9430 lines
399 KiB
C++
9430 lines
399 KiB
C++
#ifndef SSE2NEON_H
|
|
#define SSE2NEON_H
|
|
|
|
/*
|
|
* sse2neon is freely redistributable under the MIT License.
|
|
*
|
|
* Copyright (c) 2015-2024 SSE2NEON Contributors.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
// This header file provides a simple API translation layer
|
|
// between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions
|
|
//
|
|
// Contributors to this work are:
|
|
// John W. Ratcliff <jratcliffscarab@gmail.com>
|
|
// Brandon Rowlett <browlett@nvidia.com>
|
|
// Ken Fast <kfast@gdeb.com>
|
|
// Eric van Beurden <evanbeurden@nvidia.com>
|
|
// Alexander Potylitsin <apotylitsin@nvidia.com>
|
|
// Hasindu Gamaarachchi <hasindu2008@gmail.com>
|
|
// Jim Huang <jserv@ccns.ncku.edu.tw>
|
|
// Mark Cheng <marktwtn@gmail.com>
|
|
// Malcolm James MacLeod <malcolm@gulden.com>
|
|
// Devin Hussey (easyaspi314) <husseydevin@gmail.com>
|
|
// Sebastian Pop <spop@amazon.com>
|
|
// Developer Ecosystem Engineering <DeveloperEcosystemEngineering@apple.com>
|
|
// Danila Kutenin <danilak@google.com>
|
|
// François Turban (JishinMaster) <francois.turban@gmail.com>
|
|
// Pei-Hsuan Hung <afcidk@gmail.com>
|
|
// Yang-Hao Yuan <yuanyanghau@gmail.com>
|
|
// Syoyo Fujita <syoyo@lighttransport.com>
|
|
// Brecht Van Lommel <brecht@blender.org>
|
|
// Jonathan Hue <jhue@adobe.com>
|
|
// Cuda Chen <clh960524@gmail.com>
|
|
// Aymen Qader <aymen.qader@arm.com>
|
|
// Anthony Roberts <anthony.roberts@linaro.org>
|
|
|
|
/* Tunable configurations */
|
|
|
|
/* Enable precise implementation of math operations
|
|
* This would slow down the computation a bit, but gives consistent result with
|
|
* x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result)
|
|
*/
|
|
/* _mm_min|max_ps|ss|pd|sd */
|
|
#ifndef SSE2NEON_PRECISE_MINMAX
|
|
#define SSE2NEON_PRECISE_MINMAX (0)
|
|
#endif
|
|
/* _mm_rcp_ps */
|
|
#ifndef SSE2NEON_PRECISE_DIV
|
|
#define SSE2NEON_PRECISE_DIV (0)
|
|
#endif
|
|
/* _mm_sqrt_ps and _mm_rsqrt_ps */
|
|
#ifndef SSE2NEON_PRECISE_SQRT
|
|
#define SSE2NEON_PRECISE_SQRT (0)
|
|
#endif
|
|
/* _mm_dp_pd */
|
|
#ifndef SSE2NEON_PRECISE_DP
|
|
#define SSE2NEON_PRECISE_DP (0)
|
|
#endif
|
|
|
|
/* Enable inclusion of windows.h on MSVC platforms
|
|
* This makes _mm_clflush functional on windows, as there is no builtin.
|
|
*/
|
|
#ifndef SSE2NEON_INCLUDE_WINDOWS_H
|
|
#define SSE2NEON_INCLUDE_WINDOWS_H (0)
|
|
#endif
|
|
|
|
/* compiler specific definitions */
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma push_macro("FORCE_INLINE")
|
|
#pragma push_macro("ALIGN_STRUCT")
|
|
#define FORCE_INLINE static inline __attribute__((always_inline))
|
|
#define ALIGN_STRUCT(x) __attribute__((aligned(x)))
|
|
#define _sse2neon_likely(x) __builtin_expect(!!(x), 1)
|
|
#define _sse2neon_unlikely(x) __builtin_expect(!!(x), 0)
|
|
#elif defined(_MSC_VER)
|
|
#if _MSVC_TRADITIONAL
|
|
#error Using the traditional MSVC preprocessor is not supported! Use /Zc:preprocessor instead.
|
|
#endif
|
|
#ifndef FORCE_INLINE
|
|
#define FORCE_INLINE static inline
|
|
#endif
|
|
#ifndef ALIGN_STRUCT
|
|
#define ALIGN_STRUCT(x) __declspec(align(x))
|
|
#endif
|
|
#define _sse2neon_likely(x) (x)
|
|
#define _sse2neon_unlikely(x) (x)
|
|
#else
|
|
#pragma message("Macro name collisions may happen with unsupported compilers.")
|
|
#endif
|
|
|
|
|
|
#if defined(__GNUC__) && !defined(__clang__)
|
|
#pragma push_macro("FORCE_INLINE_OPTNONE")
|
|
#define FORCE_INLINE_OPTNONE static inline __attribute__((optimize("O0")))
|
|
#elif defined(__clang__)
|
|
#pragma push_macro("FORCE_INLINE_OPTNONE")
|
|
#define FORCE_INLINE_OPTNONE static inline __attribute__((optnone))
|
|
#else
|
|
#define FORCE_INLINE_OPTNONE FORCE_INLINE
|
|
#endif
|
|
|
|
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ < 10
|
|
#warning "GCC versions earlier than 10 are not supported."
|
|
#endif
|
|
|
|
/* C language does not allow initializing a variable with a function call. */
|
|
#ifdef __cplusplus
|
|
#define _sse2neon_const static const
|
|
#else
|
|
#define _sse2neon_const const
|
|
#endif
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
FORCE_INLINE double sse2neon_recast_u64_f64(uint64_t u64)
|
|
{
|
|
double f64;
|
|
memcpy(&f64, &u64, sizeof(uint64_t));
|
|
return f64;
|
|
}
|
|
FORCE_INLINE int64_t sse2neon_recast_f64_s64(double f64)
|
|
{
|
|
int64_t i64;
|
|
memcpy(&i64, &f64, sizeof(uint64_t));
|
|
return i64;
|
|
}
|
|
|
|
#if defined(_WIN32)
|
|
/* Definitions for _mm_{malloc,free} are provided by <malloc.h>
|
|
* from both MinGW-w64 and MSVC.
|
|
*/
|
|
#define SSE2NEON_ALLOC_DEFINED
|
|
#endif
|
|
|
|
/* If using MSVC */
|
|
#ifdef _MSC_VER
|
|
#include <intrin.h>
|
|
#if SSE2NEON_INCLUDE_WINDOWS_H
|
|
#include <processthreadsapi.h>
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
#if !defined(__cplusplus)
|
|
#error SSE2NEON only supports C++ compilation with this compiler
|
|
#endif
|
|
|
|
#ifdef SSE2NEON_ALLOC_DEFINED
|
|
#include <malloc.h>
|
|
#endif
|
|
|
|
#if (defined(_M_AMD64) || defined(__x86_64__)) || \
|
|
(defined(_M_ARM64) || defined(__arm64__))
|
|
#define SSE2NEON_HAS_BITSCAN64
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#define _sse2neon_define0(type, s, body) \
|
|
__extension__({ \
|
|
type _a = (s); \
|
|
body \
|
|
})
|
|
#define _sse2neon_define1(type, s, body) \
|
|
__extension__({ \
|
|
type _a = (s); \
|
|
body \
|
|
})
|
|
#define _sse2neon_define2(type, a, b, body) \
|
|
__extension__({ \
|
|
type _a = (a), _b = (b); \
|
|
body \
|
|
})
|
|
#define _sse2neon_return(ret) (ret)
|
|
#else
|
|
#define _sse2neon_define0(type, a, body) [=](type _a) { body }(a)
|
|
#define _sse2neon_define1(type, a, body) [](type _a) { body }(a)
|
|
#define _sse2neon_define2(type, a, b, body) \
|
|
[](type _a, type _b) { body }((a), (b))
|
|
#define _sse2neon_return(ret) return ret
|
|
#endif
|
|
|
|
#define _sse2neon_init(...) \
|
|
{ \
|
|
__VA_ARGS__ \
|
|
}
|
|
|
|
/* Compiler barrier */
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#define SSE2NEON_BARRIER() _ReadWriteBarrier()
|
|
#else
|
|
#define SSE2NEON_BARRIER() \
|
|
do { \
|
|
__asm__ __volatile__("" ::: "memory"); \
|
|
(void) 0; \
|
|
} while (0)
|
|
#endif
|
|
|
|
/* Memory barriers
|
|
* __atomic_thread_fence does not include a compiler barrier; instead,
|
|
* the barrier is part of __atomic_load/__atomic_store's "volatile-like"
|
|
* semantics.
|
|
*/
|
|
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
|
|
#include <stdatomic.h>
|
|
#endif
|
|
|
|
FORCE_INLINE void _sse2neon_smp_mb(void)
|
|
{
|
|
SSE2NEON_BARRIER();
|
|
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \
|
|
!defined(__STDC_NO_ATOMICS__)
|
|
atomic_thread_fence(memory_order_seq_cst);
|
|
#elif defined(__GNUC__) || defined(__clang__)
|
|
__atomic_thread_fence(__ATOMIC_SEQ_CST);
|
|
#else /* MSVC */
|
|
__dmb(_ARM64_BARRIER_ISH);
|
|
#endif
|
|
}
|
|
|
|
/* Architecture-specific build options */
|
|
/* FIXME: #pragma GCC push_options is only available on GCC */
|
|
#if defined(__GNUC__)
|
|
#if defined(__arm__) && __ARM_ARCH == 7
|
|
/* According to ARM C Language Extensions Architecture specification,
|
|
* __ARM_NEON is defined to a value indicating the Advanced SIMD (NEON)
|
|
* architecture supported.
|
|
*/
|
|
#if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
|
|
#error "You must enable NEON instructions (e.g. -mfpu=neon) to use SSE2NEON."
|
|
#endif
|
|
#if !defined(__clang__)
|
|
#pragma GCC push_options
|
|
#pragma GCC target("fpu=neon")
|
|
#endif
|
|
#elif defined(__aarch64__) || defined(_M_ARM64)
|
|
#if !defined(__clang__) && !defined(_MSC_VER)
|
|
#pragma GCC push_options
|
|
#pragma GCC target("+simd")
|
|
#endif
|
|
#elif __ARM_ARCH == 8
|
|
#if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
|
|
#error \
|
|
"You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON."
|
|
#endif
|
|
#if !defined(__clang__) && !defined(_MSC_VER)
|
|
#pragma GCC push_options
|
|
#endif
|
|
#else
|
|
#error \
|
|
"Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A \
|
|
(you could try setting target explicitly with -march or -mcpu)"
|
|
#endif
|
|
#endif
|
|
|
|
#include <arm_neon.h>
|
|
#if (!defined(__aarch64__) && !defined(_M_ARM64)) && (__ARM_ARCH == 8)
|
|
#if defined __has_include && __has_include(<arm_acle.h>)
|
|
#include <arm_acle.h>
|
|
#endif
|
|
#endif
|
|
|
|
/* Apple Silicon cache lines are double of what is commonly used by Intel, AMD
|
|
* and other Arm microarchitectures use.
|
|
* From sysctl -a on Apple M1:
|
|
* hw.cachelinesize: 128
|
|
*/
|
|
#if defined(__APPLE__) && (defined(__aarch64__) || defined(__arm64__))
|
|
#define SSE2NEON_CACHELINE_SIZE 128
|
|
#else
|
|
#define SSE2NEON_CACHELINE_SIZE 64
|
|
#endif
|
|
|
|
/* Rounding functions require either Aarch64 instructions or libm fallback */
|
|
#if !defined(__aarch64__) && !defined(_M_ARM64)
|
|
#include <math.h>
|
|
#endif
|
|
|
|
/* On ARMv7, some registers, such as PMUSERENR and PMCCNTR, are read-only
|
|
* or even not accessible in user mode.
|
|
* To write or access to these registers in user mode,
|
|
* we have to perform syscall instead.
|
|
*/
|
|
#if (!defined(__aarch64__) && !defined(_M_ARM64))
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
/* "__has_builtin" can be used to query support for built-in functions
|
|
* provided by gcc/clang and other compilers that support it.
|
|
*/
|
|
#ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */
|
|
/* Compatibility with gcc <= 9 */
|
|
#if defined(__GNUC__) && (__GNUC__ <= 9)
|
|
#define __has_builtin(x) HAS##x
|
|
#define HAS__builtin_popcount 1
|
|
#define HAS__builtin_popcountll 1
|
|
|
|
// __builtin_shuffle introduced in GCC 4.7.0
|
|
#if (__GNUC__ >= 5) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7))
|
|
#define HAS__builtin_shuffle 1
|
|
#else
|
|
#define HAS__builtin_shuffle 0
|
|
#endif
|
|
|
|
#define HAS__builtin_shufflevector 0
|
|
#define HAS__builtin_nontemporal_store 0
|
|
#else
|
|
#define __has_builtin(x) 0
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* MACRO for shuffle parameter for _mm_shuffle_ps().
|
|
* Argument fp3 is a digit[0123] that represents the fp from argument "b"
|
|
* of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same
|
|
* for fp2 in result. fp1 is a digit[0123] that represents the fp from
|
|
* argument "a" of mm_shuffle_ps that will be places in fp1 of result.
|
|
* fp0 is the same for fp0 of result.
|
|
*/
|
|
#define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \
|
|
(((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
|
|
|
|
#if __has_builtin(__builtin_shufflevector)
|
|
#define _sse2neon_shuffle(type, a, b, ...) \
|
|
__builtin_shufflevector(a, b, __VA_ARGS__)
|
|
#elif __has_builtin(__builtin_shuffle)
|
|
#define _sse2neon_shuffle(type, a, b, ...) \
|
|
__extension__({ \
|
|
type tmp = {__VA_ARGS__}; \
|
|
__builtin_shuffle(a, b, tmp); \
|
|
})
|
|
#endif
|
|
|
|
#ifdef _sse2neon_shuffle
|
|
#define vshuffle_s16(a, b, ...) _sse2neon_shuffle(int16x4_t, a, b, __VA_ARGS__)
|
|
#define vshuffleq_s16(a, b, ...) _sse2neon_shuffle(int16x8_t, a, b, __VA_ARGS__)
|
|
#define vshuffle_s32(a, b, ...) _sse2neon_shuffle(int32x2_t, a, b, __VA_ARGS__)
|
|
#define vshuffleq_s32(a, b, ...) _sse2neon_shuffle(int32x4_t, a, b, __VA_ARGS__)
|
|
#define vshuffle_s64(a, b, ...) _sse2neon_shuffle(int64x1_t, a, b, __VA_ARGS__)
|
|
#define vshuffleq_s64(a, b, ...) _sse2neon_shuffle(int64x2_t, a, b, __VA_ARGS__)
|
|
#endif
|
|
|
|
/* Rounding mode macros. */
|
|
#define _MM_FROUND_TO_NEAREST_INT 0x00
|
|
#define _MM_FROUND_TO_NEG_INF 0x01
|
|
#define _MM_FROUND_TO_POS_INF 0x02
|
|
#define _MM_FROUND_TO_ZERO 0x03
|
|
#define _MM_FROUND_CUR_DIRECTION 0x04
|
|
#define _MM_FROUND_NO_EXC 0x08
|
|
#define _MM_FROUND_RAISE_EXC 0x00
|
|
#define _MM_FROUND_NINT (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC)
|
|
#define _MM_FROUND_FLOOR (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC)
|
|
#define _MM_FROUND_CEIL (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC)
|
|
#define _MM_FROUND_TRUNC (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC)
|
|
#define _MM_FROUND_RINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC)
|
|
#define _MM_FROUND_NEARBYINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC)
|
|
#define _MM_ROUND_NEAREST 0x0000
|
|
#define _MM_ROUND_DOWN 0x2000
|
|
#define _MM_ROUND_UP 0x4000
|
|
#define _MM_ROUND_TOWARD_ZERO 0x6000
|
|
/* Flush zero mode macros. */
|
|
#define _MM_FLUSH_ZERO_MASK 0x8000
|
|
#define _MM_FLUSH_ZERO_ON 0x8000
|
|
#define _MM_FLUSH_ZERO_OFF 0x0000
|
|
/* Denormals are zeros mode macros. */
|
|
#define _MM_DENORMALS_ZERO_MASK 0x0040
|
|
#define _MM_DENORMALS_ZERO_ON 0x0040
|
|
#define _MM_DENORMALS_ZERO_OFF 0x0000
|
|
|
|
/* indicate immediate constant argument in a given range */
|
|
#define __constrange(a, b) const
|
|
|
|
/* A few intrinsics accept traditional data types like ints or floats, but
|
|
* most operate on data types that are specific to SSE.
|
|
* If a vector type ends in d, it contains doubles, and if it does not have
|
|
* a suffix, it contains floats. An integer vector type can contain any type
|
|
* of integer, from chars to shorts to unsigned long longs.
|
|
*/
|
|
typedef int64x1_t __m64;
|
|
typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */
|
|
// On ARM 32-bit architecture, the float64x2_t is not supported.
|
|
// The data type __m128d should be represented in a different way for related
|
|
// intrinsic conversion.
