve_bevelList_free(&ob->runtime.curve_cache->bev);
/* We only re-evaluate path if evaluation is not happening for orco.
* If the calculation happens for orco, we should never free data which
* was needed before and only not needed for orco calculation.
*/
if (!for_orco) {
if (ob->runtime.curve_cache->path) free_path(ob->runtime.curve_cache->path);
ob->runtime.curve_cache->path = NULL;
}
if (ob->type == OB_FONT) {
BKE_vfont_to_curve_nubase(ob, FO_EDIT, &nubase);
}
else {
BKE_nurbList_duplicate(&nubase, BKE_curve_nurbs_get(cu));
}
if (!for_orco)
curve_calc_modifiers_pre(depsgraph, scene, ob, &nubase, for_render, use_render_resolution);
BKE_curve_bevelList_make(ob, &nubase, use_render_resolution);
/* If curve has no bevel will return nothing */
BKE_curve_bevel_make(depsgraph, scene, ob, &dlbev, for_render, use_render_resolution);
/* no bevel or extrude, and no width correction? */
if (!dlbev.first && cu->width == 1.0f) {
curve_to_displist(cu, &nubase, dispbase, for_render, use_render_resolution);
}
else {
float widfac = cu->width - 1.0f;
BevList *bl = ob->runtime.curve_cache->bev.first;
Nurb *nu = nubase.first;
for (; bl && nu; bl = bl->next, nu = nu->next) {
DispList *dl;
float *data;
int a;
if (bl->nr) { /* blank bevel lists can happen */
/* exception handling; curve without bevel or extrude, with width correction */
if (BLI_listbase_is_empty(&dlbev)) {
BevPoint *bevp;
dl = MEM_callocN(sizeof(DispList), "makeDispListbev");
dl->verts = MEM_mallocN(sizeof(float[3]) * bl->nr, "dlverts");
BLI_addtail(dispbase, dl);
if (bl->poly != -1) dl->type = DL_POLY;
else dl->type = DL_SEGM;
if (dl->type == DL_SEGM) dl->flag = (DL_FRONT_CURVE | DL_BACK_CURVE);
dl->parts = 1;
dl->nr = bl->nr;
dl->col = nu->mat_nr;
dl->charidx = nu->charidx;
/* dl->rt will be used as flag for render face and */
/* CU_2D conflicts with R_NOPUNOFLIP */
dl->rt = nu->flag & ~CU_2D;
a = dl->nr;
bevp = bl->bevpoints;
data = dl->verts;
while (a--) {
data[0] = bevp->vec[0] + widfac * bevp->sina;
data[1] = bevp->vec[1] + widfac * bevp->cosa;
data[2] = bevp->vec[2];
bevp++;
data += 3;
}
}
else {
DispList *dlb;
ListBase bottom_capbase = {NULL, NULL};
ListBase top_capbase = {NULL, NULL};
float bottom_no[3] = {0.0f};
float top_no[3] = {0.0f};
float firstblend = 0.0f, lastblend = 0.0f;
int i, start, steps = 0;
if (nu->flagu & CU_NURB_CYCLIC) {
calc_bevfac_mapping_default(bl,
&start, &firstblend, &steps, &lastblend);
}
else {
if (fabsf(cu->bevfac2 - cu->bevfac1) < FLT_EPSILON) {
continue;
}
calc_bevfac_mapping(cu, bl, nu, &start, &firstblend, &steps, &lastblend);
}
for (dlb = dlbev.first; dlb; dlb = dlb->next) {
BevPoint *bevp_first, *bevp_last;
BevPoint *bevp;
/* for each part of the bevel use a separate displblock */
dl = MEM_callocN(sizeof(DispList), "makeDispListbev1");
dl->verts = data = MEM_mallocN(sizeof(float[3]) * dlb->nr * steps, "dlverts");
BLI_addtail(dispbase, dl);
dl->type = DL_SURF;
dl->flag = dlb->flag & (DL_FRONT_CURVE | DL_BACK_CURVE);
if (dlb->type == DL_POLY) {
dl->flag |= DL_CYCL_U;
}
if ((bl->poly >= 0) && (steps > 2)) {
dl->flag |= DL_CYCL_V;
}
dl->parts = steps;
dl->nr = dlb->nr;
dl->col = nu->mat_nr;
dl->charidx = nu->charidx;
/* dl->rt will be used as flag for render face and */
/* CU_2D conflicts with R_NOPUNOFLIP */
dl->rt = nu->flag & ~CU_2D;
dl->bevel_split = BLI_BITMAP_NEW(steps, "bevel_split");
/* for each point of poly make a bevel piece */
bevp_first = bl->bevpoints;
bevp_last = &bl->bevpoints[bl->nr - 1];
bevp = &bl->bevpoints[start];
for (i = start, a = 0; a < steps; i++, bevp++, a++) {
float fac = 1.0;
float *cur_data = data;
if (cu->taperobj == NULL) {
fac = bevp->radius;
}
else {
float len, taper_fac;
if (cu->flag & CU_MAP_TAPER) {
len = (steps - 3) + firstblend + lastblend;
if (a == 0)
taper_fac = 0.0f;
else if (a == steps - 1)
taper_fac = 1.0f;
else
taper_fac = ((float) a - (1.0f - firstblend)) / len;
}
else {
len = bl->nr - 1;
taper_fac = (float) i / len;
if (a == 0)
taper_fac += (1.0f - firstblend) / len;
else if (a == steps - 1)
taper_fac -= (1.0f - lastblend) / len;
}
fac = displist_calc_taper(depsgraph, scene, cu->taperobj, taper_fac);
}
if (bevp->split_tag) {
BLI_BITMAP_ENABLE(dl->bevel_split, a);
}
/* rotate bevel piece and write in data */
