blender-addons/add_curve_ivygen.py

796 lines
27 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8-80 compliant>
bl_info = {
"name": "IvyGen",
"author": "testscreenings, PKHG, TrumanBlending",
"version": (0, 1, 5),
"blender": (2, 80, 0),
"location": "View3D > Sidebar > Ivy Generator (Create Tab)",
"description": "Adds generated ivy to a mesh object starting "
"at the 3D cursor",
"warning": "",
"doc_url": "{BLENDER_MANUAL_URL}/addons/add_curve/ivy_gen.html",
"category": "Add Curve",
}
import bpy
from bpy.types import (
Operator,
Panel,
PropertyGroup,
)
from bpy.props import (
BoolProperty,
FloatProperty,
IntProperty,
PointerProperty,
)
from mathutils.bvhtree import BVHTree
from mathutils import (
Vector,
Matrix,
)
from collections import deque
from math import (
pow, cos,
pi, atan2,
)
from random import (
random as rand_val,
seed as rand_seed,
)
import time
def createIvyGeometry(IVY, growLeaves):
"""Create the curve geometry for IVY"""
# Compute the local size and the gauss weight filter
# local_ivyBranchSize = IVY.ivyBranchSize # * radius * IVY.ivySize
gaussWeight = (1.0, 2.0, 4.0, 7.0, 9.0, 10.0, 9.0, 7.0, 4.0, 2.0, 1.0)
# Create a new curve and initialise it
curve = bpy.data.curves.new("IVY", type='CURVE')
curve.dimensions = '3D'
curve.bevel_depth = 1
curve.fill_mode = 'FULL'
curve.resolution_u = 4
if growLeaves:
# Create the ivy leaves
# Order location of the vertices
signList = ((-1.0, +1.0),
(+1.0, +1.0),
(+1.0, -1.0),
(-1.0, -1.0),
)
# Get the local size
# local_ivyLeafSize = IVY.ivyLeafSize # * radius * IVY.ivySize
# Initialise the vertex and face lists
vertList = deque()
# Store the methods for faster calling
addV = vertList.extend
rotMat = Matrix.Rotation
# Loop over all roots to generate its nodes
for root in IVY.ivyRoots:
# Only grow if more than one node
numNodes = len(root.ivyNodes)
if numNodes > 1:
# Calculate the local radius
local_ivyBranchRadius = 1.0 / (root.parents + 1) + 1.0
prevIvyLength = 1.0 / root.ivyNodes[-1].length
splineVerts = [ax for n in root.ivyNodes for ax in n.pos.to_4d()]
radiusConstant = local_ivyBranchRadius * IVY.ivyBranchSize
splineRadii = [radiusConstant * (1.3 - n.length * prevIvyLength)
for n in root.ivyNodes]
# Add the poly curve and set coords and radii
newSpline = curve.splines.new(type='POLY')
newSpline.points.add(len(splineVerts) // 4 - 1)
newSpline.points.foreach_set('co', splineVerts)
newSpline.points.foreach_set('radius', splineRadii)
# Loop over all nodes in the root
for i, n in enumerate(root.ivyNodes):
for k in range(len(gaussWeight)):
idx = max(0, min(i + k - 5, numNodes - 1))
n.smoothAdhesionVector += (gaussWeight[k] *
root.ivyNodes[idx].adhesionVector)
n.smoothAdhesionVector /= 56.0
n.adhesionLength = n.smoothAdhesionVector.length
n.smoothAdhesionVector.normalize()
if growLeaves and (i < numNodes - 1):
node = root.ivyNodes[i]
nodeNext = root.ivyNodes[i + 1]