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */
|
|
#else
|
|
typedef float32x4_t __m128d;
|
|
#endif
|
|
typedef int64x2_t __m128i; /* 128-bit vector containing integers */
|
|
|
|
// Some intrinsics operate on unaligned data types.
|
|
typedef int16_t ALIGN_STRUCT(1) unaligned_int16_t;
|
|
typedef int32_t ALIGN_STRUCT(1) unaligned_int32_t;
|
|
typedef int64_t ALIGN_STRUCT(1) unaligned_int64_t;
|
|
|
|
// __int64 is defined in the Intrinsics Guide which maps to different datatype
|
|
// in different data model
|
|
#if !(defined(_WIN32) || defined(_WIN64) || defined(__int64))
|
|
#if (defined(__x86_64__) || defined(__i386__))
|
|
#define __int64 long long
|
|
#else
|
|
#define __int64 int64_t
|
|
#endif
|
|
#endif
|
|
|
|
/* type-safe casting between types */
|
|
|
|
#define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x)
|
|
#define vreinterpretq_m128_f32(x) (x)
|
|
#define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x)
|
|
|
|
#define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x)
|
|
#define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x)
|
|
#define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x)
|
|
#define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x)
|
|
|
|
#define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x)
|
|
#define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x)
|
|
#define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x)
|
|
#define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x)
|
|
|
|
#define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x)
|
|
#define vreinterpretq_f32_m128(x) (x)
|
|
#define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x)
|
|
|
|
#define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x)
|
|
#define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x)
|
|
#define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x)
|
|
#define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x)
|
|
|
|
#define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x)
|
|
#define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x)
|
|
#define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x)
|
|
#define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x)
|
|
|
|
#define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x)
|
|
#define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x)
|
|
#define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x)
|
|
#define vreinterpretq_m128i_s64(x) (x)
|
|
|
|
#define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x)
|
|
#define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x)
|
|
#define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x)
|
|
#define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x)
|
|
|
|
#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x)
|
|
#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x)
|
|
|
|
#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x)
|
|
#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x)
|
|
#define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x)
|
|
#define vreinterpretq_s64_m128i(x) (x)
|
|
|
|
#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x)
|
|
#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x)
|
|
#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x)
|
|
#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x)
|
|
|
|
#define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x)
|
|
#define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x)
|
|
#define vreinterpret_m64_s32(x) vreinterpret_s64_s32(x)
|
|
#define vreinterpret_m64_s64(x) (x)
|
|
|
|
#define vreinterpret_m64_u8(x) vreinterpret_s64_u8(x)
|
|
#define vreinterpret_m64_u16(x) vreinterpret_s64_u16(x)
|
|
#define vreinterpret_m64_u32(x) vreinterpret_s64_u32(x)
|
|
#define vreinterpret_m64_u64(x) vreinterpret_s64_u64(x)
|
|
|
|
#define vreinterpret_m64_f16(x) vreinterpret_s64_f16(x)
|
|
#define vreinterpret_m64_f32(x) vreinterpret_s64_f32(x)
|
|
#define vreinterpret_m64_f64(x) vreinterpret_s64_f64(x)
|
|
|
|
#define vreinterpret_u8_m64(x) vreinterpret_u8_s64(x)
|
|
#define vreinterpret_u16_m64(x) vreinterpret_u16_s64(x)
|
|
#define vreinterpret_u32_m64(x) vreinterpret_u32_s64(x)
|
|
#define vreinterpret_u64_m64(x) vreinterpret_u64_s64(x)
|
|
|
|
#define vreinterpret_s8_m64(x) vreinterpret_s8_s64(x)
|
|
#define vreinterpret_s16_m64(x) vreinterpret_s16_s64(x)
|
|
#define vreinterpret_s32_m64(x) vreinterpret_s32_s64(x)
|
|
#define vreinterpret_s64_m64(x) (x)
|
|
|
|
#define vreinterpret_f32_m64(x) vreinterpret_f32_s64(x)
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
#define vreinterpretq_m128d_s32(x) vreinterpretq_f64_s32(x)
|
|
#define vreinterpretq_m128d_s64(x) vreinterpretq_f64_s64(x)
|
|
|
|
#define vreinterpretq_m128d_u64(x) vreinterpretq_f64_u64(x)
|
|
|
|
#define vreinterpretq_m128d_f32(x) vreinterpretq_f64_f32(x)
|
|
#define vreinterpretq_m128d_f64(x) (x)
|
|
|
|
#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f64(x)
|
|
|
|
#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f64(x)
|
|
#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f64(x)
|
|
|
|
#define vreinterpretq_f64_m128d(x) (x)
|
|
#define vreinterpretq_f32_m128d(x) vreinterpretq_f32_f64(x)
|
|
#else
|
|
#define vreinterpretq_m128d_s32(x) vreinterpretq_f32_s32(x)
|
|
#define vreinterpretq_m128d_s64(x) vreinterpretq_f32_s64(x)
|
|
|
|
#define vreinterpretq_m128d_u32(x) vreinterpretq_f32_u32(x)
|
|
#define vreinterpretq_m128d_u64(x) vreinterpretq_f32_u64(x)
|
|
|
|
#define vreinterpretq_m128d_f32(x) (x)
|
|
|
|
#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f32(x)
|
|
|
|
#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f32(x)
|
|
#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f32(x)
|
|
|
|
#define vreinterpretq_f32_m128d(x) (x)
|
|
#endif
|
|
|
|
// A struct is defined in this header file called 'SIMDVec' which can be used
|
|
// by applications which attempt to access the contents of an __m128 struct
|
|
// directly. It is important to note that accessing the __m128 struct directly
|
|
// is bad coding practice by Microsoft: @see:
|
|
// https://learn.microsoft.com/en-us/cpp/cpp/m128
|
|
//
|
|
// However, some legacy source code may try to access the contents of an __m128
|
|
// struct directly so the developer can use the SIMDVec as an alias for it. Any
|
|
// casting must be done manually by the developer, as you cannot cast or
|
|
// otherwise alias the base NEON data type for intrinsic operations.
|
|
//
|
|
// union intended to allow direct access to an __m128 variable using the names
|
|
// that the MSVC compiler provides. This union should really only be used when
|
|
// trying to access the members of the vector as integer values. GCC/clang
|
|
// allow native access to the float members through a simple array access
|
|
// operator (in C since 4.6, in C++ since 4.8).
|
|
//
|
|
// Ideally direct accesses to SIMD vectors should not be used since it can cause
|
|
// a performance hit. If it really is needed however, the original __m128
|
|
// variable can be aliased with a pointer to this union and used to access
|
|
// individual components. The use of this union should be hidden behind a macro
|
|
// that is used throughout the codebase to access the members instead of always
|
|
// declaring this type of variable.
|
|
typedef union ALIGN_STRUCT(16) SIMDVec {
|
|
float m128_f32[4]; // as floats - DON'T USE. Added for convenience.
|
|
int8_t m128_i8[16]; // as signed 8-bit integers.
|
|
int16_t m128_i16[8]; // as signed 16-bit integers.
|
|
int32_t m128_i32[4]; // as signed 32-bit integers.
|
|
int64_t m128_i64[2]; // as signed 64-bit integers.
|
|
uint8_t m128_u8[16]; // as unsigned 8-bit integers.
|
|
uint16_t m128_u16[8]; // as unsigned 16-bit integers.
|
|
uint32_t m128_u32[4]; // as unsigned 32-bit integers.
|
|
uint64_t m128_u64[2]; // as unsigned 64-bit integers.
|
|
} SIMDVec;
|
|
|
|
// casting using SIMDVec
|
|
#define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n])
|
|
#define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n])
|
|
#define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n])
|
|
|
|
/* SSE macros */
|
|
#define _MM_GET_FLUSH_ZERO_MODE _sse2neon_mm_get_flush_zero_mode
|
|
#define _MM_SET_FLUSH_ZERO_MODE _sse2neon_mm_set_flush_zero_mode
|
|
#define _MM_GET_DENORMALS_ZERO_MODE _sse2neon_mm_get_denormals_zero_mode
|
|
#define _MM_SET_DENORMALS_ZERO_MODE _sse2neon_mm_set_denormals_zero_mode
|
|
|
|
// Function declaration
|
|
// SSE
|
|
FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(void);
|
|
FORCE_INLINE __m128 _mm_move_ss(__m128, __m128);
|
|
FORCE_INLINE __m128 _mm_or_ps(__m128, __m128);
|
|
FORCE_INLINE __m128 _mm_set_ps1(float);
|
|
FORCE_INLINE __m128 _mm_setzero_ps(void);
|
|
// SSE2
|
|
FORCE_INLINE __m128i _mm_and_si128(__m128i, __m128i);
|
|
FORCE_INLINE __m128i _mm_castps_si128(__m128);
|
|
FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i, __m128i);
|
|
FORCE_INLINE __m128i _mm_cvtps_epi32(__m128);
|
|
FORCE_INLINE __m128d _mm_move_sd(__m128d, __m128d);
|
|
FORCE_INLINE __m128i _mm_or_si128(__m128i, __m128i);
|
|
FORCE_INLINE __m128i _mm_set_epi32(int, int, int, int);
|
|
FORCE_INLINE __m128i _mm_set_epi64x(int64_t, int64_t);
|
|
FORCE_INLINE __m128d _mm_set_pd(double, double);
|
|
FORCE_INLINE __m128i _mm_set1_epi32(int);
|
|
FORCE_INLINE __m128i _mm_setzero_si128(void);
|
|
// SSE4.1
|
|
FORCE_INLINE __m128d _mm_ceil_pd(__m128d);
|
|
FORCE_INLINE __m128 _mm_ceil_ps(__m128);
|
|
FORCE_INLINE __m128d _mm_floor_pd(__m128d);
|
|
FORCE_INLINE __m128 _mm_floor_ps(__m128);
|
|
FORCE_INLINE_OPTNONE __m128d _mm_round_pd(__m128d, int);
|
|
FORCE_INLINE_OPTNONE __m128 _mm_round_ps(__m128, int);
|
|
// SSE4.2
|
|
FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t);
|
|
|
|
/* Backwards compatibility for compilers with lack of specific type support */
|
|
|
|
// Older gcc does not define vld1q_u8_x4 type
|
|
#if defined(__GNUC__) && !defined(__clang__) && \
|
|
((__GNUC__ <= 13 && defined(__arm__)) || \
|
|
(__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \
|
|
(__GNUC__ <= 9 && defined(__aarch64__)))
|
|
FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
|
|
{
|
|
uint8x16x4_t ret;
|
|
ret.val[0] = vld1q_u8(p + 0);
|
|
ret.val[1] = vld1q_u8(p + 16);
|
|
ret.val[2] = vld1q_u8(p + 32);
|
|
ret.val[3] = vld1q_u8(p + 48);
|
|
return ret;
|
|
}
|
|
#else
|
|
// Wraps vld1q_u8_x4
|
|
FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
|
|
{
|
|
return vld1q_u8_x4(p);
|
|
}
|
|
#endif
|
|
|
|
#if !defined(__aarch64__) && !defined(_M_ARM64)
|
|
/* emulate vaddv u8 variant */
|
|
FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8)
|
|
{
|
|
const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8)));
|
|
return vget_lane_u8(vreinterpret_u8_u64(v1), 0);
|
|
}
|
|
#else
|
|
// Wraps vaddv_u8
|
|
FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8)
|
|
{
|
|
return vaddv_u8(v8);
|
|
}
|
|
#endif
|
|
|
|
#if !defined(__aarch64__) && !defined(_M_ARM64)
|
|
/* emulate vaddvq u8 variant */
|
|
FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a)
|
|
{
|
|
uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a));
|
|
uint8_t res = 0;
|
|
for (int i = 0; i < 8; ++i)
|
|
res += tmp[i];
|
|
return res;
|
|
}
|
|
#else
|
|
// Wraps vaddvq_u8
|
|
FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a)
|
|
{
|
|
return vaddvq_u8(a);
|
|
}
|
|
#endif
|
|
|
|
#if !defined(__aarch64__) && !defined(_M_ARM64)
|
|
/* emulate vaddvq u16 variant */
|
|
FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a)
|
|
{
|
|
uint32x4_t m = vpaddlq_u16(a);
|
|
uint64x2_t n = vpaddlq_u32(m);
|
|
uint64x1_t o = vget_low_u64(n) + vget_high_u64(n);
|
|
|
|
return vget_lane_u32((uint32x2_t) o, 0);
|
|
}
|
|
#else
|
|
// Wraps vaddvq_u16
|
|
FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a)
|
|
{
|
|
return vaddvq_u16(a);
|
|
}
|
|
#endif
|
|
|
|
/* Function Naming Conventions
|
|
* The naming convention of SSE intrinsics is straightforward. A generic SSE
|
|
* intrinsic function is given as follows:
|
|
* _mm_<name>_<data_type>
|
|
*
|
|
* The parts of this format are given as follows:
|
|
* 1. <name> describes the operation performed by the intrinsic
|
|
* 2. <data_type> identifies the data type of the function's primary arguments
|
|
*
|
|
* This last part, <data_type>, is a little complicated. It identifies the
|
|
* content of the input values, and can be set to any of the following values:
|
|
* + ps - vectors contain floats (ps stands for packed single-precision)
|
|
* + pd - vectors contain doubles (pd stands for packed double-precision)
|
|
* + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit
|
|
* signed integers
|
|
* + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit
|
|
* unsigned integers
|
|
* + si128 - unspecified 128-bit vector or 256-bit vector
|
|
* + m128/m128i/m128d - identifies input vector types when they are different
|
|
* than the type of the returned vector
|
|
*
|
|
* For example, _mm_setzero_ps. The _mm implies that the function returns
|
|
* a 128-bit vector. The _ps at the end implies that the argument vectors
|
|
* contain floats.
|
|
*
|
|
* A complete example: Byte Shuffle - pshufb (_mm_shuffle_epi8)
|
|
* // Set packed 16-bit integers. 128 bits, 8 short, per 16 bits
|
|
* __m128i v_in = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8);
|
|
* // Set packed 8-bit integers
|
|
* // 128 bits, 16 chars, per 8 bits
|
|
* __m128i v_perm = _mm_setr_epi8(1, 0, 2, 3, 8, 9, 10, 11,
|
|
* 4, 5, 12, 13, 6, 7, 14, 15);
|
|
* // Shuffle packed 8-bit integers
|
|
* __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb
|
|
*/
|
|
|
|
/* Constants for use with _mm_prefetch. */
|
|
enum _mm_hint {
|
|
_MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */
|
|
_MM_HINT_T0 = 1, /* load data to L1 and L2 cache */
|
|
_MM_HINT_T1 = 2, /* load data to L2 cache only */
|
|
_MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */
|
|
};
|
|
|
|
// The bit field mapping to the FPCR(floating-point control register)
|
|
typedef struct {
|
|
uint16_t res0;
|
|
uint8_t res1 : 6;
|
|
uint8_t bit22 : 1;
|
|
uint8_t bit23 : 1;
|
|
uint8_t bit24 : 1;
|
|
uint8_t res2 : 7;
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
uint32_t res3;
|
|
#endif
|
|
} fpcr_bitfield;
|
|
|
|
// Takes the upper 64 bits of a and places it in the low end of the result
|
|
// Takes the lower 64 bits of b and places it into the high end of the result.
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
|
|
}
|
|
|
|
// takes the lower two 32-bit values from a and swaps them and places in high
|
|
// end of result takes the higher two 32 bit values from b and swaps them and
|
|
// places in low end of result.
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
|
|
float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a21 = vget_high_f32(
|
|
vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
|
|
float32x2_t b03 = vget_low_f32(
|
|
vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a03 = vget_low_f32(
|
|
vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
|
|
float32x2_t b21 = vget_high_f32(
|
|
vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
|
|
float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
|
|
float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
|
|
}
|
|
|
|
// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the
|
|
// high
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
|
|
float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a22 =
|
|
vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
|
|
float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
|
|
float32x2_t b22 =
|
|
vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b)
|
|
{
|
|
float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
|
|
float32x2_t a22 =
|
|
vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
|
|
float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
|
|
float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a33 =
|
|
vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
|
|
float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
|
|
float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
|
|
float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
|
|
float32x2_t b20 = vset_lane_f32(b2, b00, 1);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
|
|
float32_t b2 = vgetq_lane_f32(b, 2);
|
|
float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
|
|
float32x2_t b20 = vset_lane_f32(b2, b00, 1);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
|
|
}
|
|
|
|
FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
|
|
{
|
|
float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
|
|
float32_t b2 = vgetq_lane_f32(b, 2);
|
|
float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
|
|
float32x2_t b20 = vset_lane_f32(b2, b00, 1);
|
|
return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
|
|
}
|
|
|
|
// For MSVC, we check only if it is ARM64, as every single ARM64 processor
|
|
// supported by WoA has crypto extensions. If this changes in the future,
|
|
// this can be verified via the runtime-only method of:
|
|
// IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE)
|
|
#if (defined(_M_ARM64) && !defined(__clang__)) || \
|
|
(defined(__ARM_FEATURE_CRYPTO) && \
|
|
(defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64)))
|
|
// Wraps vmull_p64
|
|
FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
|
|
{
|
|
poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
|
|
poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
__n64 a1 = {a}, b1 = {b};
|
|
return vreinterpretq_u64_p128(vmull_p64(a1, b1));
|
|
#else
|
|
return vreinterpretq_u64_p128(vmull_p64(a, b));
|
|
#endif
|
|
}
|
|
#else // ARMv7 polyfill
|
|
// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
|
|
//
|
|
// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
|
|
// 64-bit->128-bit polynomial multiply.
|
|
//
|
|
// It needs some work and is somewhat slow, but it is still faster than all
|
|
// known scalar methods.
|
|
//
|
|
// Algorithm adapted to C from
|
|
// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
|
|
// from "Fast Software Polynomial Multiplication on ARM Processors Using the
|
|
// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
|
|
// (https://hal.inria.fr/hal-01506572)
|
|
static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
|
|
{
|
|
poly8x8_t a = vreinterpret_p8_u64(_a);
|
|
poly8x8_t b = vreinterpret_p8_u64(_b);
|
|
|
|
// Masks
|
|
uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff),
|
|
vcreate_u8(0x00000000ffffffff));
|
|
uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff),
|
|
vcreate_u8(0x0000000000000000));
|
|
|
|
// Do the multiplies, rotating with vext to get all combinations
|
|
uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0
|
|
uint8x16_t e =
|
|
vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1
|
|
uint8x16_t f =
|
|
vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0
|
|
uint8x16_t g =
|
|
vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2
|
|
uint8x16_t h =
|
|
vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0
|
|
uint8x16_t i =
|
|
vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3
|
|
uint8x16_t j =
|
|
vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0
|
|
uint8x16_t k =
|
|
vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4
|
|
|
|
// Add cross products
|
|
uint8x16_t l = veorq_u8(e, f); // L = E + F
|
|
uint8x16_t m = veorq_u8(g, h); // M = G + H
|
|
uint8x16_t n = veorq_u8(i, j); // N = I + J
|
|
|
|
// Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
|
|
// instructions.
