blender-addons/mesh_inset/geom.py
Campbell Barton 016430de4b Cleanup: remove <pep8 compliant> comment
This is no longer necessary, see: T98554.
2022-06-03 11:50:32 +10:00

703 lines
19 KiB
Python

# SPDX-License-Identifier: GPL-2.0-or-later
"""Geometry classes and operations.
Also, vector file representation (Art).
"""
__author__ = "howard.trickey@gmail.com"
import math
# distances less than about DISTTOL will be considered
# essentially zero
DISTTOL = 1e-3
INVDISTTOL = 1e3
class Points(object):
"""Container of points without duplication, each mapped to an int.
Points are either have dimension at least 2, maybe more.
Implementation:
In order to efficiently find duplicates, we quantize the points
to triples of ints and map from quantized triples to vertex
index.
Attributes:
pos: list of tuple of float - coordinates indexed by
vertex number
invmap: dict of (int, int, int) to int - quantized coordinates
to vertex number map
"""
def __init__(self, initlist=[]):
self.pos = []
self.invmap = dict()
for p in initlist:
self.AddPoint(p)
@staticmethod
def Quantize(p):
"""Quantize the float tuple into an int tuple.
Args:
p: tuple of float
Returns:
tuple of int - scaled by INVDISTTOL and rounded p
"""
return tuple([int(round(v * INVDISTTOL)) for v in p])
def AddPoint(self, p, allowdups = False):
"""Add point p to the Points set and return vertex number.
If there is an existing point which quantizes the same,,
don't add a new one but instead return existing index.
Except if allowdups is True, don't do that deduping.
Args:
p: tuple of float - coordinates (2-tuple or 3-tuple)
Returns:
int - the vertex number of added (or existing) point
"""
qp = Points.Quantize(p)
if qp in self.invmap and not allowdups:
return self.invmap[qp]
else:
self.invmap[qp] = len(self.pos)
self.pos.append(p)
return len(self.pos) - 1
def AddPoints(self, points, allowdups = False):
"""Add another set of points to this set.
We need to return a mapping from indices
in the argument points space into indices
in this point space.
Args:
points: Points - to union into this set
Returns:
list of int: maps added indices to new ones
"""
vmap = [0] * len(points.pos)
for i in range(len(points.pos)):
vmap[i] = self.AddPoint(points.pos[i], allowdups)
return vmap
def AddZCoord(self, z):
"""Change this in place to have a z coordinate, with value z.
Assumes the coordinates are currently 2d.
Args:
z: the value of the z coordinate to add
Side Effect:
self now has a z-coordinate added
"""
assert(len(self.pos) == 0 or len(self.pos[0]) == 2)
newinvmap = dict()
for i, (x, y) in enumerate(self.pos):
newp = (x, y, z)
self.pos[i] = newp
newinvmap[self.Quantize(newp)] = i
self.invmap = newinvmap
def AddToZCoord(self, i, delta):
"""Change the z-coordinate of point with index i to add delta.
Assumes the coordinates are currently 3d.
Args:
i: int - index of a point
delta: float - value to add to z-coord
"""
(x, y, z) = self.pos[i]
self.pos[i] = (x, y, z + delta)
class PolyArea(object):
"""Contains a Polygonal Area (polygon with possible holes).
A polygon is a list of vertex ids, each an index given by
a Points object. The list represents a CCW-oriented
outer boundary (implicitly closed).
If there are holes, they are lists of CW-oriented vertices
that should be contained in the outer boundary.
(So the left face of both the poly and the holes is
the filled part.)
Attributes:
points: Points
poly: list of vertex ids
holes: list of lists of vertex ids (each a hole in poly)
data: any - application data (can hold color, e.g.)
"""
def __init__(self, points=None, poly=None, holes=None, data=None):
self.points = points if points else Points()
self.poly = poly if poly else []
self.holes = holes if holes else []
self.data = data
def AddHole(self, holepa):
"""Add a PolyArea's poly as a hole of self.
Need to reverse the contour and
adjust the the point indexes and self.points.
Args:
holepa: PolyArea
"""
vmap = self.points.AddPoints(holepa.points)
holepoly = [vmap[i] for i in holepa.poly]
holepoly.reverse()
self.holes.append(holepoly)
def ContainsPoly(self, poly, points):
"""Tests if poly is contained within self.poly.