# Find the weight and normalize the smooth adhesion vector
weight = pow(node.length * prevIvyLength, 0.7)
# Calculate the ground ivy and the new weight
groundIvy = max(0.0, -node.smoothAdhesionVector.z)
weight += groundIvy * pow(1 - node.length *
prevIvyLength, 2)
# Find the alignment weight
alignmentWeight = node.adhesionLength
# Calculate the needed angles
phi = atan2(node.smoothAdhesionVector.y,
node.smoothAdhesionVector.x) - pi / 2.0
theta = (0.5 *
node.smoothAdhesionVector.angle(Vector((0, 0, -1)), 0))
# Find the size weight
sizeWeight = 1.5 - (cos(2 * pi * weight) * 0.5 + 0.5)
# Randomise the angles
phi += (rand_val() - 0.5) * (1.3 - alignmentWeight)
theta += (rand_val() - 0.5) * (1.1 - alignmentWeight)
# Calculate the leaf size an append the face to the list
leafSize = IVY.ivyLeafSize * sizeWeight
for j in range(10):
# Generate the probability
probability = rand_val()
# If we need to grow a leaf, do so
if (probability * weight) > IVY.leafProbability:
# Generate the random vector
randomVector = Vector((rand_val() - 0.5,
rand_val() - 0.5,
rand_val() - 0.5,
))
# Find the leaf center
center = (node.pos.lerp(nodeNext.pos, j / 10.0) +
IVY.ivyLeafSize * randomVector)
# For each of the verts, rotate/scale and append
basisVecX = Vector((1, 0, 0))
basisVecY = Vector((0, 1, 0))
horiRot = rotMat(theta, 3, 'X')
vertRot = rotMat(phi, 3, 'Z')
basisVecX.rotate(horiRot)
basisVecY.rotate(horiRot)
basisVecX.rotate(vertRot)
basisVecY.rotate(vertRot)
basisVecX *= leafSize
basisVecY *= leafSize
addV([k1 * basisVecX + k2 * basisVecY + center for
k1, k2 in signList])
# Add the object and link to scene
newCurve = bpy.data.objects.new("IVY_Curve", curve)
bpy.context.collection.objects.link(newCurve)
if growLeaves:
faceList = [[4 * i + l for l in range(4)] for i in
range(len(vertList) // 4)]
# Generate the new leaf mesh and link
me = bpy.data.meshes.new('IvyLeaf')
me.from_pydata(vertList, [], faceList)
me.update(calc_edges=True)
ob = bpy.data.objects.new('IvyLeaf', me)
bpy.context.collection.objects.link(ob)
me.uv_layers.new(name="Leaves")
# Set the uv texture coords
# TODO, this is non-functional, default uvs are ok?
'''
for d in tex.data:
uv1, uv2, uv3, uv4 = signList
'''
ob.parent = newCurve
class IvyNode:
""" The basic class used for each point on the ivy which is grown."""
__slots__ = ('pos', 'primaryDir', 'adhesionVector', 'adhesionLength',
'smoothAdhesionVector', 'length', 'floatingLength', 'climb')
def __init__(self):
self.pos = Vector((0, 0, 0))
self.primaryDir = Vector((0, 0, 1))
self.adhesionVector = Vector((0, 0, 0))
self.smoothAdhesionVector = Vector((0, 0, 0))
self.length = 0.0001
self.floatingLength = 0.0
self.climb = True
class IvyRoot:
""" The class used to hold all ivy nodes growing from this root point."""
__slots__ = ('ivyNodes', 'alive', 'parents')
def __init__(self):
self.ivyNodes = deque()
self.alive = True
self.parents = 0
class Ivy:
""" The class holding all parameters and ivy roots."""