|
|
#if defined(__aarch64__)
|
|
uint8x16_t lm_p0 = vreinterpretq_u8_u64(
|
|
vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
|
|
uint8x16_t lm_p1 = vreinterpretq_u8_u64(
|
|
vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
|
|
uint8x16_t nk_p0 = vreinterpretq_u8_u64(
|
|
vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
|
|
uint8x16_t nk_p1 = vreinterpretq_u8_u64(
|
|
vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
|
|
#else
|
|
uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
|
|
uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
|
|
uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
|
|
uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
|
|
#endif
|
|
// t0 = (L) (P0 + P1) << 8
|
|
// t1 = (M) (P2 + P3) << 16
|
|
uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
|
|
uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
|
|
uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
|
|
|
|
// t2 = (N) (P4 + P5) << 24
|
|
// t3 = (K) (P6 + P7) << 32
|
|
uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
|
|
uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
|
|
uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
|
|
|
|
// De-interleave
|
|
#if defined(__aarch64__)
|
|
uint8x16_t t0 = vreinterpretq_u8_u64(
|
|
vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
|
|
uint8x16_t t1 = vreinterpretq_u8_u64(
|
|
vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
|
|
uint8x16_t t2 = vreinterpretq_u8_u64(
|
|
vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
|
|
uint8x16_t t3 = vreinterpretq_u8_u64(
|
|
vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
|
|
#else
|
|
uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
|
|
uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
|
|
uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
|
|
uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
|
|
#endif
|
|
// Shift the cross products
|
|
uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8
|
|
uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16
|
|
uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24
|
|
uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32
|
|
|
|
// Accumulate the products
|
|
uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
|
|
uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
|
|
uint8x16_t mix = veorq_u8(d, cross1);
|
|
uint8x16_t r = veorq_u8(mix, cross2);
|
|
return vreinterpretq_u64_u8(r);
|
|
}
|
|
#endif // ARMv7 polyfill
|
|
|
|
// C equivalent:
|
|
// __m128i _mm_shuffle_epi32_default(__m128i a,
|
|
// __constrange(0, 255) int imm) {
|
|
// __m128i ret;
|
|
// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
|
|
// ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03];
|
|
// return ret;
|
|
// }
|
|
#define _mm_shuffle_epi32_default(a, imm) \
|
|
vreinterpretq_m128i_s32(vsetq_lane_s32( \
|
|
vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \
|
|
vsetq_lane_s32( \
|
|
vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \
|
|
vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), \
|
|
((imm) >> 2) & 0x3), \
|
|
vmovq_n_s32(vgetq_lane_s32( \
|
|
vreinterpretq_s32_m128i(a), (imm) & (0x3))), \
|
|
1), \
|
|
2), \
|
|
3))
|
|
|
|
// Takes the upper 64 bits of a and places it in the low end of the result
|
|
// Takes the lower 64 bits of a and places it into the high end of the result.
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a)
|
|
{
|
|
int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
|
|
int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
|
|
}
|
|
|
|
// takes the lower two 32-bit values from a and swaps them and places in low end
|
|
// of result takes the higher two 32 bit values from a and swaps them and places
|
|
// in high end of result.
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a)
|
|
{
|
|
int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
|
|
int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
|
|
}
|
|
|
|
// rotates the least significant 32 bits into the most significant 32 bits, and
|
|
// shifts the rest down
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
|
|
}
|
|
|
|
// rotates the most significant 32 bits into the least significant 32 bits, and
|
|
// shifts the rest up
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
|
|
}
|
|
|
|
// gets the lower 64 bits of a, and places it in the upper 64 bits
|
|
// gets the lower 64 bits of a and places it in the lower 64 bits
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a)
|
|
{
|
|
int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
|
|
}
|
|
|
|
// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
|
|
// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a)
|
|
{
|
|
int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
|
|
int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
|
|
}
|
|
|
|
// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
|
|
// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
|
|
// places it in the lower 64 bits
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a)
|
|
{
|
|
int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
|
|
}
|
|
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a)
|
|
{
|
|
int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
|
|
int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
|
|
}
|
|
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a)
|
|
{
|
|
int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
|
|
int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
|
|
}
|
|
|
|
FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
|
|
{
|
|
int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
|
|
int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
|
|
return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
|
|
}
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
#define _mm_shuffle_epi32_splat(a, imm) \
|
|
vreinterpretq_m128i_s32(vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm)))
|
|
#else
|
|
#define _mm_shuffle_epi32_splat(a, imm) \
|
|
vreinterpretq_m128i_s32( \
|
|
vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))))
|
|
#endif
|
|
|
|
// NEON does not support a general purpose permute intrinsic.
|
|
// Shuffle single-precision (32-bit) floating-point elements in a using the
|
|
// control in imm8, and store the results in dst.
|
|
//
|
|
// C equivalent:
|
|
// __m128 _mm_shuffle_ps_default(__m128 a, __m128 b,
|
|
// __constrange(0, 255) int imm) {
|
|
// __m128 ret;
|
|
// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
|
|
// ret[2] = b[(imm >> 4) & 0x03]; ret[3] = b[(imm >> 6) & 0x03];
|
|
// return ret;
|
|
// }
|
|
//
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_ps
|
|
#define _mm_shuffle_ps_default(a, b, imm) \
|
|
vreinterpretq_m128_f32(vsetq_lane_f32( \
|
|
vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \
|
|
vsetq_lane_f32( \
|
|
vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \
|
|
vsetq_lane_f32( \
|
|
vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \
|
|
vmovq_n_f32( \
|
|
vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))), \
|
|
1), \
|
|
2), \
|
|
3))
|
|
|
|
// Shuffle 16-bit integers in the low 64 bits of a using the control in imm8.
|
|
// Store the results in the low 64 bits of dst, with the high 64 bits being
|
|
// copied from a to dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflelo_epi16
|
|
#define _mm_shufflelo_epi16_function(a, imm) \
|
|
_sse2neon_define1( \
|
|
__m128i, a, int16x8_t ret = vreinterpretq_s16_m128i(_a); \
|
|
int16x4_t lowBits = vget_low_s16(ret); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \
|
|
1); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \
|
|
2); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \
|
|
3); \
|
|
_sse2neon_return(vreinterpretq_m128i_s16(ret));)
|
|
|
|
// Shuffle 16-bit integers in the high 64 bits of a using the control in imm8.
|
|
// Store the results in the high 64 bits of dst, with the low 64 bits being
|
|
// copied from a to dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflehi_epi16
|
|
#define _mm_shufflehi_epi16_function(a, imm) \
|
|
_sse2neon_define1( \
|
|
__m128i, a, int16x8_t ret = vreinterpretq_s16_m128i(_a); \
|
|
int16x4_t highBits = vget_high_s16(ret); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \
|
|
5); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \
|
|
6); \
|
|
ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \
|
|
7); \
|
|
_sse2neon_return(vreinterpretq_m128i_s16(ret));)
|
|
|
|
/* MMX */
|
|
|
|
//_mm_empty is a no-op on arm
|
|
FORCE_INLINE void _mm_empty(void) {}
|
|
|
|
/* SSE */
|
|
|
|
// Add packed single-precision (32-bit) floating-point elements in a and b, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ps
|
|
FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Add the lower single-precision (32-bit) floating-point element in a and b,
|
|
// store the result in the lower element of dst, and copy the upper 3 packed
|
|
// elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ss
|
|
FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b)
|
|
{
|
|
float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
|
|
float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
|
|
// the upper values in the result must be the remnants of <a>.
|
|
return vreinterpretq_m128_f32(vaddq_f32(a, value));
|
|
}
|
|
|
|
// Compute the bitwise AND of packed single-precision (32-bit) floating-point
|
|
// elements in a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_ps
|
|
FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_s32(
|
|
vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
|
|
}
|
|
|
|
// Compute the bitwise NOT of packed single-precision (32-bit) floating-point
|
|
// elements in a and then AND with b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_ps
|
|
FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_s32(
|
|
vbicq_s32(vreinterpretq_s32_m128(b),
|
|
vreinterpretq_s32_m128(a))); // *NOTE* argument swap
|
|
}
|
|
|
|
// Average packed unsigned 16-bit integers in a and b, and store the results in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu16
|
|
FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_u16(
|
|
vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)));
|
|
}
|
|
|
|
// Average packed unsigned 8-bit integers in a and b, and store the results in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu8
|
|
FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_u8(
|
|
vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b
|
|
// for equality, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ps
|
|
FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(
|
|
vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b for equality, store the result in the lower element of dst, and copy the
|
|
// upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ss
|
|
FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpeq_ps(a, b));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b
|
|
// for greater-than-or-equal, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ps
|
|
FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(
|
|
vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b for greater-than-or-equal, store the result in the lower element of dst,
|
|
// and copy the upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ss
|
|
FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpge_ps(a, b));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b
|
|
// for greater-than, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ps
|
|
FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(
|
|
vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b for greater-than, store the result in the lower element of dst, and copy
|
|
// the upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ss
|
|
FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpgt_ps(a, b));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b
|
|
// for less-than-or-equal, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ps
|
|
FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(
|
|
vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b for less-than-or-equal, store the result in the lower element of dst, and
|
|
// copy the upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ss
|
|
FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmple_ps(a, b));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b
|
|
// for less-than, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ps
|
|
FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(
|
|
vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b for less-than, store the result in the lower element of dst, and copy the
|
|
// upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ss
|
|
FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmplt_ps(a, b));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b
|
|
// for not-equal, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ps
|
|
FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(vmvnq_u32(
|
|
vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b for not-equal, store the result in the lower element of dst, and copy the
|
|
// upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ss
|
|
FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpneq_ps(a, b));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b
|
|
// for not-greater-than-or-equal, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ps
|
|
FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(vmvnq_u32(
|
|
vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b for not-greater-than-or-equal, store the result in the lower element of
|
|
// dst, and copy the upper 3 packed elements from a to the upper elements of
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ss
|
|
FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpnge_ps(a, b));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b
|
|
// for not-greater-than, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ps
|
|
FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(vmvnq_u32(
|
|
vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b for not-greater-than, store the result in the lower element of dst, and
|
|
// copy the upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ss
|
|
FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpngt_ps(a, b));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b
|
|
// for not-less-than-or-equal, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ps
|
|
FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(vmvnq_u32(
|
|
vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b for not-less-than-or-equal, store the result in the lower element of dst,
|
|
// and copy the upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ss
|
|
FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpnle_ps(a, b));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b
|
|
// for not-less-than, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ps
|
|
FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_u32(vmvnq_u32(
|
|
vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b for not-less-than, store the result in the lower element of dst, and copy
|
|
// the upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ss
|
|
FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpnlt_ps(a, b));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b
|
|
// to see if neither is NaN, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ps
|
|
//
|
|
// See also:
|
|
// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
|
|
// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
|
|
FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b)
|
|
{
|
|
// Note: NEON does not have ordered compare builtin
|
|
// Need to compare a eq a and b eq b to check for NaN
|
|
// Do AND of results to get final
|
|
uint32x4_t ceqaa =
|
|
vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
|
|
uint32x4_t ceqbb =
|
|
vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b to see if neither is NaN, store the result in the lower element of dst, and
|
|
// copy the upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ss
|
|
FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpord_ps(a, b));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b
|
|
// to see if either is NaN, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ps
|
|
FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b)
|
|
{
|
|
uint32x4_t f32a =
|
|
vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
|
|
uint32x4_t f32b =
|
|
vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b)));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b to see if either is NaN, store the result in the lower element of dst, and
|
|
// copy the upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ss
|
|
FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_cmpunord_ps(a, b));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point element in a and b
|
|
// for equality, and return the boolean result (0 or 1).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_ss
|
|
FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b)
|
|
{
|
|
uint32x4_t a_eq_b =
|
|
vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
|
|
return vgetq_lane_u32(a_eq_b, 0) & 0x1;
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point element in a and b
|
|
// for greater-than-or-equal, and return the boolean result (0 or 1).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_ss
|
|
FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b)
|
|
{
|
|
uint32x4_t a_ge_b =
|
|
vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
|
|
return vgetq_lane_u32(a_ge_b, 0) & 0x1;
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point element in a and b
|
|
// for greater-than, and return the boolean result (0 or 1).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_ss
|
|
FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b)
|
|
{
|
|
uint32x4_t a_gt_b =
|
|
vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
|
|
return vgetq_lane_u32(a_gt_b, 0) & 0x1;
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point element in a and b
|
|
// for less-than-or-equal, and return the boolean result (0 or 1).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_ss
|
|
FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b)
|
|
{
|
|
uint32x4_t a_le_b =
|
|
vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
|
|
return vgetq_lane_u32(a_le_b, 0) & 0x1;
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point element in a and b
|
|
// for less-than, and return the boolean result (0 or 1).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_ss
|
|
FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b)
|
|
{
|
|
uint32x4_t a_lt_b =
|
|
vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
|
|
return vgetq_lane_u32(a_lt_b, 0) & 0x1;
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point element in a and b
|
|
// for not-equal, and return the boolean result (0 or 1).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_ss
|
|
FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
|
|
{
|
|
return !_mm_comieq_ss(a, b);
|
|
}
|
|
|
|
// Convert packed signed 32-bit integers in b to packed single-precision
|
|
// (32-bit) floating-point elements, store the results in the lower 2 elements
|
|
// of dst, and copy the upper 2 packed elements from a to the upper elements of
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_pi2ps
|
|
FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
|
|
vget_high_f32(vreinterpretq_f32_m128(a))));
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 32-bit integers, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ps2pi
|
|
FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a)
|
|
{
|
|
#if (defined(__aarch64__) || defined(_M_ARM64)) || \
|
|
defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
return vreinterpret_m64_s32(
|
|
vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a)))));
|
|
#else
|
|
return vreinterpret_m64_s32(vcvt_s32_f32(vget_low_f32(
|
|
vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)))));
|
|
#endif
|
|
}
|
|
|
|
// Convert the signed 32-bit integer b to a single-precision (32-bit)
|
|
// floating-point element, store the result in the lower element of dst, and
|
|
// copy the upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss
|
|
FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
|
|
}
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in a to a
|
|
// 32-bit integer, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si
|
|
FORCE_INLINE int _mm_cvt_ss2si(__m128 a)
|
|
{
|
|
#if (defined(__aarch64__) || defined(_M_ARM64)) || \
|
|
defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))),
|
|
0);
|
|
#else
|
|
float32_t data = vgetq_lane_f32(
|
|
vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
|
|
return (int32_t) data;
|
|
#endif
|
|
}
|
|
|
|
// Convert packed 16-bit integers in a to packed single-precision (32-bit)
|
|
// floating-point elements, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi16_ps
|
|
FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a))));
|
|
}
|
|
|
|
// Convert packed 32-bit integers in b to packed single-precision (32-bit)
|
|
// floating-point elements, store the results in the lower 2 elements of dst,
|
|
// and copy the upper 2 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_ps
|
|
FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
|
|
vget_high_f32(vreinterpretq_f32_m128(a))));
|
|
}
|
|
|
|
// Convert packed signed 32-bit integers in a to packed single-precision
|
|
// (32-bit) floating-point elements, store the results in the lower 2 elements
|
|
// of dst, then convert the packed signed 32-bit integers in b to
|
|
// single-precision (32-bit) floating-point element, and store the results in
|
|
// the upper 2 elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32x2_ps
|
|
FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpretq_m128_f32(vcvtq_f32_s32(
|
|
vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))));
|
|
}
|
|
|
|
// Convert the lower packed 8-bit integers in a to packed single-precision
|
|
// (32-bit) floating-point elements, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi8_ps
|
|
FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a)
|
|
{
|
|
return vreinterpretq_m128_f32(vcvtq_f32_s32(
|
|
vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a))))));
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 16-bit integers, and store the results in dst. Note: this intrinsic
|
|
// will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and
|
|
// 0x7FFFFFFF.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi16
|
|
FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a)
|
|
{
|
|
return vreinterpret_m64_s16(
|
|
vqmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a))));
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 32-bit integers, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi32
|
|
#define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a)
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 8-bit integers, and store the results in lower 4 elements of dst.
|
|
// Note: this intrinsic will generate 0x7F, rather than 0x80, for input values
|
|
// between 0x7F and 0x7FFFFFFF.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi8
|
|
FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a)
|
|
{
|
|
return vreinterpret_m64_s8(vqmovn_s16(
|
|
vcombine_s16(vreinterpret_s16_m64(_mm_cvtps_pi16(a)), vdup_n_s16(0))));
|
|
}
|
|
|
|
// Convert packed unsigned 16-bit integers in a to packed single-precision
|
|
// (32-bit) floating-point elements, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu16_ps
|
|
FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a))));
|
|
}
|
|
|
|
// Convert the lower packed unsigned 8-bit integers in a to packed
|
|
// single-precision (32-bit) floating-point elements, and store the results in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu8_ps
|
|
FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
|
|
{
|
|
return vreinterpretq_m128_f32(vcvtq_f32_u32(
|
|
vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a))))));
|
|
}
|
|
|
|
// Convert the signed 32-bit integer b to a single-precision (32-bit)
|
|
// floating-point element, store the result in the lower element of dst, and
|
|
// copy the upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss
|
|
#define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b)
|
|
|
|
// Convert the signed 64-bit integer b to a single-precision (32-bit)
|
|
// floating-point element, store the result in the lower element of dst, and
|
|
// copy the upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_ss
|
|
FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
|
|
}
|
|
|
|
// Copy the lower single-precision (32-bit) floating-point element of a to dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32
|
|
FORCE_INLINE float _mm_cvtss_f32(__m128 a)
|
|
{
|
|
return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
|
|
}
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in a to a
|
|
// 32-bit integer, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32
|
|
#define _mm_cvtss_si32(a) _mm_cvt_ss2si(a)
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in a to a
|
|
// 64-bit integer, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si64
|
|
FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a)
|
|
{
|
|
#if (defined(__aarch64__) || defined(_M_ARM64)) || \
|
|
defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0);
|
|
#else
|
|
float32_t data = vgetq_lane_f32(
|
|
vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
|
|
return (int64_t) data;
|
|
#endif
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 32-bit integers with truncation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ps2pi
|
|
FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a)
|
|
{
|
|
return vreinterpret_m64_s32(
|
|
vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))));
|
|
}
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in a to a
|
|
// 32-bit integer with truncation, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si
|
|
FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
|
|
{
|
|
return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0);
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 32-bit integers with truncation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_pi32
|
|
#define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a)
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in a to a
|
|
// 32-bit integer with truncation, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32
|
|
#define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a)
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in a to a
|
|
// 64-bit integer with truncation, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si64
|
|
FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a)
|
|
{
|
|
return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
|
|
}
|
|
|
|
// Divide packed single-precision (32-bit) floating-point elements in a by
|
|
// packed elements in b, and store the results in dst.