Args:
poly: list of int - indices into points
points: Points - maps to coords
Returns:
bool - True if poly is fully contained within self.poly
"""
for v in poly:
if PointInside(points.pos[v], self.poly, self.points) == -1:
return False
return True
def Normal(self):
"""Returns the normal of the polyarea's main poly."""
pos = self.points.pos
poly = self.poly
if len(pos) == 0 or len(pos[0]) == 2 or len(poly) == 0:
print("whoops, not enough info to calculate normal")
return (0.0, 0.0, 1.0)
return Newell(poly, self.points)
class PolyAreas(object):
"""Contains a list of PolyAreas and a shared Points.
Attributes:
polyareas: list of PolyArea
points: Points
"""
def __init__(self):
self.polyareas = []
self.points = Points()
def scale_and_center(self, scaled_side_target):
"""Adjust the coordinates of the polyareas so that
it is centered at the origin and has its longest
dimension scaled to be scaled_side_target."""
if len(self.points.pos) == 0:
return
(minv, maxv) = self.bounds()
maxside = max([maxv[i] - minv[i] for i in range(2)])
if maxside > 0.0:
scale = scaled_side_target / maxside
else:
scale = 1.0
translate = [-0.5 * (maxv[i] + minv[i]) for i in range(2)]
dim = len(self.points.pos[0])
if dim == 3:
translate.append([0.0])
for v in range(len(self.points.pos)):
self.points.pos[v] = tuple([scale * (self.points.pos[v][i] + \
translate[i]) for i in range(dim)])
def bounds(self):
"""Find bounding box of polyareas in xy.
Returns:
([minx,miny],[maxx,maxy]) - all floats
"""
huge = 1e100
minv = [huge, huge]
maxv = [-huge, -huge]
for pa in self.polyareas:
for face in [pa.poly] + pa.holes:
for v in face:
vcoords = self.points.pos[v]
for i in range(2):
if vcoords[i] < minv[i]:
minv[i] = vcoords[i]
if vcoords[i] > maxv[i]:
maxv[i] = vcoords[i]
if minv[0] == huge:
minv = [0.0, 0.0]
if maxv[0] == huge:
maxv = [0.0, 0.0]
return (minv, maxv)
class Model(object):
"""Contains a generic 3d model.
A generic 3d model has vertices with 3d coordinates.
Each vertex gets a 'vertex id', which is an index that
can be used to refer to the vertex and can be used
to retrieve the 3d coordinates of the point.
The actual visible part of the geometry are the faces,
which are n-gons (n>2), specified by a vector of the
n corner vertices.
Faces may also have data associated with them,
and the data will be copied into newly created faces
from the most likely neighbor faces..
Attributes:
points: geom.Points - the 3d vertices
faces: list of list of indices (each a CCW traversal of a face)
face_data: list of any - if present, is parallel to
faces list and holds arbitrary data
"""
def __init__(self):
self.points = Points()
self.faces = []
self.face_data = []
class Art(object):
"""Contains a vector art diagram.
Attributes:
paths: list of Path objects
"""
def __init__(self):
self.paths = []
class Paint(object):
"""A color or pattern to fill or stroke with.
For now, just do colors, but could later do
patterns or images too.
Attributes:
color: (r,g,b) triple of floats, 0.0=no color, 1.0=max color
"""
def __init__(self, r=0.0, g=0.0, b=0.0):
self.color = (r, g, b)
@staticmethod
def CMYK(c, m, y, k):
"""Return Paint specified in CMYK model.
Uses formula from 6.2.4 of PDF Reference.
Args:
c, m, y, k: float - in range [0, 1]
Returns:
Paint - with components in rgb form now
"""
return Paint(1.0 - min(1.0, c + k),
1.0 - min(1.0, m + k), 1.0 - min(1.0, y + k))
black_paint = Paint()
white_paint = Paint(1.0, 1.0, 1.0)
ColorDict = {
'aqua': Paint(0.0, 1.0, 1.0),
'black': Paint(0.0, 0.0, 0.0),
'blue': Paint(0.0, 0.0, 1.0),
'fuchsia': Paint(1.0, 0.0, 1.0),
'gray': Paint(0.5, 0.5, 0.5),
'green': Paint(0.0, 0.5, 0.0),
'lime': Paint(0.0, 1.0, 0.0),
'maroon': Paint(0.5, 0.0, 0.0),
'navy': Paint(0.0, 0.0, 0.5),
'olive': Paint(0.5, 0.5, 0.0),
'purple': Paint(0.5, 0.0, 0.5),
'red': Paint(1.0, 0.0, 0.0),
'silver': Paint(0.75, 0.75, 0.75),
'teal': Paint(0.0, 0.5, 0.5),
'white': Paint(1.0, 1.0, 1.0),
'yellow': Paint(1.0, 1.0, 0.0)
}
class Path(object):
"""Represents a path in the PDF sense, with painting instructions.