__slots__ = ('ivyRoots', 'primaryWeight', 'randomWeight',
'gravityWeight', 'adhesionWeight', 'branchingProbability',
'leafProbability', 'ivySize', 'ivyLeafSize', 'ivyBranchSize',
'maxFloatLength', 'maxAdhesionDistance', 'maxLength')
def __init__(self,
primaryWeight=0.5,
randomWeight=0.2,
gravityWeight=1.0,
adhesionWeight=0.1,
branchingProbability=0.05,
leafProbability=0.35,
ivySize=0.02,
ivyLeafSize=0.02,
ivyBranchSize=0.001,
maxFloatLength=0.5,
maxAdhesionDistance=1.0):
self.ivyRoots = deque()
self.primaryWeight = primaryWeight
self.randomWeight = randomWeight
self.gravityWeight = gravityWeight
self.adhesionWeight = adhesionWeight
self.branchingProbability = 1 - branchingProbability
self.leafProbability = 1 - leafProbability
self.ivySize = ivySize
self.ivyLeafSize = ivyLeafSize
self.ivyBranchSize = ivyBranchSize
self.maxFloatLength = maxFloatLength
self.maxAdhesionDistance = maxAdhesionDistance
self.maxLength = 0.0
# Normalize all the weights only on initialisation
sums = self.primaryWeight + self.randomWeight + self.adhesionWeight
self.primaryWeight /= sums
self.randomWeight /= sums
self.adhesionWeight /= sums
def seed(self, seedPos):
# Seed the Ivy by making a new root and first node
tmpRoot = IvyRoot()
tmpIvy = IvyNode()
tmpIvy.pos = seedPos
tmpRoot.ivyNodes.append(tmpIvy)
self.ivyRoots.append(tmpRoot)
def grow(self, ob, bvhtree):
# Determine the local sizes
# local_ivySize = self.ivySize # * radius
# local_maxFloatLength = self.maxFloatLength # * radius
# local_maxAdhesionDistance = self.maxAdhesionDistance # * radius
for root in self.ivyRoots:
# Make sure the root is alive, if not, skip
if not root.alive:
continue
# Get the last node in the current root
prevIvy = root.ivyNodes[-1]
# If the node is floating for too long, kill the root
if prevIvy.floatingLength > self.maxFloatLength:
root.alive = False
# Set the primary direction from the last node
primaryVector = prevIvy.primaryDir
# Make the random vector and normalize
randomVector = Vector((rand_val() - 0.5, rand_val() - 0.5,
rand_val() - 0.5)) + Vector((0, 0, 0.2))
randomVector.normalize()
# Calculate the adhesion vector
adhesionVector = adhesion(
prevIvy.pos, bvhtree, self.maxAdhesionDistance)
# Calculate the growing vector
growVector = self.ivySize * (primaryVector * self.primaryWeight +
randomVector * self.randomWeight +
adhesionVector * self.adhesionWeight)
# Find the gravity vector
gravityVector = (self.ivySize * self.gravityWeight *
Vector((0, 0, -1)))
gravityVector *= pow(prevIvy.floatingLength / self.maxFloatLength,
0.7)
# Determine the new position vector
newPos = prevIvy.pos + growVector + gravityVector
# Check for collisions with the object
climbing, newPos = collision(bvhtree, prevIvy.pos, newPos)
# Update the growing vector for any collisions
growVector = newPos - prevIvy.pos - gravityVector
growVector.normalize()
# Create a new IvyNode and set its properties
tmpNode = IvyNode()
tmpNode.climb = climbing
tmpNode.pos = newPos
tmpNode.primaryDir = prevIvy.primaryDir.lerp(growVector, 0.5)
tmpNode.primaryDir.normalize()
tmpNode.adhesionVector = adhesionVector
tmpNode.length = prevIvy.length + (newPos - prevIvy.pos).length
if tmpNode.length > self.maxLength:
self.maxLength = tmpNode.length
# If the node isn't climbing, update it's floating length
# Otherwise set it to 0
if not climbing:
tmpNode.floatingLength = prevIvy.floatingLength + (newPos -
prevIvy.pos).length
else:
tmpNode.floatingLength = 0.0
root.ivyNodes.append(tmpNode)
# Loop through all roots to check if a new root is generated
for root in self.ivyRoots:
# Check the root is alive and isn't at high level of recursion
if (root.parents > 3) or (not root.alive):