|
|
// Due to ARMv7-A NEON's lack of a precise division intrinsic, we implement
|
|
// division by multiplying a by b's reciprocal before using the Newton-Raphson
|
|
// method to approximate the results.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ps
|
|
FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128_f32(
|
|
vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
#else
|
|
float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b));
|
|
recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
|
|
// Additional Netwon-Raphson iteration for accuracy
|
|
recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
|
|
return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip));
|
|
#endif
|
|
}
|
|
|
|
// Divide the lower single-precision (32-bit) floating-point element in a by the
|
|
// lower single-precision (32-bit) floating-point element in b, store the result
|
|
// in the lower element of dst, and copy the upper 3 packed elements from a to
|
|
// the upper elements of dst.
|
|
// Warning: ARMv7-A does not produce the same result compared to Intel and not
|
|
// IEEE-compliant.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ss
|
|
FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
|
|
{
|
|
float32_t value =
|
|
vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
|
|
}
|
|
|
|
// Extract a 16-bit integer from a, selected with imm8, and store the result in
|
|
// the lower element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_pi16
|
|
#define _mm_extract_pi16(a, imm) \
|
|
(int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm))
|
|
|
|
// Free aligned memory that was allocated with _mm_malloc.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_free
|
|
#if !defined(SSE2NEON_ALLOC_DEFINED)
|
|
FORCE_INLINE void _mm_free(void *addr)
|
|
{
|
|
free(addr);
|
|
}
|
|
#endif
|
|
|
|
FORCE_INLINE uint64_t _sse2neon_get_fpcr(void)
|
|
{
|
|
uint64_t value;
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
value = _ReadStatusReg(ARM64_FPCR);
|
|
#else
|
|
__asm__ __volatile__("mrs %0, FPCR" : "=r"(value)); /* read */
|
|
#endif
|
|
return value;
|
|
}
|
|
|
|
FORCE_INLINE void _sse2neon_set_fpcr(uint64_t value)
|
|
{
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
_WriteStatusReg(ARM64_FPCR, value);
|
|
#else
|
|
__asm__ __volatile__("msr FPCR, %0" ::"r"(value)); /* write */
|
|
#endif
|
|
}
|
|
|
|
// Macro: Get the flush zero bits from the MXCSR control and status register.
|
|
// The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or
|
|
// _MM_FLUSH_ZERO_OFF
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE
|
|
FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode(void)
|
|
{
|
|
union {
|
|
fpcr_bitfield field;
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
uint64_t value;
|
|
#else
|
|
uint32_t value;
|
|
#endif
|
|
} r;
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
r.value = _sse2neon_get_fpcr();
|
|
#else
|
|
__asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
|
|
#endif
|
|
|
|
return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF;
|
|
}
|
|
|
|
// Macro: Get the rounding mode bits from the MXCSR control and status register.
|
|
// The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST,
|
|
// _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE
|
|
FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(void)
|
|
{
|
|
union {
|
|
fpcr_bitfield field;
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
uint64_t value;
|
|
#else
|
|
uint32_t value;
|
|
#endif
|
|
} r;
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
r.value = _sse2neon_get_fpcr();
|
|
#else
|
|
__asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
|
|
#endif
|
|
|
|
if (r.field.bit22) {
|
|
return r.field.bit23 ? _MM_ROUND_TOWARD_ZERO : _MM_ROUND_UP;
|
|
} else {
|
|
return r.field.bit23 ? _MM_ROUND_DOWN : _MM_ROUND_NEAREST;
|
|
}
|
|
}
|
|
|
|
// Copy a to dst, and insert the 16-bit integer i into dst at the location
|
|
// specified by imm8.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_pi16
|
|
#define _mm_insert_pi16(a, b, imm) \
|
|
vreinterpret_m64_s16(vset_lane_s16((b), vreinterpret_s16_m64(a), (imm)))
|
|
|
|
// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point
|
|
// elements) from memory into dst. mem_addr must be aligned on a 16-byte
|
|
// boundary or a general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps
|
|
FORCE_INLINE __m128 _mm_load_ps(const float *p)
|
|
{
|
|
return vreinterpretq_m128_f32(vld1q_f32(p));
|
|
}
|
|
|
|
// Load a single-precision (32-bit) floating-point element from memory into all
|
|
// elements of dst.
|
|
//
|
|
// dst[31:0] := MEM[mem_addr+31:mem_addr]
|
|
// dst[63:32] := MEM[mem_addr+31:mem_addr]
|
|
// dst[95:64] := MEM[mem_addr+31:mem_addr]
|
|
// dst[127:96] := MEM[mem_addr+31:mem_addr]
|
|
//
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1
|
|
#define _mm_load_ps1 _mm_load1_ps
|
|
|
|
// Load a single-precision (32-bit) floating-point element from memory into the
|
|
// lower of dst, and zero the upper 3 elements. mem_addr does not need to be
|
|
// aligned on any particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ss
|
|
FORCE_INLINE __m128 _mm_load_ss(const float *p)
|
|
{
|
|
return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
|
|
}
|
|
|
|
// Load a single-precision (32-bit) floating-point element from memory into all
|
|
// elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_ps
|
|
FORCE_INLINE __m128 _mm_load1_ps(const float *p)
|
|
{
|
|
return vreinterpretq_m128_f32(vld1q_dup_f32(p));
|
|
}
|
|
|
|
// Load 2 single-precision (32-bit) floating-point elements from memory into the
|
|
// upper 2 elements of dst, and copy the lower 2 elements from a to dst.
|
|
// mem_addr does not need to be aligned on any particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pi
|
|
FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p)));
|
|
}
|
|
|
|
// Load 2 single-precision (32-bit) floating-point elements from memory into the
|
|
// lower 2 elements of dst, and copy the upper 2 elements from a to dst.
|
|
// mem_addr does not need to be aligned on any particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pi
|
|
FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a)));
|
|
}
|
|
|
|
// Load 4 single-precision (32-bit) floating-point elements from memory into dst
|
|
// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
|
|
// general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps
|
|
FORCE_INLINE __m128 _mm_loadr_ps(const float *p)
|
|
{
|
|
float32x4_t v = vrev64q_f32(vld1q_f32(p));
|
|
return vreinterpretq_m128_f32(vextq_f32(v, v, 2));
|
|
}
|
|
|
|
// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point
|
|
// elements) from memory into dst. mem_addr does not need to be aligned on any
|
|
// particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_ps
|
|
FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
|
|
{
|
|
// for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
|
|
// equivalent for neon
|
|
return vreinterpretq_m128_f32(vld1q_f32(p));
|
|
}
|
|
|
|
// Load unaligned 16-bit integer from memory into the first element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si16
|
|
FORCE_INLINE __m128i _mm_loadu_si16(const void *p)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vsetq_lane_s16(*(const unaligned_int16_t *) p, vdupq_n_s16(0), 0));
|
|
}
|
|
|
|
// Load unaligned 64-bit integer from memory into the first element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64
|
|
FORCE_INLINE __m128i _mm_loadu_si64(const void *p)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vsetq_lane_s64(*(const unaligned_int64_t *) p, vdupq_n_s64(0), 0));
|
|
}
|
|
|
|
// Allocate size bytes of memory, aligned to the alignment specified in align,
|
|
// and return a pointer to the allocated memory. _mm_free should be used to free
|
|
// memory that is allocated with _mm_malloc.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_malloc
|
|
#if !defined(SSE2NEON_ALLOC_DEFINED)
|
|
FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
|
|
{
|
|
void *ptr;
|
|
if (align == 1)
|
|
return malloc(size);
|
|
if (align == 2 || (sizeof(void *) == 8 && align == 4))
|
|
align = sizeof(void *);
|
|
if (!posix_memalign(&ptr, align, size))
|
|
return ptr;
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
// Conditionally store 8-bit integer elements from a into memory using mask
|
|
// (elements are not stored when the highest bit is not set in the corresponding
|
|
// element) and a non-temporal memory hint.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmove_si64
|
|
FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr)
|
|
{
|
|
int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7);
|
|
__m128 b = _mm_load_ps((const float *) mem_addr);
|
|
int8x8_t masked =
|
|
vbsl_s8(vreinterpret_u8_s8(shr_mask), vreinterpret_s8_m64(a),
|
|
vreinterpret_s8_u64(vget_low_u64(vreinterpretq_u64_m128(b))));
|
|
vst1_s8((int8_t *) mem_addr, masked);
|
|
}
|
|
|
|
// Conditionally store 8-bit integer elements from a into memory using mask
|
|
// (elements are not stored when the highest bit is not set in the corresponding
|
|
// element) and a non-temporal memory hint.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_maskmovq
|
|
#define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr)
|
|
|
|
// Compare packed signed 16-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pi16
|
|
FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_s16(
|
|
vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b,
|
|
// and store packed maximum values in dst. dst does not follow the IEEE Standard
|
|
// for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or
|
|
// signed-zero values.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ps
|
|
FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
|
|
{
|
|
#if SSE2NEON_PRECISE_MINMAX
|
|
float32x4_t _a = vreinterpretq_f32_m128(a);
|
|
float32x4_t _b = vreinterpretq_f32_m128(b);
|
|
return vreinterpretq_m128_f32(vbslq_f32(vcgtq_f32(_a, _b), _a, _b));
|
|
#else
|
|
return vreinterpretq_m128_f32(
|
|
vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pu8
|
|
FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_u8(
|
|
vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b, store the maximum value in the lower element of dst, and copy the upper 3
|
|
// packed elements from a to the upper element of dst. dst does not follow the
|
|
// IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when
|
|
// inputs are NaN or signed-zero values.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ss
|
|
FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
|
|
{
|
|
float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0);
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
|
|
}
|
|
|
|
// Compare packed signed 16-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pi16
|
|
FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_s16(
|
|
vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
|
|
}
|
|
|
|
// Compare packed single-precision (32-bit) floating-point elements in a and b,
|
|
// and store packed minimum values in dst. dst does not follow the IEEE Standard
|
|
// for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or
|
|
// signed-zero values.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ps
|
|
FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
|
|
{
|
|
#if SSE2NEON_PRECISE_MINMAX
|
|
float32x4_t _a = vreinterpretq_f32_m128(a);
|
|
float32x4_t _b = vreinterpretq_f32_m128(b);
|
|
return vreinterpretq_m128_f32(vbslq_f32(vcltq_f32(_a, _b), _a, _b));
|
|
#else
|
|
return vreinterpretq_m128_f32(
|
|
vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pu8
|
|
FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_u8(
|
|
vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
|
|
}
|
|
|
|
// Compare the lower single-precision (32-bit) floating-point elements in a and
|
|
// b, store the minimum value in the lower element of dst, and copy the upper 3
|
|
// packed elements from a to the upper element of dst. dst does not follow the
|
|
// IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when
|
|
// inputs are NaN or signed-zero values.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ss
|
|
FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b)
|
|
{
|
|
float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0);
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
|
|
}
|
|
|
|
// Move the lower single-precision (32-bit) floating-point element from b to the
|
|
// lower element of dst, and copy the upper 3 packed elements from a to the
|
|
// upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_ss
|
|
FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0),
|
|
vreinterpretq_f32_m128(a), 0));
|
|
}
|
|
|
|
// Move the upper 2 single-precision (32-bit) floating-point elements from b to
|
|
// the lower 2 elements of dst, and copy the upper 2 elements from a to the
|
|
// upper 2 elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehl_ps
|
|
FORCE_INLINE __m128 _mm_movehl_ps(__m128 a, __m128 b)
|
|
{
|
|
#if defined(aarch64__)
|
|
return vreinterpretq_m128_u64(
|
|
vzip2q_u64(vreinterpretq_u64_m128(b), vreinterpretq_u64_m128(a)));
|
|
#else
|
|
float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(vcombine_f32(b32, a32));
|
|
#endif
|
|
}
|
|
|
|
// Move the lower 2 single-precision (32-bit) floating-point elements from b to
|
|
// the upper 2 elements of dst, and copy the lower 2 elements from a to the
|
|
// lower 2 elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movelh_ps
|
|
FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B)
|
|
{
|
|
float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A));
|
|
float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B));
|
|
return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
|
|
}
|
|
|
|
// Create mask from the most significant bit of each 8-bit element in a, and
|
|
// store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pi8
|
|
FORCE_INLINE int _mm_movemask_pi8(__m64 a)
|
|
{
|
|
uint8x8_t input = vreinterpret_u8_m64(a);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
static const int8_t shift[8] = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
uint8x8_t tmp = vshr_n_u8(input, 7);
|
|
return vaddv_u8(vshl_u8(tmp, vld1_s8(shift)));
|
|
#else
|
|
// Refer the implementation of `_mm_movemask_epi8`
|
|
uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7));
|
|
uint32x2_t paired16 =
|
|
vreinterpret_u32_u16(vsra_n_u16(high_bits, high_bits, 7));
|
|
uint8x8_t paired32 =
|
|
vreinterpret_u8_u32(vsra_n_u32(paired16, paired16, 14));
|
|
return vget_lane_u8(paired32, 0) | ((int) vget_lane_u8(paired32, 4) << 4);
|
|
#endif
|
|
}
|
|
|
|
// Set each bit of mask dst based on the most significant bit of the
|
|
// corresponding packed single-precision (32-bit) floating-point element in a.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_ps
|
|
FORCE_INLINE int _mm_movemask_ps(__m128 a)
|
|
{
|
|
uint32x4_t input = vreinterpretq_u32_m128(a);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
static const int32_t shift[4] = {0, 1, 2, 3};
|
|
uint32x4_t tmp = vshrq_n_u32(input, 31);
|
|
return vaddvq_u32(vshlq_u32(tmp, vld1q_s32(shift)));
|
|
#else
|
|
// Uses the exact same method as _mm_movemask_epi8, see that for details.
|
|
// Shift out everything but the sign bits with a 32-bit unsigned shift
|
|
// right.
|
|
uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31));
|
|
// Merge the two pairs together with a 64-bit unsigned shift right + add.
|
|
uint8x16_t paired =
|
|
vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31));
|
|
// Extract the result.
|
|
return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2);
|
|
#endif
|
|
}
|
|
|
|
// Multiply packed single-precision (32-bit) floating-point elements in a and b,
|
|
// and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ps
|
|
FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Multiply the lower single-precision (32-bit) floating-point element in a and
|
|
// b, store the result in the lower element of dst, and copy the upper 3 packed
|
|
// elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss
|
|
FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_mul_ps(a, b));
|
|
}
|
|
|
|
// Multiply the packed unsigned 16-bit integers in a and b, producing
|
|
// intermediate 32-bit integers, and store the high 16 bits of the intermediate
|
|
// integers in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_pu16
|
|
FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_u16(vshrn_n_u32(
|
|
vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16));
|
|
}
|
|
|
|
// Compute the bitwise OR of packed single-precision (32-bit) floating-point
|
|
// elements in a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_ps
|
|
FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_s32(
|
|
vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
|
|
}
|
|
|
|
// Average packed unsigned 8-bit integers in a and b, and store the results in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgb
|
|
#define _m_pavgb(a, b) _mm_avg_pu8(a, b)
|
|
|
|
// Average packed unsigned 16-bit integers in a and b, and store the results in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgw
|
|
#define _m_pavgw(a, b) _mm_avg_pu16(a, b)
|
|
|
|
// Extract a 16-bit integer from a, selected with imm8, and store the result in
|
|
// the lower element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pextrw
|
|
#define _m_pextrw(a, imm) _mm_extract_pi16(a, imm)
|
|
|
|
// Copy a to dst, and insert the 16-bit integer i into dst at the location
|
|
// specified by imm8.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_pinsrw
|
|
#define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm)
|
|
|
|
// Compare packed signed 16-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxsw
|
|
#define _m_pmaxsw(a, b) _mm_max_pi16(a, b)
|
|
|
|
// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxub
|
|
#define _m_pmaxub(a, b) _mm_max_pu8(a, b)
|
|
|
|
// Compare packed signed 16-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminsw
|
|
#define _m_pminsw(a, b) _mm_min_pi16(a, b)
|
|
|
|
// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminub
|
|
#define _m_pminub(a, b) _mm_min_pu8(a, b)
|
|
|
|
// Create mask from the most significant bit of each 8-bit element in a, and
|
|
// store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmovmskb
|
|
#define _m_pmovmskb(a) _mm_movemask_pi8(a)
|
|
|
|
// Multiply the packed unsigned 16-bit integers in a and b, producing
|
|
// intermediate 32-bit integers, and store the high 16 bits of the intermediate
|
|
// integers in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmulhuw
|
|
#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b)
|
|
|
|
// Fetch the line of data from memory that contains address p to a location in
|
|
// the cache hierarchy specified by the locality hint i.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch
|
|
FORCE_INLINE void _mm_prefetch(char const *p, int i)
|
|
{
|
|
(void) i;
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
switch (i) {
|
|
case _MM_HINT_NTA:
|
|
__prefetch2(p, 1);
|
|
break;
|
|
case _MM_HINT_T0:
|
|
__prefetch2(p, 0);
|
|
break;
|
|
case _MM_HINT_T1:
|
|
__prefetch2(p, 2);
|
|
break;
|
|
case _MM_HINT_T2:
|
|
__prefetch2(p, 4);
|
|
break;
|
|
}
|
|
#else
|
|
switch (i) {
|
|
case _MM_HINT_NTA:
|
|
__builtin_prefetch(p, 0, 0);
|
|
break;
|
|
case _MM_HINT_T0:
|
|
__builtin_prefetch(p, 0, 3);
|
|
break;
|
|
case _MM_HINT_T1:
|
|
__builtin_prefetch(p, 0, 2);
|
|
break;
|
|
case _MM_HINT_T2:
|
|
__builtin_prefetch(p, 0, 1);
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Compute the absolute differences of packed unsigned 8-bit integers in a and
|
|
// b, then horizontally sum each consecutive 8 differences to produce four
|
|
// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
|
|
// 16 bits of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_psadbw
|
|
#define _m_psadbw(a, b) _mm_sad_pu8(a, b)
|
|
|
|
// Shuffle 16-bit integers in a using the control in imm8, and store the results
|
|
// in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pshufw
|
|
#define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm)
|
|
|
|
// Compute the approximate reciprocal of packed single-precision (32-bit)
|
|
// floating-point elements in a, and store the results in dst. The maximum
|
|
// relative error for this approximation is less than 1.5*2^-12.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps
|
|
FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
|
|
{
|
|
float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
|
|
recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
|
|
#if SSE2NEON_PRECISE_DIV
|
|
// Additional Netwon-Raphson iteration for accuracy
|
|
recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
|
|
#endif
|
|
return vreinterpretq_m128_f32(recip);
|
|
}
|
|
|
|
// Compute the approximate reciprocal of the lower single-precision (32-bit)
|
|
// floating-point element in a, store the result in the lower element of dst,
|
|
// and copy the upper 3 packed elements from a to the upper elements of dst. The
|
|
// maximum relative error for this approximation is less than 1.5*2^-12.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss
|
|
FORCE_INLINE __m128 _mm_rcp_ss(__m128 a)
|
|
{
|
|
return _mm_move_ss(a, _mm_rcp_ps(a));
|
|
}
|
|
|
|
// Compute the approximate reciprocal square root of packed single-precision
|
|
// (32-bit) floating-point elements in a, and store the results in dst. The
|
|
// maximum relative error for this approximation is less than 1.5*2^-12.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ps
|
|
FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
|
|
{
|
|
float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in));
|
|
|
|
// Generate masks for detecting whether input has any 0.0f/-0.0f
|
|
// (which becomes positive/negative infinity by IEEE-754 arithmetic rules).