Attributes:
subpaths: list of Subpath objects
filled: True if path is to be filled
fillevenodd: True if use even-odd rule to fill (else non-zero winding)
stroked: True if path is to be stroked
fillpaint: Paint to fill with
strokepaint: Paint to stroke with
"""
def __init__(self):
self.subpaths = []
self.filled = False
self.fillevenodd = False
self.stroked = False
self.fillpaint = black_paint
self.strokepaint = black_paint
def AddSubpath(self, subpath):
""""Add a subpath."""
self.subpaths.append(subpath)
def Empty(self):
"""Returns True if this Path as no subpaths."""
return not self.subpaths
class Subpath(object):
"""Represents a subpath in PDF sense, either open or closed.
We'll represent lines, bezier pieces, circular arc pieces
as tuples with letters giving segment type in first position
and coordinates (2-tuples of floats) in the other positions.
Segment types:
('L', a, b) - line from a to b
('B', a, b, c, d) - cubic bezier from a to b, with control points c,d
('Q', a, b, c) - quadratic bezier from a to b, with 1 control point c
('A', a, b, rad, xrot, large-arc, ccw) - elliptical arc from a to b,
with rad=(rx, ry) as radii, xrot is x-axis rotation in degrees,
large-arc is True if arc should be >= 180 degrees,
ccw is True if start->end follows counter-clockwise direction
(see SVG spec); note that after rad,
the rest are floats or bools, not coordinate pairs
Note that s[1] and s[2] are the start and end points for any segment s.
Attributes:
segments: list of segment tuples (see above)
closed: True if closed
"""
def __init__(self):
self.segments = []
self.closed = False
def Empty(self):
"""Returns True if this subpath as no segments."""
return not self.segments
def AddSegment(self, seg):
"""Add a segment."""
self.segments.append(seg)
@staticmethod
def SegStart(s):
"""Return start point for segment.
Args:
s: a segment tuple
Returns:
(float, float): the coordinates of the segment's start point
"""
return s[1]
@staticmethod
def SegEnd(s):
"""Return end point for segment.
Args:
s: a segment tuple
Returns:
(float, float): the coordinates of the segment's end point
"""
return s[2]
class TransformMatrix(object):
"""Transformation matrix for 2d coordinates.
The transform matrix is:
[ a b 0 ]
[ c d 0 ]
[ e f 1 ]
and coordinate transformation is defined by:
[x' y' 1] = [x y 1] x TransformMatrix
Attributes:
a, b, c, d, e, f: floats
"""
def __init__(self, a=1.0, b=0.0, c=0.0, d=1.0, e=0.0, f=0.0):
self.a = a
self.b = b
self.c = c
self.d = d
self.e = e
self.f = f
def __str__(self):
return str([self.a, self.b, self.c, self.d, self.e, self.f])
def Copy(self):
"""Return a copy of this matrix."""
return TransformMatrix(self.a, self.b, self.c, self.d, self.e, self.f)
def ComposeTransform(self, a, b, c, d, e, f):
"""Apply the transform given the the arguments on top of this one.
This is accomplished by returning t x sel
where t is the transform matrix that would be formed from the args.
Arguments:
a, b, c, d, e, f: float - defines a composing TransformMatrix
"""
newa = a * self.a + b * self.c
newb = a * self.b + b * self.d
newc = c * self.a + d * self.c
newd = c * self.b + d * self.d
newe = e * self.a + f * self.c + self.e
newf = e * self.b + f * self.d + self.f
self.a = newa
self.b = newb
self.c = newc
self.d = newd
self.e = newe
self.f = newf
def Apply(self, pt):
"""Return the result of applying this transform to pt = (x,y).
Arguments:
(x, y) : (float, float)
Returns:
(x', y'): 2-tuple of floats, the result of [x y 1] x self
"""
(x, y) = pt
return (self.a * x + self.c * y + self.e, \
self.b * x + self.d * y + self.f)
def ApproxEqualPoints(p, q):
"""Return True if p and q are approximately the same points.
Args:
p: n-tuple of float
q: n-tuple of float
Returns:
bool - True if the 1-norm <= DISTTOL
"""
for i in range(len(p)):
if abs(p[i] - q[i]) > DISTTOL:
return False
return True
def PointInside(v, a, points):
"""Return 1, 0, or -1 as v is inside, on, or outside polygon.
Cf. Eric Haines ptinpoly in Graphics Gems IV.