continue
# Check to make sure there's more than 1 node
if len(root.ivyNodes) > 1:
# Loop through all nodes in root to check if new root is grown
for node in root.ivyNodes:
# Set the last node of the root and find the weighting
prevIvy = root.ivyNodes[-1]
weight = 1.0 - (cos(2.0 * pi * node.length /
prevIvy.length) * 0.5 + 0.5)
probability = rand_val()
# Check if a new root is grown and if so, set its values
if (probability * weight > self.branchingProbability):
tmpNode = IvyNode()
tmpNode.pos = node.pos
tmpNode.floatingLength = node.floatingLength
tmpRoot = IvyRoot()
tmpRoot.parents = root.parents + 1
tmpRoot.ivyNodes.append(tmpNode)
self.ivyRoots.append(tmpRoot)
return
def adhesion(loc, bvhtree, max_l):
# Compute the adhesion vector by finding the nearest point
nearest_location, *_ = bvhtree.find_nearest(loc, max_l)
adhesion_vector = Vector((0.0, 0.0, 0.0))
if nearest_location is not None:
# Compute the distance to the nearest point
adhesion_vector = nearest_location - loc
distance = adhesion_vector.length
# If it's less than the maximum allowed and not 0, continue
if distance:
# Compute the direction vector between the closest point and loc
adhesion_vector.normalize()
adhesion_vector *= 1.0 - distance / max_l
# adhesion_vector *= getFaceWeight(ob.data, nearest_result[3])
return adhesion_vector
def collision(bvhtree, pos, new_pos):
# Check for collision with the object
climbing = False
corrected_new_pos = new_pos
direction = new_pos - pos
hit_location, hit_normal, *_ = bvhtree.ray_cast(pos, direction, direction.length)
# If there's a collision we need to check it
if hit_location is not None:
# Check whether the collision is going into the object
if direction.dot(hit_normal) < 0.0:
reflected_direction = (new_pos - hit_location).reflect(hit_normal)
corrected_new_pos = hit_location + reflected_direction
climbing = True
return climbing, corrected_new_pos
def bvhtree_from_object(ob):
import bmesh
bm = bmesh.new()
depsgraph = bpy.context.evaluated_depsgraph_get()
ob_eval = ob.evaluated_get(depsgraph)
mesh = ob_eval.to_mesh()
bm.from_mesh(mesh)
bm.transform(ob.matrix_world)
bvhtree = BVHTree.FromBMesh(bm)
ob_eval.to_mesh_clear()
return bvhtree
def check_mesh_faces(ob):
me = ob.data
if len(me.polygons) > 0:
return True
return False
class IvyGen(Operator):
bl_idname = "curve.ivy_gen"
bl_label = "IvyGen"
bl_description = "Generate Ivy on an Mesh Object"
bl_options = {'REGISTER', 'UNDO'}
updateIvy: BoolProperty(
name="Update Ivy",
description="Update the Ivy location based on the cursor and Panel settings",
default=False
)
defaultIvy: BoolProperty(
name="Default Ivy",
options={"HIDDEN", "SKIP_SAVE"},
default=False
)
@classmethod
def poll(self, context):
# Check if there's an object and whether it's a mesh
ob = context.active_object
return ((ob is not None) and
(ob.type == 'MESH') and
(context.mode == 'OBJECT'))
def invoke(self, context, event):
self.updateIvy = True
return self.execute(context)
def execute(self, context):
# scene = context.scene
ivyProps = context.window_manager.ivy_gen_props
if not self.updateIvy:
return {'PASS_THROUGH'}
# assign the variables, check if it is default
# Note: update the values if window_manager props defaults are changed
randomSeed = ivyProps.randomSeed if not self.defaultIvy else 0
maxTime = ivyProps.maxTime if not self.defaultIvy else 0
maxIvyLength = ivyProps.maxIvyLength if not self.defaultIvy else 1.0
ivySize = ivyProps.ivySize if not self.defaultIvy else 0.02
maxFloatLength = ivyProps.maxFloatLength if not self.defaultIvy else 0.5
maxAdhesionDistance = ivyProps.maxAdhesionDistance if not self.defaultIvy else 1.0