|
|
const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000);
|
|
const uint32x4_t neg_inf = vdupq_n_u32(0xFF800000);
|
|
const uint32x4_t has_pos_zero =
|
|
vceqq_u32(pos_inf, vreinterpretq_u32_f32(out));
|
|
const uint32x4_t has_neg_zero =
|
|
vceqq_u32(neg_inf, vreinterpretq_u32_f32(out));
|
|
|
|
out = vmulq_f32(
|
|
out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
|
|
#if SSE2NEON_PRECISE_SQRT
|
|
// Additional Netwon-Raphson iteration for accuracy
|
|
out = vmulq_f32(
|
|
out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
|
|
#endif
|
|
|
|
// Set output vector element to infinity/negative-infinity if
|
|
// the corresponding input vector element is 0.0f/-0.0f.
|
|
out = vbslq_f32(has_pos_zero, (float32x4_t) pos_inf, out);
|
|
out = vbslq_f32(has_neg_zero, (float32x4_t) neg_inf, out);
|
|
|
|
return vreinterpretq_m128_f32(out);
|
|
}
|
|
|
|
// Compute the approximate reciprocal square root of the lower single-precision
|
|
// (32-bit) floating-point element in a, store the result in the lower element
|
|
// of dst, and copy the upper 3 packed elements from a to the upper elements of
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss
|
|
FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
|
|
{
|
|
return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0);
|
|
}
|
|
|
|
// Compute the absolute differences of packed unsigned 8-bit integers in a and
|
|
// b, then horizontally sum each consecutive 8 differences to produce four
|
|
// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
|
|
// 16 bits of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_pu8
|
|
FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b)
|
|
{
|
|
uint64x1_t t = vpaddl_u32(vpaddl_u16(
|
|
vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)))));
|
|
return vreinterpret_m64_u16(
|
|
vset_lane_u16((int) vget_lane_u64(t, 0), vdup_n_u16(0), 0));
|
|
}
|
|
|
|
// Macro: Set the flush zero bits of the MXCSR control and status register to
|
|
// the value in unsigned 32-bit integer a. The flush zero may contain any of the
|
|
// following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE
|
|
FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag)
|
|
{
|
|
// AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
|
|
// regardless of the value of the FZ bit.
|
|
union {
|
|
fpcr_bitfield field;
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
uint64_t value;
|
|
#else
|
|
uint32_t value;
|
|
#endif
|
|
} r;
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
r.value = _sse2neon_get_fpcr();
|
|
#else
|
|
__asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
|
|
#endif
|
|
|
|
r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON;
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
_sse2neon_set_fpcr(r.value);
|
|
#else
|
|
__asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */
|
|
#endif
|
|
}
|
|
|
|
// Set packed single-precision (32-bit) floating-point elements in dst with the
|
|
// supplied values.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps
|
|
FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x)
|
|
{
|
|
float ALIGN_STRUCT(16) data[4] = {x, y, z, w};
|
|
return vreinterpretq_m128_f32(vld1q_f32(data));
|
|
}
|
|
|
|
// Broadcast single-precision (32-bit) floating-point value a to all elements of
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps1
|
|
FORCE_INLINE __m128 _mm_set_ps1(float _w)
|
|
{
|
|
return vreinterpretq_m128_f32(vdupq_n_f32(_w));
|
|
}
|
|
|
|
// Macro: Set the rounding mode bits of the MXCSR control and status register to
|
|
// the value in unsigned 32-bit integer a. The rounding mode may contain any of
|
|
// the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP,
|
|
// _MM_ROUND_TOWARD_ZERO
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE
|
|
FORCE_INLINE_OPTNONE void _MM_SET_ROUNDING_MODE(int rounding)
|
|
{
|
|
union {
|
|
fpcr_bitfield field;
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
uint64_t value;
|
|
#else
|
|
uint32_t value;
|
|
#endif
|
|
} r;
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
r.value = _sse2neon_get_fpcr();
|
|
#else
|
|
__asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
|
|
#endif
|
|
|
|
switch (rounding) {
|
|
case _MM_ROUND_TOWARD_ZERO:
|
|
r.field.bit22 = 1;
|
|
r.field.bit23 = 1;
|
|
break;
|
|
case _MM_ROUND_DOWN:
|
|
r.field.bit22 = 0;
|
|
r.field.bit23 = 1;
|
|
break;
|
|
case _MM_ROUND_UP:
|
|
r.field.bit22 = 1;
|
|
r.field.bit23 = 0;
|
|
break;
|
|
default: //_MM_ROUND_NEAREST
|
|
r.field.bit22 = 0;
|
|
r.field.bit23 = 0;
|
|
}
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
_sse2neon_set_fpcr(r.value);
|
|
#else
|
|
__asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */
|
|
#endif
|
|
}
|
|
|
|
// Copy single-precision (32-bit) floating-point element a to the lower element
|
|
// of dst, and zero the upper 3 elements.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss
|
|
FORCE_INLINE __m128 _mm_set_ss(float a)
|
|
{
|
|
return vreinterpretq_m128_f32(vsetq_lane_f32(a, vdupq_n_f32(0), 0));
|
|
}
|
|
|
|
// Broadcast single-precision (32-bit) floating-point value a to all elements of
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_ps
|
|
FORCE_INLINE __m128 _mm_set1_ps(float _w)
|
|
{
|
|
return vreinterpretq_m128_f32(vdupq_n_f32(_w));
|
|
}
|
|
|
|
// Set the MXCSR control and status register with the value in unsigned 32-bit
|
|
// integer a.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setcsr
|
|
// FIXME: _mm_setcsr() implementation supports changing the rounding mode only.
|
|
FORCE_INLINE void _mm_setcsr(unsigned int a)
|
|
{
|
|
_MM_SET_ROUNDING_MODE(a);
|
|
}
|
|
|
|
// Get the unsigned 32-bit value of the MXCSR control and status register.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_getcsr
|
|
// FIXME: _mm_getcsr() implementation supports reading the rounding mode only.
|
|
FORCE_INLINE unsigned int _mm_getcsr(void)
|
|
{
|
|
return _MM_GET_ROUNDING_MODE();
|
|
}
|
|
|
|
// Set packed single-precision (32-bit) floating-point elements in dst with the
|
|
// supplied values in reverse order.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_ps
|
|
FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x)
|
|
{
|
|
float ALIGN_STRUCT(16) data[4] = {w, z, y, x};
|
|
return vreinterpretq_m128_f32(vld1q_f32(data));
|
|
}
|
|
|
|
// Return vector of type __m128 with all elements set to zero.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_ps
|
|
FORCE_INLINE __m128 _mm_setzero_ps(void)
|
|
{
|
|
return vreinterpretq_m128_f32(vdupq_n_f32(0));
|
|
}
|
|
|
|
// Shuffle 16-bit integers in a using the control in imm8, and store the results
|
|
// in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi16
|
|
#ifdef _sse2neon_shuffle
|
|
#define _mm_shuffle_pi16(a, imm) \
|
|
vreinterpret_m64_s16(vshuffle_s16( \
|
|
vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \
|
|
((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3)))
|
|
#else
|
|
#define _mm_shuffle_pi16(a, imm) \
|
|
_sse2neon_define1( \
|
|
__m64, a, int16x4_t ret; \
|
|
ret = vmov_n_s16( \
|
|
vget_lane_s16(vreinterpret_s16_m64(_a), (imm) & (0x3))); \
|
|
ret = vset_lane_s16( \
|
|
vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 2) & 0x3), ret, \
|
|
1); \
|
|
ret = vset_lane_s16( \
|
|
vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 4) & 0x3), ret, \
|
|
2); \
|
|
ret = vset_lane_s16( \
|
|
vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 6) & 0x3), ret, \
|
|
3); \
|
|
_sse2neon_return(vreinterpret_m64_s16(ret));)
|
|
#endif
|
|
|
|
// Perform a serializing operation on all store-to-memory instructions that were
|
|
// issued prior to this instruction. Guarantees that every store instruction
|
|
// that precedes, in program order, is globally visible before any store
|
|
// instruction which follows the fence in program order.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence
|
|
FORCE_INLINE void _mm_sfence(void)
|
|
{
|
|
_sse2neon_smp_mb();
|
|
}
|
|
|
|
// Perform a serializing operation on all load-from-memory and store-to-memory
|
|
// instructions that were issued prior to this instruction. Guarantees that
|
|
// every memory access that precedes, in program order, the memory fence
|
|
// instruction is globally visible before any memory instruction which follows
|
|
// the fence in program order.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mfence
|
|
FORCE_INLINE void _mm_mfence(void)
|
|
{
|
|
_sse2neon_smp_mb();
|
|
}
|
|
|
|
// Perform a serializing operation on all load-from-memory instructions that
|
|
// were issued prior to this instruction. Guarantees that every load instruction
|
|
// that precedes, in program order, is globally visible before any load
|
|
// instruction which follows the fence in program order.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lfence
|
|
FORCE_INLINE void _mm_lfence(void)
|
|
{
|
|
_sse2neon_smp_mb();
|
|
}
|
|
|
|
// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
|
|
// int imm)
|
|
#ifdef _sse2neon_shuffle
|
|
#define _mm_shuffle_ps(a, b, imm) \
|
|
__extension__({ \
|
|
float32x4_t _input1 = vreinterpretq_f32_m128(a); \
|
|
float32x4_t _input2 = vreinterpretq_f32_m128(b); \
|
|
float32x4_t _shuf = \
|
|
vshuffleq_s32(_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \
|
|
(((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \
|
|
vreinterpretq_m128_f32(_shuf); \
|
|
})
|
|
#else // generic
|
|
#define _mm_shuffle_ps(a, b, imm) \
|
|
_sse2neon_define2( \
|
|
__m128, a, b, __m128 ret; switch (imm) { \
|
|
case _MM_SHUFFLE(1, 0, 3, 2): \
|
|
ret = _mm_shuffle_ps_1032(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 3, 0, 1): \
|
|
ret = _mm_shuffle_ps_2301(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 3, 2, 1): \
|
|
ret = _mm_shuffle_ps_0321(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 1, 0, 3): \
|
|
ret = _mm_shuffle_ps_2103(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(1, 0, 1, 0): \
|
|
ret = _mm_movelh_ps(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(1, 0, 0, 1): \
|
|
ret = _mm_shuffle_ps_1001(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 1, 0, 1): \
|
|
ret = _mm_shuffle_ps_0101(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(3, 2, 1, 0): \
|
|
ret = _mm_shuffle_ps_3210(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 0, 1, 1): \
|
|
ret = _mm_shuffle_ps_0011(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 0, 2, 2): \
|
|
ret = _mm_shuffle_ps_0022(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 2, 0, 0): \
|
|
ret = _mm_shuffle_ps_2200(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(3, 2, 0, 2): \
|
|
ret = _mm_shuffle_ps_3202(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(3, 2, 3, 2): \
|
|
ret = _mm_movehl_ps(_b, _a); \
|
|
break; \
|
|
case _MM_SHUFFLE(1, 1, 3, 3): \
|
|
ret = _mm_shuffle_ps_1133(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 0, 1, 0): \
|
|
ret = _mm_shuffle_ps_2010(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 0, 0, 1): \
|
|
ret = _mm_shuffle_ps_2001(_a, _b); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 0, 3, 2): \
|
|
ret = _mm_shuffle_ps_2032(_a, _b); \
|
|
break; \
|
|
default: \
|
|
ret = _mm_shuffle_ps_default(_a, _b, (imm)); \
|
|
break; \
|
|
} _sse2neon_return(ret);)
|
|
#endif
|
|
|
|
// Compute the square root of packed single-precision (32-bit) floating-point
|
|
// elements in a, and store the results in dst.
|
|
// Due to ARMv7-A NEON's lack of a precise square root intrinsic, we implement
|
|
// square root by multiplying input in with its reciprocal square root before
|
|
// using the Newton-Raphson method to approximate the results.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ps
|
|
FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in)
|
|
{
|
|
#if (defined(__aarch64__) || defined(_M_ARM64)) && !SSE2NEON_PRECISE_SQRT
|
|
return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in)));
|
|
#else
|
|
float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in));
|
|
|
|
// Test for vrsqrteq_f32(0) -> positive infinity case.
|
|
// Change to zero, so that s * 1/sqrt(s) result is zero too.
|
|
const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000);
|
|
const uint32x4_t div_by_zero =
|
|
vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip));
|
|
recip = vreinterpretq_f32_u32(
|
|
vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip)));
|
|
|
|
recip = vmulq_f32(
|
|
vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
|
|
recip);
|
|
// Additional Netwon-Raphson iteration for accuracy
|
|
recip = vmulq_f32(
|
|
vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
|
|
recip);
|
|
|
|
// sqrt(s) = s * 1/sqrt(s)
|
|
return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip));
|
|
#endif
|
|
}
|
|
|
|
// Compute the square root of the lower single-precision (32-bit) floating-point
|
|
// element in a, store the result in the lower element of dst, and copy the
|
|
// upper 3 packed elements from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ss
|
|
FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in)
|
|
{
|
|
float32_t value =
|
|
vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
|
|
}
|
|
|
|
// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point
|
|
// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
|
|
// or a general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps
|
|
FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
|
|
{
|
|
vst1q_f32(p, vreinterpretq_f32_m128(a));
|
|
}
|
|
|
|
// Store the lower single-precision (32-bit) floating-point element from a into
|
|
// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
|
|
// boundary or a general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1
|
|
FORCE_INLINE void _mm_store_ps1(float *p, __m128 a)
|
|
{
|
|
float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
|
|
vst1q_f32(p, vdupq_n_f32(a0));
|
|
}
|
|
|
|
// Store the lower single-precision (32-bit) floating-point element from a into
|
|
// memory. mem_addr does not need to be aligned on any particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ss
|
|
FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
|
|
{
|
|
vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
|
|
}
|
|
|
|
// Store the lower single-precision (32-bit) floating-point element from a into
|
|
// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
|
|
// boundary or a general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps
|
|
#define _mm_store1_ps _mm_store_ps1
|
|
|
|
// Store the upper 2 single-precision (32-bit) floating-point elements from a
|
|
// into memory.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pi
|
|
FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a)
|
|
{
|
|
*p = vreinterpret_m64_f32(vget_high_f32(a));
|
|
}
|
|
|
|
// Store the lower 2 single-precision (32-bit) floating-point elements from a
|
|
// into memory.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pi
|
|
FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
|
|
{
|
|
*p = vreinterpret_m64_f32(vget_low_f32(a));
|
|
}
|
|
|
|
// Store 4 single-precision (32-bit) floating-point elements from a into memory
|
|
// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
|
|
// general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps
|
|
FORCE_INLINE void _mm_storer_ps(float *p, __m128 a)
|
|
{
|
|
float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a));
|
|
float32x4_t rev = vextq_f32(tmp, tmp, 2);
|
|
vst1q_f32(p, rev);
|
|
}
|
|
|
|
// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point
|
|
// elements) from a into memory. mem_addr does not need to be aligned on any
|
|
// particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_ps
|
|
FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
|
|
{
|
|
vst1q_f32(p, vreinterpretq_f32_m128(a));
|
|
}
|
|
|
|
// Stores 16-bits of integer data a at the address p.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si16
|
|
FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a)
|
|
{
|
|
vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0);
|
|
}
|
|
|
|
// Stores 64-bits of integer data a at the address p.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si64
|
|
FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a)
|
|
{
|
|
vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0);
|
|
}
|
|
|
|
// Store 64-bits of integer data from a into memory using a non-temporal memory
|
|
// hint.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pi
|
|
FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a)
|
|
{
|
|
vst1_s64((int64_t *) p, vreinterpret_s64_m64(a));
|
|
}
|
|
|
|
// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-
|
|
// point elements) from a into memory using a non-temporal memory hint.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps
|
|
FORCE_INLINE void _mm_stream_ps(float *p, __m128 a)
|
|
{
|
|
#if __has_builtin(__builtin_nontemporal_store)
|
|
__builtin_nontemporal_store(a, (float32x4_t *) p);
|
|
#else
|
|
vst1q_f32(p, vreinterpretq_f32_m128(a));
|
|
#endif
|
|
}
|
|
|
|
// Subtract packed single-precision (32-bit) floating-point elements in b from
|
|
// packed single-precision (32-bit) floating-point elements in a, and store the
|
|
// results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ps
|
|
FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_f32(
|
|
vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
}
|
|
|
|
// Subtract the lower single-precision (32-bit) floating-point element in b from
|
|
// the lower single-precision (32-bit) floating-point element in a, store the
|
|
// result in the lower element of dst, and copy the upper 3 packed elements from
|
|
// a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss
|
|
FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_sub_ps(a, b));
|
|
}
|
|
|
|
// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision
|
|
// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the
|
|
// transposed matrix in these vectors (row0 now contains column 0, etc.).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=MM_TRANSPOSE4_PS
|
|
#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
|
|
do { \
|
|
float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \
|
|
float32x4x2_t ROW23 = vtrnq_f32(row2, row3); \
|
|
row0 = vcombine_f32(vget_low_f32(ROW01.val[0]), \
|
|
vget_low_f32(ROW23.val[0])); \
|
|
row1 = vcombine_f32(vget_low_f32(ROW01.val[1]), \
|
|
vget_low_f32(ROW23.val[1])); \
|
|
row2 = vcombine_f32(vget_high_f32(ROW01.val[0]), \
|
|
vget_high_f32(ROW23.val[0])); \
|
|
row3 = vcombine_f32(vget_high_f32(ROW01.val[1]), \
|
|
vget_high_f32(ROW23.val[1])); \
|
|
} while (0)
|
|
|
|
// according to the documentation, these intrinsics behave the same as the
|
|
// non-'u' versions. We'll just alias them here.