Args:
v : (float, float) or (float, float, float) - coordinates of a point
a : list of vertex indices defining polygon (assumed CCW)
points: Points - to get coordinates for polygon
Returns:
1, 0, -1: as v is inside, on, or outside polygon a
"""
(xv, yv) = (v[0], v[1])
vlast = points.pos[a[-1]]
(x0, y0) = (vlast[0], vlast[1])
if x0 == xv and y0 == yv:
return 0
yflag0 = y0 > yv
inside = False
n = len(a)
for i in range(0, n):
vi = points.pos[a[i]]
(x1, y1) = (vi[0], vi[1])
if x1 == xv and y1 == yv:
return 0
yflag1 = y1 > yv
if yflag0 != yflag1:
xflag0 = x0 > xv
xflag1 = x1 > xv
if xflag0 == xflag1:
if xflag0:
inside = not inside
else:
z = x1 - (y1 - yv) * (x0 - x1) / (y0 - y1)
if z >= xv:
inside = not inside
x0 = x1
y0 = y1
yflag0 = yflag1
if inside:
return 1
else:
return -1
def SignedArea(polygon, points):
"""Return the area of the polgon, positive if CCW, negative if CW.
Args:
polygon: list of vertex indices
points: Points
Returns:
float - area of polygon, positive if it was CCW, else negative
"""
a = 0.0
n = len(polygon)
for i in range(0, n):
u = points.pos[polygon[i]]
v = points.pos[polygon[(i + 1) % n]]
a += u[0] * v[1] - u[1] * v[0]
return 0.5 * a
def VecAdd(a, b):
"""Return vector a-b.
Args:
a: n-tuple of floats
b: n-tuple of floats
Returns:
n-tuple of floats - pairwise addition a+b
"""
n = len(a)
assert(n == len(b))
return tuple([a[i] + b[i] for i in range(n)])
def VecSub(a, b):
"""Return vector a-b.
Args:
a: n-tuple of floats
b: n-tuple of floats
Returns:
n-tuple of floats - pairwise subtraction a-b
"""
n = len(a)
assert(n == len(b))
return tuple([a[i] - b[i] for i in range(n)])
def VecDot(a, b):
"""Return the dot product of two vectors.
Args:
a: n-tuple of floats
b: n-tuple of floats
Returns:
n-tuple of floats - dot product of a and b
"""
n = len(a)
assert(n == len(b))
sum = 0.0
for i in range(n):
sum += a[i] * b[i]
return sum
def VecLen(a):
"""Return the Euclidean length of the argument vector.
Args:
a: n-tuple of floats
Returns:
float: the 2-norm of a
"""
s = 0.0
for v in a:
s += v * v
return math.sqrt(s)
def Newell(poly, points):
"""Use Newell method to find polygon normal.
Assume poly has length at least 3 and points are 3d.
Args:
poly: list of int - indices into points.pos
points: Points - assumed 3d
Returns:
(float, float, float) - the average normal
"""
sumx = 0.0
sumy = 0.0
sumz = 0.0
n = len(poly)
pos = points.pos
for i, ai in enumerate(poly):
bi = poly[(i + 1) % n]
a = pos[ai]
b = pos[bi]
sumx += (a[1] - b[1]) * (a[2] + b[2])
sumy += (a[2] - b[2]) * (a[0] + b[0])
sumz += (a[0] - b[0]) * (a[1] + b[1])
return Norm3(sumx, sumy, sumz)
def Norm3(x, y, z):
"""Return vector (x,y,z) normalized by dividing by squared length.
Return (0.0, 0.0, 1.0) if the result is undefined."""
sqrlen = x * x + y * y + z * z
if sqrlen < 1e-100:
return (0.0, 0.0, 1.0)
else:
try:
d = math.sqrt(sqrlen)
return (x / d, y / d, z / d)
except:
return (0.0, 0.0, 1.0)
# We're using right-hand coord system, where
# forefinger=x, middle=y, thumb=z on right hand.
# Then, e.g., (1,0,0) x (0,1,0) = (0,0,1)
def Cross3(a, b):
"""Return the cross product of two vectors, a x b."""
(ax, ay, az) = a
(bx, by, bz) = b
return (ay * bz - az * by, az * bx - ax * bz, ax * by - ay * bx)
def MulPoint3(p, m):
"""Return matrix multiplication of p times m
where m is a 4x3 matrix and p is a 3d point, extended with 1."""
(x, y, z) = p
return (x * m[0] + y * m[3] + z * m[6] + m[9],
x * m[1] + y * m[4] + z * m[7] + m[10],
x * m[2] + y * m[5] + z * m[8] + m[11])