primaryWeight = ivyProps.primaryWeight if not self.defaultIvy else 0.5
randomWeight = ivyProps.randomWeight if not self.defaultIvy else 0.2
gravityWeight = ivyProps.gravityWeight if not self.defaultIvy else 1.0
adhesionWeight = ivyProps.adhesionWeight if not self.defaultIvy else 0.1
branchingProbability = ivyProps.branchingProbability if not self.defaultIvy else 0.05
leafProbability = ivyProps.leafProbability if not self.defaultIvy else 0.35
ivyBranchSize = ivyProps.ivyBranchSize if not self.defaultIvy else 0.001
ivyLeafSize = ivyProps.ivyLeafSize if not self.defaultIvy else 0.02
growLeaves = ivyProps.growLeaves if not self.defaultIvy else True
bpy.ops.object.mode_set(mode='EDIT', toggle=False)
bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
# Get the selected object
ob = context.active_object
bvhtree = bvhtree_from_object(ob)
# Check if the mesh has at least one polygon since some functions
# are expecting them in the object's data (see T51753)
check_face = check_mesh_faces(ob)
if check_face is False:
self.report({'WARNING'},
"Mesh Object doesn't have at least one Face. "
"Operation Cancelled")
return {"CANCELLED"}
# Compute bounding sphere radius
# radius = computeBoundingSphere(ob) # Not needed anymore
# Get the seeding point
seedPoint = context.scene.cursor.location
# Fix the random seed
rand_seed(randomSeed)
# Make the new ivy
IVY = Ivy(
primaryWeight=primaryWeight,
randomWeight=randomWeight,
gravityWeight=gravityWeight,
adhesionWeight=adhesionWeight,
branchingProbability=branchingProbability,
leafProbability=leafProbability,
ivySize=ivySize,
ivyLeafSize=ivyLeafSize,
ivyBranchSize=ivyBranchSize,
maxFloatLength=maxFloatLength,
maxAdhesionDistance=maxAdhesionDistance
)
# Generate first root and node
IVY.seed(seedPoint)
checkTime = False
maxLength = maxIvyLength # * radius
# If we need to check time set the flag
if maxTime != 0.0:
checkTime = True
t = time.time()
startPercent = 0.0
checkAliveIter = [True, ]
# Grow until 200 roots is reached or backup counter exceeds limit
while (any(checkAliveIter) and
(IVY.maxLength < maxLength) and
(not checkTime or (time.time() - t < maxTime))):
# Grow the ivy for this iteration
IVY.grow(ob, bvhtree)
# Print the proportion of ivy growth to console
if (IVY.maxLength / maxLength * 100) > 10 * startPercent // 10:
print('%0.2f%% of Ivy nodes have grown' %
(IVY.maxLength / maxLength * 100))
startPercent += 10
if IVY.maxLength / maxLength > 1:
print("Halting Growth")
# Make an iterator to check if all are alive
checkAliveIter = (r.alive for r in IVY.ivyRoots)
# Create the curve and leaf geometry
createIvyGeometry(IVY, growLeaves)
print("Geometry Generation Complete")
print("Ivy generated in %0.2f s" % (time.time() - t))
self.updateIvy = False
self.defaultIvy = False
return {'FINISHED'}
def draw(self, context):
layout = self.layout
layout.prop(self, "updateIvy", icon="FILE_REFRESH")
class CURVE_PT_IvyGenPanel(Panel):
bl_label = "Ivy Generator"
bl_idname = "CURVE_PT_IvyGenPanel"
bl_space_type = "VIEW_3D"
bl_region_type = "UI"
bl_category = "Create"
bl_context = "objectmode"
bl_options = {"DEFAULT_CLOSED"}
def draw(self, context):
layout = self.layout
wm = context.window_manager
col = layout.column(align=True)
prop_new = col.operator("curve.ivy_gen", text="Add New Ivy", icon="OUTLINER_OB_CURVE")
prop_new.defaultIvy = False
prop_new.updateIvy = True
prop_def = col.operator("curve.ivy_gen", text="Add New Default Ivy", icon="CURVE_DATA")
prop_def.defaultIvy = True
prop_def.updateIvy = True
col = layout.column(align=True)
col.label(text="Generation Settings:")
col.prop(wm.ivy_gen_props, "randomSeed")