|
|
#define _mm_ucomieq_ss _mm_comieq_ss
|
|
#define _mm_ucomige_ss _mm_comige_ss
|
|
#define _mm_ucomigt_ss _mm_comigt_ss
|
|
#define _mm_ucomile_ss _mm_comile_ss
|
|
#define _mm_ucomilt_ss _mm_comilt_ss
|
|
#define _mm_ucomineq_ss _mm_comineq_ss
|
|
|
|
// Return vector of type __m128i with undefined elements.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_undefined_si128
|
|
FORCE_INLINE __m128i _mm_undefined_si128(void)
|
|
{
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wuninitialized"
|
|
#endif
|
|
__m128i a;
|
|
#if defined(_MSC_VER)
|
|
a = _mm_setzero_si128();
|
|
#endif
|
|
return a;
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
// Return vector of type __m128 with undefined elements.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps
|
|
FORCE_INLINE __m128 _mm_undefined_ps(void)
|
|
{
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wuninitialized"
|
|
#endif
|
|
__m128 a;
|
|
#if defined(_MSC_VER)
|
|
a = _mm_setzero_ps();
|
|
#endif
|
|
return a;
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave single-precision (32-bit) floating-point elements from
|
|
// the high half a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_ps
|
|
FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128_f32(
|
|
vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
#else
|
|
float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
|
|
float32x2x2_t result = vzip_f32(a1, b1);
|
|
return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave single-precision (32-bit) floating-point elements from
|
|
// the low half of a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_ps
|
|
FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128_f32(
|
|
vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
#else
|
|
float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
|
|
float32x2x2_t result = vzip_f32(a1, b1);
|
|
return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Compute the bitwise XOR of packed single-precision (32-bit) floating-point
|
|
// elements in a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_ps
|
|
FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b)
|
|
{
|
|
return vreinterpretq_m128_s32(
|
|
veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
|
|
}
|
|
|
|
/* SSE2 */
|
|
|
|
// Add packed 16-bit integers in a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi16
|
|
FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Add packed 32-bit integers in a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi32
|
|
FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Add packed 64-bit integers in a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi64
|
|
FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
|
|
}
|
|
|
|
// Add packed 8-bit integers in a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi8
|
|
FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Add packed double-precision (64-bit) floating-point elements in a and b, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_pd
|
|
FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
double c[2];
|
|
c[0] = a0 + b0;
|
|
c[1] = a1 + b1;
|
|
return vld1q_f32((float32_t *) c);
|
|
#endif
|
|
}
|
|
|
|
// Add the lower double-precision (64-bit) floating-point element in a and b,
|
|
// store the result in the lower element of dst, and copy the upper element from
|
|
// a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_sd
|
|
FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return _mm_move_sd(a, _mm_add_pd(a, b));
|
|
#else
|
|
double a0, a1, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double c[2];
|
|
c[0] = a0 + b0;
|
|
c[1] = a1;
|
|
return vld1q_f32((float32_t *) c);
|
|
#endif
|
|
}
|
|
|
|
// Add 64-bit integers a and b, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_si64
|
|
FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_s64(
|
|
vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
|
|
}
|
|
|
|
// Add packed signed 16-bit integers in a and b using saturation, and store the
|
|
// results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi16
|
|
FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Add packed signed 8-bit integers in a and b using saturation, and store the
|
|
// results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi8
|
|
FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Add packed unsigned 16-bit integers in a and b using saturation, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu16
|
|
FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
|
|
}
|
|
|
|
// Add packed unsigned 8-bit integers in a and b using saturation, and store the
|
|
// results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu8
|
|
FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
|
|
}
|
|
|
|
// Compute the bitwise AND of packed double-precision (64-bit) floating-point
|
|
// elements in a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_pd
|
|
FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b)
|
|
{
|
|
return vreinterpretq_m128d_s64(
|
|
vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
|
|
}
|
|
|
|
// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
|
|
// and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_si128
|
|
FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Compute the bitwise NOT of packed double-precision (64-bit) floating-point
|
|
// elements in a and then AND with b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_pd
|
|
FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b)
|
|
{
|
|
// *NOTE* argument swap
|
|
return vreinterpretq_m128d_s64(
|
|
vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a)));
|
|
}
|
|
|
|
// Compute the bitwise NOT of 128 bits (representing integer data) in a and then
|
|
// AND with b, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_si128
|
|
FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vbicq_s32(vreinterpretq_s32_m128i(b),
|
|
vreinterpretq_s32_m128i(a))); // *NOTE* argument swap
|
|
}
|
|
|
|
// Average packed unsigned 16-bit integers in a and b, and store the results in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu16
|
|
FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b)
|
|
{
|
|
return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a),
|
|
vreinterpretq_u16_m128i(b));
|
|
}
|
|
|
|
// Average packed unsigned 8-bit integers in a and b, and store the results in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu8
|
|
FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
|
|
}
|
|
|
|
// Shift a left by imm8 bytes while shifting in zeros, and store the results in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bslli_si128
|
|
#define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm)
|
|
|
|
// Shift a right by imm8 bytes while shifting in zeros, and store the results in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bsrli_si128
|
|
#define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm)
|
|
|
|
// Cast vector of type __m128d to type __m128. This intrinsic is only used for
|
|
// compilation and does not generate any instructions, thus it has zero latency.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_ps
|
|
FORCE_INLINE __m128 _mm_castpd_ps(__m128d a)
|
|
{
|
|
return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a));
|
|
}
|
|
|
|
// Cast vector of type __m128d to type __m128i. This intrinsic is only used for
|
|
// compilation and does not generate any instructions, thus it has zero latency.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_si128
|
|
FORCE_INLINE __m128i _mm_castpd_si128(__m128d a)
|
|
{
|
|
return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a));
|
|
}
|
|
|
|
// Cast vector of type __m128 to type __m128d. This intrinsic is only used for
|
|
// compilation and does not generate any instructions, thus it has zero latency.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_pd
|
|
FORCE_INLINE __m128d _mm_castps_pd(__m128 a)
|
|
{
|
|
return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a));
|
|
}
|
|
|
|
// Cast vector of type __m128 to type __m128i. This intrinsic is only used for
|
|
// compilation and does not generate any instructions, thus it has zero latency.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_si128
|
|
FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
|
|
{
|
|
return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
|
|
}
|
|
|
|
// Cast vector of type __m128i to type __m128d. This intrinsic is only used for
|
|
// compilation and does not generate any instructions, thus it has zero latency.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_pd
|
|
FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a));
|
|
#else
|
|
return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a));
|
|
#endif
|
|
}
|
|
|
|
// Cast vector of type __m128i to type __m128. This intrinsic is only used for
|
|
// compilation and does not generate any instructions, thus it has zero latency.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_ps
|
|
FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
|
|
{
|
|
return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
|
|
}
|
|
|
|
// Invalidate and flush the cache line that contains p from all levels of the
|
|
// cache hierarchy.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clflush
|
|
#if defined(__APPLE__)
|
|
#include <libkern/OSCacheControl.h>
|
|
#endif
|
|
FORCE_INLINE void _mm_clflush(void const *p)
|
|
{
|
|
(void) p;
|
|
|
|
/* sys_icache_invalidate is supported since macOS 10.5.
|
|
* However, it does not work on non-jailbroken iOS devices, although the
|
|
* compilation is successful.
|
|
*/
|
|
#if defined(__APPLE__)
|
|
sys_icache_invalidate((void *) (uintptr_t) p, SSE2NEON_CACHELINE_SIZE);
|
|
#elif defined(__GNUC__) || defined(__clang__)
|
|
uintptr_t ptr = (uintptr_t) p;
|
|
__builtin___clear_cache((char *) ptr,
|
|
(char *) ptr + SSE2NEON_CACHELINE_SIZE);
|
|
#elif (_MSC_VER) && SSE2NEON_INCLUDE_WINDOWS_H
|
|
FlushInstructionCache(GetCurrentProcess(), p, SSE2NEON_CACHELINE_SIZE);
|
|
#endif
|
|
}
|
|
|
|
// Compare packed 16-bit integers in a and b for equality, and store the results
|
|
// in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi16
|
|
FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Compare packed 32-bit integers in a and b for equality, and store the results
|
|
// in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32
|
|
FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u32(
|
|
vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Compare packed 8-bit integers in a and b for equality, and store the results
|
|
// in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi8
|
|
FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for equality, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_pd
|
|
FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_u64(
|
|
vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
// (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
|
|
uint32x4_t cmp =
|
|
vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
|
|
uint32x4_t swapped = vrev64q_u32(cmp);
|
|
return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for equality, store the result in the lower element of dst, and copy the
|
|
// upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_sd
|
|
FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_cmpeq_pd(a, b));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for greater-than-or-equal, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_pd
|
|
FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_u64(
|
|
vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
uint64_t d[2];
|
|
d[0] = a0 >= b0 ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1 >= b1 ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for greater-than-or-equal, store the result in the lower element of dst,
|
|
// and copy the upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_sd
|
|
FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return _mm_move_sd(a, _mm_cmpge_pd(a, b));
|
|
#else
|
|
// expand "_mm_cmpge_pd()" to reduce unnecessary operations
|
|
double a0, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
uint64_t a1 = vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1);
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
uint64_t d[2];
|
|
d[0] = a0 >= b0 ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed signed 16-bit integers in a and b for greater-than, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi16
|
|
FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Compare packed signed 32-bit integers in a and b for greater-than, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi32
|
|
FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u32(
|
|
vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Compare packed signed 8-bit integers in a and b for greater-than, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi8
|
|
FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for greater-than, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_pd
|
|
FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_u64(
|
|
vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
uint64_t d[2];
|
|
d[0] = a0 > b0 ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1 > b1 ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for greater-than, store the result in the lower element of dst, and copy
|
|
// the upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_sd
|
|
FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return _mm_move_sd(a, _mm_cmpgt_pd(a, b));
|
|
#else
|
|
// expand "_mm_cmpge_pd()" to reduce unnecessary operations
|
|
double a0, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
uint64_t a1 = vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1);
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
uint64_t d[2];
|
|
d[0] = a0 > b0 ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for less-than-or-equal, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_pd
|
|
FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_u64(
|
|
vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
uint64_t d[2];
|
|
d[0] = a0 <= b0 ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1 <= b1 ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for less-than-or-equal, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_sd
|
|
FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return _mm_move_sd(a, _mm_cmple_pd(a, b));
|
|
#else
|
|
// expand "_mm_cmpge_pd()" to reduce unnecessary operations
|
|
double a0, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
uint64_t a1 = vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1);
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
uint64_t d[2];
|
|
d[0] = a0 <= b0 ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed signed 16-bit integers in a and b for less-than, and store the
|
|
// results in dst. Note: This intrinsic emits the pcmpgtw instruction with the
|
|
// order of the operands switched.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi16
|
|
FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Compare packed signed 32-bit integers in a and b for less-than, and store the
|
|
// results in dst. Note: This intrinsic emits the pcmpgtd instruction with the
|
|
// order of the operands switched.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi32
|
|
FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u32(
|
|
vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Compare packed signed 8-bit integers in a and b for less-than, and store the
|
|
// results in dst. Note: This intrinsic emits the pcmpgtb instruction with the
|
|
// order of the operands switched.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi8
|
|
FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for less-than, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_pd
|
|
FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_u64(
|
|
vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
uint64_t d[2];
|
|
d[0] = a0 < b0 ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1 < b1 ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for less-than, store the result in the lower element of dst, and copy the
|
|
// upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_sd
|
|
FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return _mm_move_sd(a, _mm_cmplt_pd(a, b));
|
|
#else
|
|
double a0, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
uint64_t a1 = vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1);
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
uint64_t d[2];
|
|
d[0] = a0 < b0 ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for not-equal, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_pd
|
|
FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64(
|
|
vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)))));
|
|
#else
|
|
// (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
|
|
uint32x4_t cmp =
|
|
vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
|
|
uint32x4_t swapped = vrev64q_u32(cmp);
|
|
return vreinterpretq_m128d_u32(vmvnq_u32(vandq_u32(cmp, swapped)));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for not-equal, store the result in the lower element of dst, and copy the
|
|
// upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_sd
|
|
FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_cmpneq_pd(a, b));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for not-greater-than-or-equal, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_pd
|
|
FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_u64(veorq_u64(
|
|
vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
|
|
vdupq_n_u64(UINT64_MAX)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
uint64_t d[2];
|
|
d[0] = !(a0 >= b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = !(a1 >= b1) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for not-greater-than-or-equal, store the result in the lower element of
|
|
// dst, and copy the upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_sd
|
|
FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_cmpnge_pd(a, b));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for not-greater-than, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_cmpngt_pd
|
|
FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_u64(veorq_u64(
|
|
vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
|
|
vdupq_n_u64(UINT64_MAX)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
uint64_t d[2];
|
|
d[0] = !(a0 > b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = !(a1 > b1) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for not-greater-than, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_sd
|
|
FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_cmpngt_pd(a, b));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for not-less-than-or-equal, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_pd
|
|
FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_u64(veorq_u64(
|
|
vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
|
|
vdupq_n_u64(UINT64_MAX)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
uint64_t d[2];
|
|
d[0] = !(a0 <= b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = !(a1 <= b1) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for not-less-than-or-equal, store the result in the lower element of dst,
|
|
// and copy the upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_sd
|
|
FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_cmpnle_pd(a, b));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// for not-less-than, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_pd
|
|
FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_u64(veorq_u64(
|
|
vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
|
|
vdupq_n_u64(UINT64_MAX)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
uint64_t d[2];
|
|
d[0] = !(a0 < b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = !(a1 < b1) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b for not-less-than, store the result in the lower element of dst, and copy
|
|
// the upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_sd
|
|
FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_cmpnlt_pd(a, b));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// to see if neither is NaN, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_pd
|
|
FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
// Excluding NaNs, any two floating point numbers can be compared.
|
|
uint64x2_t not_nan_a =
|
|
vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
|
|
uint64x2_t not_nan_b =
|
|
vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
|
|
return vreinterpretq_m128d_u64(vandq_u64(not_nan_a, not_nan_b));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
uint64_t d[2];
|
|
d[0] = (a0 == a0 && b0 == b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = (a1 == a1 && b1 == b1) ? ~UINT64_C(0) : UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b to see if neither is NaN, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_sd
|
|
FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return _mm_move_sd(a, _mm_cmpord_pd(a, b));
|
|
#else
|
|
double a0, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
uint64_t a1 = vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1);
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
uint64_t d[2];
|
|
d[0] = (a0 == a0 && b0 == b0) ? ~UINT64_C(0) : UINT64_C(0);
|
|
d[1] = a1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b
|
|
// to see if either is NaN, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_pd
|
|
FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
// Two NaNs are not equal in comparison operation.