if ((a == 0) && (bevp != bevp_last)) {
rotateBevelPiece(cu, bevp, bevp + 1, dlb, 1.0f - firstblend, widfac, fac, &data);
}
else if ((a == steps - 1) && (bevp != bevp_first) ) {
rotateBevelPiece(cu, bevp, bevp - 1, dlb, 1.0f - lastblend, widfac, fac, &data);
}
else {
rotateBevelPiece(cu, bevp, NULL, dlb, 0.0f, widfac, fac, &data);
}
if (cu->bevobj && (cu->flag & CU_FILL_CAPS) && !(nu->flagu & CU_NURB_CYCLIC)) {
if (a == 1) {
fillBevelCap(nu, dlb, cur_data - 3 * dlb->nr, &bottom_capbase);
negate_v3_v3(bottom_no, bevp->dir);
}
if (a == steps - 1) {
fillBevelCap(nu, dlb, cur_data, &top_capbase);
copy_v3_v3(top_no, bevp->dir);
}
}
}
/* gl array drawing: using indices */
displist_surf_indices(dl);
}
if (bottom_capbase.first) {
BKE_displist_fill(&bottom_capbase, dispbase, bottom_no, false);
BKE_displist_fill(&top_capbase, dispbase, top_no, false);
BKE_displist_free(&bottom_capbase);
BKE_displist_free(&top_capbase);
}
}
}
}
BKE_displist_free(&dlbev);
}
if (!(cu->flag & CU_DEFORM_FILL)) {
curve_to_filledpoly(cu, &nubase, dispbase);
}
if (!for_orco) {
if ((cu->flag & CU_PATH) ||
DEG_get_eval_flags_for_id(depsgraph, &ob->id) & DAG_EVAL_NEED_CURVE_PATH)
{
calc_curvepath(ob, &nubase);
}
}
if (!for_orco) {
BKE_nurbList_duplicate(&ob->runtime.curve_cache->deformed_nurbs, &nubase);
curve_calc_modifiers_post(depsgraph, scene, ob, &nubase, dispbase, r_final, for_render, use_render_resolution);
}
if (cu->flag & CU_DEFORM_FILL && !ob->runtime.mesh_eval) {
curve_to_filledpoly(cu, &nubase, dispbase);
}
BKE_nurbList_free(&nubase);
}
}
void BKE_displist_make_curveTypes(
Depsgraph *depsgraph, Scene *scene, Object *ob, const bool for_render, const bool for_orco)
{
ListBase *dispbase;
/* The same check for duplis as in do_makeDispListCurveTypes.
* Happens when curve used for constraint/bevel was converted to mesh.
* check there is still needed for render displist and orco displists. */
if (!ELEM(ob->type, OB_SURF, OB_CURVE, OB_FONT))
return;
BKE_object_free_derived_caches(ob);
if (!ob->runtime.curve_cache) {
ob->runtime.curve_cache = MEM_callocN(sizeof(CurveCache), "CurveCache for curve types");
}
dispbase = &(ob->runtime.curve_cache->disp);
do_makeDispListCurveTypes(depsgraph, scene, ob, dispbase, &ob->runtime.mesh_eval, for_render, for_orco, false);
boundbox_displist_object(ob);
}
void BKE_displist_make_curveTypes_forRender(
Depsgraph *depsgraph, Scene *scene, Object *ob, ListBase *dispbase,
Mesh **r_final, const bool for_orco,
const bool use_render_resolution)
{
if (ob->runtime.curve_cache == NULL) {
ob->runtime.curve_cache = MEM_callocN(sizeof(CurveCache), "CurveCache for Curve");
}
do_makeDispListCurveTypes(depsgraph, scene, ob, dispbase, r_final, true, for_orco, use_render_resolution);
}
void BKE_displist_make_curveTypes_forOrco(
Depsgraph *depsgraph, Scene *scene, Object *ob, ListBase *dispbase)
{
if (ob->runtime.curve_cache == NULL) {
ob->runtime.curve_cache = MEM_callocN(sizeof(CurveCache), "CurveCache for Curve");
}
do_makeDispListCurveTypes(depsgraph, scene, ob, dispbase, NULL, 1, 1, 1);
}
void BKE_displist_minmax(ListBase *dispbase, float min[3], float max[3])
{
DispList *dl;
const float *vert;
int a, tot = 0;
int doit = 0;
for (dl = dispbase->first; dl; dl = dl->next) {
tot = (dl->type == DL_INDEX3) ? dl->nr : dl->nr * dl->parts;
vert = dl->verts;
for (a = 0; a < tot; a++, vert += 3) {
minmax_v3v3_v3(min, max, vert);
}
doit |= (tot != 0);
}
if (!doit) {
/* there's no geometry in displist, use zero-sized boundbox */
zero_v3(min);
zero_v3(max);
}
}
/* this is confusing, there's also min_max_object, appplying the obmat... */
static void boundbox_displist_object(Object *ob)
{
if (ELEM(ob->type, OB_CURVE, OB_SURF, OB_FONT)) {
/* Curve's BB is already calculated as a part of modifier stack,
* here we only calculate object BB based on final display list.
*/
/* object's BB is calculated from final displist */
if (ob->bb == NULL)
ob->bb = MEM_callocN(sizeof(BoundBox), "boundbox");
if (ob->runtime.mesh_eval) {
BKE_object_boundbox_calc_from_mesh(ob, ob->runtime.mesh_eval);
}
else {
float min[3], max[3];
INIT_MINMAX(min, max);
BKE_displist_minmax(&ob->runtime.curve_cache->disp, min, max);
BKE_boundbox_init_from_minmax(ob->bb, min, max);
ob->bb->flag &= ~BOUNDBOX_DIRTY;
}
}
}