col.prop(wm.ivy_gen_props, "maxTime")
col = layout.column(align=True)
col.label(text="Size Settings:")
col.prop(wm.ivy_gen_props, "maxIvyLength")
col.prop(wm.ivy_gen_props, "ivySize")
col.prop(wm.ivy_gen_props, "maxFloatLength")
col.prop(wm.ivy_gen_props, "maxAdhesionDistance")
col = layout.column(align=True)
col.label(text="Weight Settings:")
col.prop(wm.ivy_gen_props, "primaryWeight")
col.prop(wm.ivy_gen_props, "randomWeight")
col.prop(wm.ivy_gen_props, "gravityWeight")
col.prop(wm.ivy_gen_props, "adhesionWeight")
col = layout.column(align=True)
col.label(text="Branch Settings:")
col.prop(wm.ivy_gen_props, "branchingProbability")
col.prop(wm.ivy_gen_props, "ivyBranchSize")
col = layout.column(align=True)
col.prop(wm.ivy_gen_props, "growLeaves")
if wm.ivy_gen_props.growLeaves:
col = layout.column(align=True)
col.label(text="Leaf Settings:")
col.prop(wm.ivy_gen_props, "ivyLeafSize")
col.prop(wm.ivy_gen_props, "leafProbability")
class IvyGenProperties(PropertyGroup):
maxIvyLength: FloatProperty(
name="Max Ivy Length",
description="Maximum ivy length in Blender Units",
default=1.0,
min=0.0,
soft_max=3.0,
subtype='DISTANCE',
unit='LENGTH'
)
primaryWeight: FloatProperty(
name="Primary Weight",
description="Weighting given to the current direction",
default=0.5,
min=0.0,
soft_max=1.0
)
randomWeight: FloatProperty(
name="Random Weight",
description="Weighting given to the random direction",
default=0.2,
min=0.0,
soft_max=1.0
)
gravityWeight: FloatProperty(
name="Gravity Weight",
description="Weighting given to the gravity direction",
default=1.0,
min=0.0,
soft_max=1.0
)
adhesionWeight: FloatProperty(
name="Adhesion Weight",
description="Weighting given to the adhesion direction",
default=0.1,
min=0.0,
soft_max=1.0
)
branchingProbability: FloatProperty(
name="Branching Probability",
description="Probability of a new branch forming",
default=0.05,
min=0.0,
soft_max=1.0
)
leafProbability: FloatProperty(
name="Leaf Probability",
description="Probability of a leaf forming",
default=0.35,
min=0.0,
soft_max=1.0
)
ivySize: FloatProperty(
name="Ivy Size",
description="The length of an ivy segment in Blender"
" Units",
default=0.02,
min=0.0,
soft_max=1.0,
precision=3
)
ivyLeafSize: FloatProperty(
name="Ivy Leaf Size",
description="The size of the ivy leaves",
default=0.02,
min=0.0,
soft_max=0.5,
precision=3
)
ivyBranchSize: FloatProperty(
name="Ivy Branch Size",
description="The size of the ivy branches",
default=0.001,
min=0.0,
soft_max=0.1,
precision=4
)
maxFloatLength: FloatProperty(
name="Max Float Length",
description="The maximum distance that a branch "
"can live while floating",
default=0.5,
min=0.0,
soft_max=1.0
)
maxAdhesionDistance: FloatProperty(
name="Max Adhesion Length",
description="The maximum distance that a branch "
"will feel the effects of adhesion",
default=1.0,
min=0.0,
soft_max=2.0,
precision=2
)
randomSeed: IntProperty(
name="Random Seed",
description="The seed governing random generation",
default=0,
min=0
)
maxTime: FloatProperty(
name="Maximum Time",
description="The maximum time to run the generation for "
"in seconds generation (0.0 = Disabled)",
default=0.0,
min=0.0,
soft_max=10
)
growLeaves: BoolProperty(
name="Grow Leaves",
description="Grow leaves or not",
default=True
)
classes = (
IvyGen,
IvyGenProperties,
CURVE_PT_IvyGenPanel
)
def register():
for cls in classes:
bpy.utils.register_class(cls)
bpy.types.WindowManager.ivy_gen_props = PointerProperty(
type=IvyGenProperties
)
def unregister():
del bpy.types.WindowManager.ivy_gen_props
for cls in reversed(classes):
bpy.utils.unregister_class(cls)
if __name__ == "__main__":
register()