|
|
uint64x2_t not_nan_a =
|
|
vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
|
|
uint64x2_t not_nan_b =
|
|
vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
|
|
return vreinterpretq_m128d_s32(
|
|
vmvnq_s32(vreinterpretq_s32_u64(vandq_u64(not_nan_a, not_nan_b))));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
uint64_t d[2];
|
|
d[0] = (a0 == a0 && b0 == b0) ? UINT64_C(0) : ~UINT64_C(0);
|
|
d[1] = (a1 == a1 && b1 == b1) ? UINT64_C(0) : ~UINT64_C(0);
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b to see if either is NaN, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_sd
|
|
FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return _mm_move_sd(a, _mm_cmpunord_pd(a, b));
|
|
#else
|
|
double a0, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
uint64_t a1 = vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1);
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
uint64_t d[2];
|
|
d[0] = (a0 == a0 && b0 == b0) ? UINT64_C(0) : ~UINT64_C(0);
|
|
d[1] = a1;
|
|
|
|
return vreinterpretq_m128d_u64(vld1q_u64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point element in a and b
|
|
// for greater-than-or-equal, and return the boolean result (0 or 1).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_sd
|
|
FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vgetq_lane_u64(vcgeq_f64(a, b), 0) & 0x1;
|
|
#else
|
|
double a0, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
return a0 >= b0;
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point element in a and b
|
|
// for greater-than, and return the boolean result (0 or 1).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_sd
|
|
FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vgetq_lane_u64(vcgtq_f64(a, b), 0) & 0x1;
|
|
#else
|
|
double a0, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
|
|
return a0 > b0;
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point element in a and b
|
|
// for less-than-or-equal, and return the boolean result (0 or 1).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_sd
|
|
FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vgetq_lane_u64(vcleq_f64(a, b), 0) & 0x1;
|
|
#else
|
|
double a0, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
|
|
return a0 <= b0;
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point element in a and b
|
|
// for less-than, and return the boolean result (0 or 1).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_sd
|
|
FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vgetq_lane_u64(vcltq_f64(a, b), 0) & 0x1;
|
|
#else
|
|
double a0, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
|
|
return a0 < b0;
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point element in a and b
|
|
// for equality, and return the boolean result (0 or 1).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_sd
|
|
FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vgetq_lane_u64(vceqq_f64(a, b), 0) & 0x1;
|
|
#else
|
|
uint32x4_t a_not_nan =
|
|
vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(a));
|
|
uint32x4_t b_not_nan =
|
|
vceqq_u32(vreinterpretq_u32_m128d(b), vreinterpretq_u32_m128d(b));
|
|
uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
|
|
uint32x4_t a_eq_b =
|
|
vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
|
|
uint64x2_t and_results = vandq_u64(vreinterpretq_u64_u32(a_and_b_not_nan),
|
|
vreinterpretq_u64_u32(a_eq_b));
|
|
return vgetq_lane_u64(and_results, 0) & 0x1;
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point element in a and b
|
|
// for not-equal, and return the boolean result (0 or 1).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_sd
|
|
FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b)
|
|
{
|
|
return !_mm_comieq_sd(a, b);
|
|
}
|
|
|
|
// Convert packed signed 32-bit integers in a to packed double-precision
|
|
// (64-bit) floating-point elements, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_pd
|
|
FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))));
|
|
#else
|
|
double a0 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
|
|
double a1 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 1);
|
|
return _mm_set_pd(a1, a0);
|
|
#endif
|
|
}
|
|
|
|
// Convert packed signed 32-bit integers in a to packed single-precision
|
|
// (32-bit) floating-point elements, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_ps
|
|
FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
|
|
{
|
|
return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
|
|
}
|
|
|
|
// Convert packed double-precision (64-bit) floating-point elements in a to
|
|
// packed 32-bit integers, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_epi32
|
|
FORCE_INLINE_OPTNONE __m128i _mm_cvtpd_epi32(__m128d a)
|
|
{
|
|
// vrnd32xq_f64 not supported on clang
|
|
#if defined(__ARM_FEATURE_FRINT) && !defined(__clang__)
|
|
float64x2_t rounded = vrnd32xq_f64(vreinterpretq_f64_m128d(a));
|
|
int64x2_t integers = vcvtq_s64_f64(rounded);
|
|
return vreinterpretq_m128i_s32(
|
|
vcombine_s32(vmovn_s64(integers), vdup_n_s32(0)));
|
|
#else
|
|
__m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
|
|
double d0, d1;
|
|
d0 = sse2neon_recast_u64_f64(
|
|
vgetq_lane_u64(vreinterpretq_u64_m128d(rnd), 0));
|
|
d1 = sse2neon_recast_u64_f64(
|
|
vgetq_lane_u64(vreinterpretq_u64_m128d(rnd), 1));
|
|
return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0);
|
|
#endif
|
|
}
|
|
|
|
// Convert packed double-precision (64-bit) floating-point elements in a to
|
|
// packed 32-bit integers, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_pi32
|
|
FORCE_INLINE_OPTNONE __m64 _mm_cvtpd_pi32(__m128d a)
|
|
{
|
|
__m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
|
|
double d0, d1;
|
|
d0 = sse2neon_recast_u64_f64(
|
|
vgetq_lane_u64(vreinterpretq_u64_m128d(rnd), 0));
|
|
d1 = sse2neon_recast_u64_f64(
|
|
vgetq_lane_u64(vreinterpretq_u64_m128d(rnd), 1));
|
|
int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) d0, (int32_t) d1};
|
|
return vreinterpret_m64_s32(vld1_s32(data));
|
|
}
|
|
|
|
// Convert packed double-precision (64-bit) floating-point elements in a to
|
|
// packed single-precision (32-bit) floating-point elements, and store the
|
|
// results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_ps
|
|
FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a));
|
|
return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0)));
|
|
#else
|
|
double a0, a1;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
return _mm_set_ps(0, 0, (float) a1, (float) a0);
|
|
#endif
|
|
}
|
|
|
|
// Convert packed signed 32-bit integers in a to packed double-precision
|
|
// (64-bit) floating-point elements, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_pd
|
|
FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a))));
|
|
#else
|
|
double a0 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 0);
|
|
double a1 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 1);
|
|
return _mm_set_pd(a1, a0);
|
|
#endif
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 32-bit integers, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_epi32
|
|
// *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A
|
|
// does not support! It is supported on ARMv8-A however.
|
|
FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
|
|
{
|
|
#if defined(__ARM_FEATURE_FRINT)
|
|
return vreinterpretq_m128i_s32(vcvtq_s32_f32(vrnd32xq_f32(a)));
|
|
#elif (defined(__aarch64__) || defined(_M_ARM64)) || \
|
|
defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
switch (_MM_GET_ROUNDING_MODE()) {
|
|
case _MM_ROUND_NEAREST:
|
|
return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
|
|
case _MM_ROUND_DOWN:
|
|
return vreinterpretq_m128i_s32(vcvtmq_s32_f32(a));
|
|
case _MM_ROUND_UP:
|
|
return vreinterpretq_m128i_s32(vcvtpq_s32_f32(a));
|
|
default: // _MM_ROUND_TOWARD_ZERO
|
|
return vreinterpretq_m128i_s32(vcvtq_s32_f32(a));
|
|
}
|
|
#else
|
|
float *f = (float *) &a;
|
|
switch (_MM_GET_ROUNDING_MODE()) {
|
|
case _MM_ROUND_NEAREST: {
|
|
uint32x4_t signmask = vdupq_n_u32(0x80000000);
|
|
float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
|
|
vdupq_n_f32(0.5f)); /* +/- 0.5 */
|
|
int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
|
|
vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
|
|
int32x4_t r_trunc = vcvtq_s32_f32(
|
|
vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
|
|
int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
|
|
vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
|
|
int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
|
|
vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
|
|
float32x4_t delta = vsubq_f32(
|
|
vreinterpretq_f32_m128(a),
|
|
vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
|
|
uint32x4_t is_delta_half =
|
|
vceqq_f32(delta, half); /* delta == +/- 0.5 */
|
|
return vreinterpretq_m128i_s32(
|
|
vbslq_s32(is_delta_half, r_even, r_normal));
|
|
}
|
|
case _MM_ROUND_DOWN:
|
|
return _mm_set_epi32(floorf(f[3]), floorf(f[2]), floorf(f[1]),
|
|
floorf(f[0]));
|
|
case _MM_ROUND_UP:
|
|
return _mm_set_epi32(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]),
|
|
ceilf(f[0]));
|
|
default: // _MM_ROUND_TOWARD_ZERO
|
|
return _mm_set_epi32((int32_t) f[3], (int32_t) f[2], (int32_t) f[1],
|
|
(int32_t) f[0]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed double-precision (64-bit) floating-point elements, and store the
|
|
// results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pd
|
|
FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a))));
|
|
#else
|
|
double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
|
|
double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
|
|
return _mm_set_pd(a1, a0);
|
|
#endif
|
|
}
|
|
|
|
// Copy the lower double-precision (64-bit) floating-point element of a to dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_f64
|
|
FORCE_INLINE double _mm_cvtsd_f64(__m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0);
|
|
#else
|
|
double _a =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
return _a;
|
|
#endif
|
|
}
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in a to a
|
|
// 32-bit integer, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si32
|
|
FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return (int32_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
|
|
#else
|
|
__m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
|
|
double ret = sse2neon_recast_u64_f64(
|
|
vgetq_lane_u64(vreinterpretq_u64_m128d(rnd), 0));
|
|
return (int32_t) ret;
|
|
#endif
|
|
}
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in a to a
|
|
// 64-bit integer, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64
|
|
FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return (int64_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
|
|
#else
|
|
__m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
|
|
double ret = sse2neon_recast_u64_f64(
|
|
vgetq_lane_u64(vreinterpretq_u64_m128d(rnd), 0));
|
|
return (int64_t) ret;
|
|
#endif
|
|
}
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in a to a
|
|
// 64-bit integer, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64x
|
|
#define _mm_cvtsd_si64x _mm_cvtsd_si64
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in b to a
|
|
// single-precision (32-bit) floating-point element, store the result in the
|
|
// lower element of dst, and copy the upper 3 packed elements from a to the
|
|
// upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_ss
|
|
FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128_f32(vsetq_lane_f32(
|
|
vget_lane_f32(vcvt_f32_f64(vreinterpretq_f64_m128d(b)), 0),
|
|
vreinterpretq_f32_m128(a), 0));
|
|
#else
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
return vreinterpretq_m128_f32(
|
|
vsetq_lane_f32((float) b0, vreinterpretq_f32_m128(a), 0));
|
|
#endif
|
|
}
|
|
|
|
// Copy the lower 32-bit integer in a to dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si32
|
|
FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
|
|
{
|
|
return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
|
|
}
|
|
|
|
// Copy the lower 64-bit integer in a to dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64
|
|
FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a)
|
|
{
|
|
return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
|
|
}
|
|
|
|
// Copy the lower 64-bit integer in a to dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x
|
|
#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
|
|
|
|
// Convert the signed 32-bit integer b to a double-precision (64-bit)
|
|
// floating-point element, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_sd
|
|
FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
|
|
#else
|
|
int64_t _b = sse2neon_recast_f64_s64((double) b);
|
|
return vreinterpretq_m128d_s64(
|
|
vsetq_lane_s64(_b, vreinterpretq_s64_m128d(a), 0));
|
|
#endif
|
|
}
|
|
|
|
// Copy the lower 64-bit integer in a to dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x
|
|
#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
|
|
|
|
// Copy 32-bit integer a to the lower elements of dst, and zero the upper
|
|
// elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_si128
|
|
FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
|
|
{
|
|
return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
|
|
}
|
|
|
|
// Convert the signed 64-bit integer b to a double-precision (64-bit)
|
|
// floating-point element, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_sd
|
|
FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
|
|
#else
|
|
int64_t _b = sse2neon_recast_f64_s64((double) b);
|
|
return vreinterpretq_m128d_s64(
|
|
vsetq_lane_s64(_b, vreinterpretq_s64_m128d(a), 0));
|
|
#endif
|
|
}
|
|
|
|
// Copy 64-bit integer a to the lower element of dst, and zero the upper
|
|
// element.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_si128
|
|
FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
|
|
{
|
|
return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0));
|
|
}
|
|
|
|
// Copy 64-bit integer a to the lower element of dst, and zero the upper
|
|
// element.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_si128
|
|
#define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a)
|
|
|
|
// Convert the signed 64-bit integer b to a double-precision (64-bit)
|
|
// floating-point element, store the result in the lower element of dst, and
|
|
// copy the upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_sd
|
|
#define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b)
|
|
|
|
// Convert the lower single-precision (32-bit) floating-point element in b to a
|
|
// double-precision (64-bit) floating-point element, store the result in the
|
|
// lower element of dst, and copy the upper element from a to the upper element
|
|
// of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_sd
|
|
FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b)
|
|
{
|
|
double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0));
|
|
#else
|
|
return vreinterpretq_m128d_s64(vsetq_lane_s64(
|
|
sse2neon_recast_f64_s64(d), vreinterpretq_s64_m128d(a), 0));
|
|
#endif
|
|
}
|
|
|
|
// Convert packed double-precision (64-bit) floating-point elements in a to
|
|
// packed 32-bit integers with truncation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_epi32
|
|
FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a)
|
|
{
|
|
double a0, a1;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
return _mm_set_epi32(0, 0, (int32_t) a1, (int32_t) a0);
|
|
}
|
|
|
|
// Convert packed double-precision (64-bit) floating-point elements in a to
|
|
// packed 32-bit integers with truncation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_pi32
|
|
FORCE_INLINE_OPTNONE __m64 _mm_cvttpd_pi32(__m128d a)
|
|
{
|
|
double a0, a1;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) a0, (int32_t) a1};
|
|
return vreinterpret_m64_s32(vld1_s32(data));
|
|
}
|
|
|
|
// Convert packed single-precision (32-bit) floating-point elements in a to
|
|
// packed 32-bit integers with truncation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_epi32
|
|
FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
|
|
{
|
|
return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
|
|
}
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in a to a
|
|
// 32-bit integer with truncation, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si32
|
|
FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a)
|
|
{
|
|
double _a =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
return (int32_t) _a;
|
|
}
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in a to a
|
|
// 64-bit integer with truncation, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64
|
|
FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0);
|
|
#else
|
|
double _a =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
return (int64_t) _a;
|
|
#endif
|
|
}
|
|
|
|
// Convert the lower double-precision (64-bit) floating-point element in a to a
|
|
// 64-bit integer with truncation, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64x
|
|
#define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a)
|
|
|
|
// Divide packed double-precision (64-bit) floating-point elements in a by
|
|
// packed elements in b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_pd
|
|
FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
double c[2];
|
|
c[0] = a0 / b0;
|
|
c[1] = a1 / b1;
|
|
return vld1q_f32((float32_t *) c);
|
|
#endif
|
|
}
|
|
|
|
// Divide the lower double-precision (64-bit) floating-point element in a by the
|
|
// lower double-precision (64-bit) floating-point element in b, store the result
|
|
// in the lower element of dst, and copy the upper element from a to the upper
|
|
// element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_sd
|
|
FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
float64x2_t tmp =
|
|
vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b));
|
|
return vreinterpretq_m128d_f64(
|
|
vsetq_lane_f64(vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1), tmp, 1));
|
|
#else
|
|
return _mm_move_sd(a, _mm_div_pd(a, b));
|
|
#endif
|
|
}
|
|
|
|
// Extract a 16-bit integer from a, selected with imm8, and store the result in
|
|
// the lower element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi16
|
|
// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
|
|
#define _mm_extract_epi16(a, imm) \
|
|
vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm))
|
|
|
|
// Copy a to dst, and insert the 16-bit integer i into dst at the location
|
|
// specified by imm8.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi16
|
|
// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b,
|
|
// __constrange(0,8) int imm)
|
|
#define _mm_insert_epi16(a, b, imm) \
|
|
vreinterpretq_m128i_s16( \
|
|
vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm)))
|
|
|
|
// Load 128-bits (composed of 2 packed double-precision (64-bit) floating-point
|
|
// elements) from memory into dst. mem_addr must be aligned on a 16-byte
|
|
// boundary or a general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd
|
|
FORCE_INLINE __m128d _mm_load_pd(const double *p)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(vld1q_f64(p));
|
|
#else
|
|
const float *fp = (const float *) p;
|
|
float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]};
|
|
return vreinterpretq_m128d_f32(vld1q_f32(data));
|
|
#endif
|
|
}
|
|
|
|
// Load a double-precision (64-bit) floating-point element from memory into both
|
|
// elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd1
|
|
#define _mm_load_pd1 _mm_load1_pd
|
|
|
|
// Load a double-precision (64-bit) floating-point element from memory into the
|
|
// lower of dst, and zero the upper element. mem_addr does not need to be
|
|
// aligned on any particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_sd
|
|
FORCE_INLINE __m128d _mm_load_sd(const double *p)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0));
|
|
#else
|
|
const float *fp = (const float *) p;
|
|
float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0};
|
|
return vreinterpretq_m128d_f32(vld1q_f32(data));
|
|
#endif
|
|
}
|
|
|
|
// Load 128-bits of integer data from memory into dst. mem_addr must be aligned
|
|
// on a 16-byte boundary or a general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_si128
|
|
FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
|
|
{
|
|
return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
|
|
}
|
|
|
|
// Load a double-precision (64-bit) floating-point element from memory into both
|
|
// elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_pd
|
|
FORCE_INLINE __m128d _mm_load1_pd(const double *p)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(vld1q_dup_f64(p));
|
|
#else
|
|
return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p));
|
|
#endif
|
|
}
|
|
|
|
// Load a double-precision (64-bit) floating-point element from memory into the
|
|
// upper element of dst, and copy the lower element from a to dst. mem_addr does
|
|
// not need to be aligned on any particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pd
|
|
FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p)));
|
|
#else
|
|
return vreinterpretq_m128d_f32(vcombine_f32(
|
|
vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p)));
|
|
#endif
|
|
}
|
|
|
|
// Load 64-bit integer from memory into the first element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_epi64
|
|
FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
|
|
{
|
|
/* Load the lower 64 bits of the value pointed to by p into the
|
|
* lower 64 bits of the result, zeroing the upper 64 bits of the result.
|
|
*/
|
|
return vreinterpretq_m128i_s32(
|
|
vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0)));
|
|
}
|
|
|
|
// Load a double-precision (64-bit) floating-point element from memory into the
|
|
// lower element of dst, and copy the upper element from a to dst. mem_addr does
|
|
// not need to be aligned on any particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pd
|
|
FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a))));
|
|
#else
|
|
return vreinterpretq_m128d_f32(
|
|
vcombine_f32(vld1_f32((const float *) p),
|
|
vget_high_f32(vreinterpretq_f32_m128d(a))));
|
|
#endif
|
|
}
|
|
|
|
// Load 2 double-precision (64-bit) floating-point elements from memory into dst
|
|
// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
|
|
// general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_pd
|
|
FORCE_INLINE __m128d _mm_loadr_pd(const double *p)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
float64x2_t v = vld1q_f64(p);
|
|
return vreinterpretq_m128d_f64(vextq_f64(v, v, 1));
|
|
#else
|
|
int64x2_t v = vld1q_s64((const int64_t *) p);
|
|
return vreinterpretq_m128d_s64(vextq_s64(v, v, 1));
|
|
#endif
|
|
}
|
|
|
|
// Loads two double-precision from unaligned memory, floating-point values.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_pd
|
|
FORCE_INLINE __m128d _mm_loadu_pd(const double *p)
|
|
{
|
|
return _mm_load_pd(p);
|
|
}
|
|
|
|
// Load 128-bits of integer data from memory into dst. mem_addr does not need to
|
|
// be aligned on any particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si128
|
|
FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
|
|
{
|
|
return vreinterpretq_m128i_s32(vld1q_s32((const unaligned_int32_t *) p));
|
|
}
|
|
|
|
// Load unaligned 32-bit integer from memory into the first element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si32
|
|
FORCE_INLINE __m128i _mm_loadu_si32(const void *p)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vsetq_lane_s32(*(const unaligned_int32_t *) p, vdupq_n_s32(0), 0));
|
|
}
|
|
|
|
// Multiply packed signed 16-bit integers in a and b, producing intermediate
|
|
// signed 32-bit integers. Horizontally add adjacent pairs of intermediate
|
|
// 32-bit integers, and pack the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_madd_epi16
|
|
FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
|
|
{
|
|
int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
|
|
vget_low_s16(vreinterpretq_s16_m128i(b)));
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
int32x4_t high =
|
|
vmull_high_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b));
|
|
|
|
return vreinterpretq_m128i_s32(vpaddq_s32(low, high));
|
|
#else
|
|
int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
|
|
vget_high_s16(vreinterpretq_s16_m128i(b)));
|
|
|
|
int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
|
|
int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
|
|
|
|
return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
|
|
#endif
|
|
}
|
|
|
|
// Conditionally store 8-bit integer elements from a into memory using mask
|
|
// (elements are not stored when the highest bit is not set in the corresponding
|
|
// element) and a non-temporal memory hint. mem_addr does not need to be aligned
|
|
// on any particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmoveu_si128
|
|
FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr)
|
|
{
|
|
int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7);
|
|
__m128 b = _mm_load_ps((const float *) mem_addr);
|
|
int8x16_t masked =
|
|
vbslq_s8(vreinterpretq_u8_s8(shr_mask), vreinterpretq_s8_m128i(a),
|
|
vreinterpretq_s8_m128(b));
|
|
vst1q_s8((int8_t *) mem_addr, masked);
|
|
}
|
|
|
|
// Compare packed signed 16-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi16
|
|
FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu8
|
|
FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b,
|
|
// and store packed maximum values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pd
|
|
FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
#if SSE2NEON_PRECISE_MINMAX
|
|
float64x2_t _a = vreinterpretq_f64_m128d(a);
|
|
float64x2_t _b = vreinterpretq_f64_m128d(b);
|
|
return vreinterpretq_m128d_f64(vbslq_f64(vcgtq_f64(_a, _b), _a, _b));
|
|
#else
|
|
return vreinterpretq_m128d_f64(
|
|
vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#endif
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
int64_t d[2];
|
|
d[0] = a0 > b0 ? sse2neon_recast_f64_s64(a0) : sse2neon_recast_f64_s64(b0);
|
|
d[1] = a1 > b1 ? sse2neon_recast_f64_s64(a1) : sse2neon_recast_f64_s64(b1);
|
|
|
|
return vreinterpretq_m128d_s64(vld1q_s64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b, store the maximum value in the lower element of dst, and copy the upper
|
|
// element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_sd
|
|
FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return _mm_move_sd(a, _mm_max_pd(a, b));
|
|
#else
|
|
double a0, a1, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double c[2] = {a0 > b0 ? a0 : b0, a1};
|
|
return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c));
|
|
#endif
|
|
}
|
|
|
|
// Compare packed signed 16-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi16
|
|
FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu8
|
|
FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed double-precision (64-bit) floating-point elements in a and b,
|
|
// and store packed minimum values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pd
|
|
FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
#if SSE2NEON_PRECISE_MINMAX
|
|
float64x2_t _a = vreinterpretq_f64_m128d(a);
|
|
float64x2_t _b = vreinterpretq_f64_m128d(b);
|
|
return vreinterpretq_m128d_f64(vbslq_f64(vcltq_f64(_a, _b), _a, _b));
|
|
#else
|
|
return vreinterpretq_m128d_f64(
|
|
vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#endif
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
int64_t d[2];
|
|
d[0] = a0 < b0 ? sse2neon_recast_f64_s64(a0) : sse2neon_recast_f64_s64(b0);
|
|
d[1] = a1 < b1 ? sse2neon_recast_f64_s64(a1) : sse2neon_recast_f64_s64(b1);
|
|
return vreinterpretq_m128d_s64(vld1q_s64(d));
|
|
#endif
|
|
}
|
|
|
|
// Compare the lower double-precision (64-bit) floating-point elements in a and
|
|
// b, store the minimum value in the lower element of dst, and copy the upper
|
|
// element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_sd
|
|
FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return _mm_move_sd(a, _mm_min_pd(a, b));
|
|
#else
|
|
double a0, a1, b0;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
b0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double c[2] = {a0 < b0 ? a0 : b0, a1};
|
|
return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c));
|
|
#endif
|
|
}
|
|
|
|
// Copy the lower 64-bit integer in a to the lower element of dst, and zero the
|
|
// upper element.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_epi64
|
|
FORCE_INLINE __m128i _mm_move_epi64(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1));
|
|
}
|
|
|
|
// Move the lower double-precision (64-bit) floating-point element from b to the
|
|
// lower element of dst, and copy the upper element from a to the upper element
|
|
// of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_sd
|
|
FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b)
|
|
{
|
|
return vreinterpretq_m128d_f32(
|
|
vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)),
|
|
vget_high_f32(vreinterpretq_f32_m128d(a))));
|
|
}
|
|
|
|
// Create mask from the most significant bit of each 8-bit element in a, and
|
|
// store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_epi8
|
|
FORCE_INLINE int _mm_movemask_epi8(__m128i a)
|
|
{
|
|
// Use increasingly wide shifts+adds to collect the sign bits
|
|
// together.
|
|
// Since the widening shifts would be rather confusing to follow in little
|
|
// endian, everything will be illustrated in big endian order instead. This
|
|
// has a different result - the bits would actually be reversed on a big
|
|
// endian machine.
|
|
|
|
// Starting input (only half the elements are shown):
|
|
// 89 ff 1d c0 00 10 99 33
|
|
uint8x16_t input = vreinterpretq_u8_m128i(a);
|
|
|
|
// Shift out everything but the sign bits with an unsigned shift right.
|
|
//
|
|
// Bytes of the vector::
|
|
// 89 ff 1d c0 00 10 99 33
|
|
// \ \ \ \ \ \ \ \ high_bits = (uint16x4_t)(input >> 7)
|
|
// | | | | | | | |
|
|
// 01 01 00 01 00 00 01 00
|
|
//
|
|
// Bits of first important lane(s):
|
|
// 10001001 (89)
|
|
// \______
|
|
// |
|
|
// 00000001 (01)
|
|
uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7));
|
|
|
|
// Merge the even lanes together with a 16-bit unsigned shift right + add.
|
|
// 'xx' represents garbage data which will be ignored in the final result.
|
|
// In the important bytes, the add functions like a binary OR.
|
|
//
|
|
// 01 01 00 01 00 00 01 00
|
|
// \_ | \_ | \_ | \_ | paired16 = (uint32x4_t)(input + (input >> 7))
|
|
// \| \| \| \|
|
|
// xx 03 xx 01 xx 00 xx 02
|
|
//
|
|
// 00000001 00000001 (01 01)
|
|
// \_______ |
|
|
// \|
|
|
// xxxxxxxx xxxxxx11 (xx 03)
|
|
uint32x4_t paired16 =
|
|
vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7));
|
|
|
|
// Repeat with a wider 32-bit shift + add.
|
|
// xx 03 xx 01 xx 00 xx 02
|
|
// \____ | \____ | paired32 = (uint64x1_t)(paired16 + (paired16 >>
|
|
// 14))
|
|
// \| \|
|
|
// xx xx xx 0d xx xx xx 02
|
|
//
|
|
// 00000011 00000001 (03 01)
|
|
// \\_____ ||
|
|
// '----.\||
|
|
// xxxxxxxx xxxx1101 (xx 0d)
|
|
uint64x2_t paired32 =
|
|
vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14));
|
|
|
|
// Last, an even wider 64-bit shift + add to get our result in the low 8 bit
|
|
// lanes. xx xx xx 0d xx xx xx 02
|
|
// \_________ | paired64 = (uint8x8_t)(paired32 + (paired32 >>
|
|
// 28))
|
|
// \|
|
|
// xx xx xx xx xx xx xx d2
|
|
//
|
|
// 00001101 00000010 (0d 02)
|
|
// \ \___ | |
|
|
// '---. \| |
|
|
// xxxxxxxx 11010010 (xx d2)
|
|
uint8x16_t paired64 =
|
|
vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28));
|
|
|
|
// Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts.
|
|
// xx xx xx xx xx xx xx d2
|
|
// || return paired64[0]
|
|
// d2
|
|
// Note: Little endian would return the correct value 4b (01001011) instead.
|
|
return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8);
|
|
}
|
|
|
|
// Set each bit of mask dst based on the most significant bit of the
|
|
// corresponding packed double-precision (64-bit) floating-point element in a.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pd
|
|
FORCE_INLINE int _mm_movemask_pd(__m128d a)
|
|
{
|
|
uint64x2_t input = vreinterpretq_u64_m128d(a);
|
|
uint64x2_t high_bits = vshrq_n_u64(input, 63);
|
|
return (int) (vgetq_lane_u64(high_bits, 0) |
|
|
(vgetq_lane_u64(high_bits, 1) << 1));
|
|
}
|
|
|
|
// Copy the lower 64-bit integer in a to dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movepi64_pi64
|
|
FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a)
|
|
{
|
|
return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a)));
|
|
}
|
|
|
|
// Copy the 64-bit integer a to the lower element of dst, and zero the upper
|
|
// element.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movpi64_epi64
|
|
FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0)));
|
|
}
|
|
|
|
// Multiply the low unsigned 32-bit integers from each packed 64-bit element in
|
|
// a and b, and store the unsigned 64-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epu32
|
|
FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
|
|
{
|
|
// vmull_u32 upcasts instead of masking, so we downcast.
|
|
uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a));
|
|
uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b));
|
|
return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo));
|
|
}
|
|
|
|
// Multiply packed double-precision (64-bit) floating-point elements in a and b,
|
|
// and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_pd
|
|
FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
double c[2];
|
|
c[0] = a0 * b0;
|
|
c[1] = a1 * b1;
|
|
return vld1q_f32((float32_t *) c);
|
|
#endif
|
|
}
|
|
|
|
// Multiply the lower double-precision (64-bit) floating-point element in a and
|
|
// b, store the result in the lower element of dst, and copy the upper element
|
|
// from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_mul_sd
|
|
FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_mul_pd(a, b));
|
|
}
|
|
|
|
// Multiply the low unsigned 32-bit integers from a and b, and store the
|
|
// unsigned 64-bit result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_su32
|
|
FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_u64(vget_low_u64(
|
|
vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b))));
|
|
}
|
|
|
|
// Multiply the packed signed 16-bit integers in a and b, producing intermediate
|
|
// 32-bit integers, and store the high 16 bits of the intermediate integers in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epi16
|
|
FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b)
|
|
{
|
|
/* FIXME: issue with large values because of result saturation */
|
|
// int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a),
|
|
// vreinterpretq_s16_m128i(b)); /* =2*a*b */ return
|
|
// vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1));
|
|
int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a));
|
|
int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b));
|
|
int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */
|
|
int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a));
|
|
int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b));
|
|
int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */
|
|
uint16x8x2_t r =
|
|
vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654));
|
|
return vreinterpretq_m128i_u16(r.val[1]);
|
|
}
|
|
|
|
// Multiply the packed unsigned 16-bit integers in a and b, producing
|
|
// intermediate 32-bit integers, and store the high 16 bits of the intermediate
|
|
// integers in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epu16
|
|
FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b)
|
|
{
|
|
uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a));
|
|
uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b));
|
|
uint32x4_t ab3210 = vmull_u16(a3210, b3210);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
uint32x4_t ab7654 =
|
|
vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b));
|
|
uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210),
|
|
vreinterpretq_u16_u32(ab7654));
|
|
return vreinterpretq_m128i_u16(r);
|
|
#else
|
|
uint16x4_t a7654 = vget_high_u16(vreinterpretq_u16_m128i(a));
|
|
uint16x4_t b7654 = vget_high_u16(vreinterpretq_u16_m128i(b));
|
|
uint32x4_t ab7654 = vmull_u16(a7654, b7654);
|
|
uint16x8x2_t r =
|
|
vuzpq_u16(vreinterpretq_u16_u32(ab3210), vreinterpretq_u16_u32(ab7654));
|
|
return vreinterpretq_m128i_u16(r.val[1]);
|
|
#endif
|
|
}
|
|
|
|
// Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit
|
|
// integers, and store the low 16 bits of the intermediate integers in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi16
|
|
FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Compute the bitwise OR of packed double-precision (64-bit) floating-point
|
|
// elements in a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_or_pd
|
|
FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b)
|
|
{
|
|
return vreinterpretq_m128d_s64(
|
|
vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
|
|
}
|
|
|
|
// Compute the bitwise OR of 128 bits (representing integer data) in a and b,
|
|
// and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_si128
|
|
FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Convert packed signed 16-bit integers from a and b to packed 8-bit integers
|
|
// using signed saturation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi16
|
|
FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
|
|
vqmovn_s16(vreinterpretq_s16_m128i(b))));
|
|
}
|
|
|
|
// Convert packed signed 32-bit integers from a and b to packed 16-bit integers
|
|
// using signed saturation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi32
|
|
FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
|
|
vqmovn_s32(vreinterpretq_s32_m128i(b))));
|
|
}
|
|
|
|
// Convert packed signed 16-bit integers from a and b to packed 8-bit integers
|
|
// using unsigned saturation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi16
|
|
FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
|
|
vqmovun_s16(vreinterpretq_s16_m128i(b))));
|
|
}
|
|
|
|
// Pause the processor. This is typically used in spin-wait loops and depending
|
|
// on the x86 processor typical values are in the 40-100 cycle range. The
|
|
// 'yield' instruction isn't a good fit because it's effectively a nop on most
|
|
// Arm cores. Experience with several databases has shown has shown an 'isb' is
|
|
// a reasonable approximation.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_pause
|
|
FORCE_INLINE void _mm_pause(void)
|
|
{
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
__isb(_ARM64_BARRIER_SY);
|
|
#else
|
|
__asm__ __volatile__("isb\n");
|
|
#endif
|
|
}
|
|
|
|
// Compute the absolute differences of packed unsigned 8-bit integers in a and
|
|
// b, then horizontally sum each consecutive 8 differences to produce two
|
|
// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
|
|
// 16 bits of 64-bit elements in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8
|
|
FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
|
|
{
|
|
uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b));
|
|
return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t)));
|
|
}
|
|
|
|
// Set packed 16-bit integers in dst with the supplied values.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi16
|
|
FORCE_INLINE __m128i _mm_set_epi16(short i7,
|
|
short i6,
|
|
short i5,
|
|
short i4,
|
|
short i3,
|
|
short i2,
|
|
short i1,
|
|
short i0)
|
|
{
|
|
int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
|
|
return vreinterpretq_m128i_s16(vld1q_s16(data));
|
|
}
|
|
|
|
// Set packed 32-bit integers in dst with the supplied values.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi32
|
|
FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
|
|
{
|
|
int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3};
|
|
return vreinterpretq_m128i_s32(vld1q_s32(data));
|
|
}
|
|
|
|
// Set packed 64-bit integers in dst with the supplied values.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64
|
|
FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2)
|
|
{
|
|
return _mm_set_epi64x(vget_lane_s64(i1, 0), vget_lane_s64(i2, 0));
|
|
}
|
|
|
|
// Set packed 64-bit integers in dst with the supplied values.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64x
|
|
FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vcombine_s64(vcreate_s64(i2), vcreate_s64(i1)));
|
|
}
|
|
|
|
// Set packed 8-bit integers in dst with the supplied values.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi8
|
|
FORCE_INLINE __m128i _mm_set_epi8(signed char b15,
|
|
signed char b14,
|
|
signed char b13,
|
|
signed char b12,
|
|
signed char b11,
|
|
signed char b10,
|
|
signed char b9,
|
|
signed char b8,
|
|
signed char b7,
|
|
signed char b6,
|
|
signed char b5,
|
|
signed char b4,
|
|
signed char b3,
|
|
signed char b2,
|
|
signed char b1,
|
|
signed char b0)
|
|
{
|
|
int8_t ALIGN_STRUCT(16)
|
|
data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
|
|
(int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
|
|
(int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
|
|
(int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
|
|
return (__m128i) vld1q_s8(data);
|
|
}
|
|
|
|
// Set packed double-precision (64-bit) floating-point elements in dst with the
|
|
// supplied values.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd
|
|
FORCE_INLINE __m128d _mm_set_pd(double e1, double e0)
|
|
{
|
|
double ALIGN_STRUCT(16) data[2] = {e0, e1};
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data));
|
|
#else
|
|
return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data));
|
|
#endif
|
|
}
|
|
|
|
// Broadcast double-precision (64-bit) floating-point value a to all elements of
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd1
|
|
#define _mm_set_pd1 _mm_set1_pd
|
|
|
|
// Copy double-precision (64-bit) floating-point element a to the lower element
|
|
// of dst, and zero the upper element.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_sd
|
|
FORCE_INLINE __m128d _mm_set_sd(double a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(vsetq_lane_f64(a, vdupq_n_f64(0), 0));
|
|
#else
|
|
return _mm_set_pd(0, a);
|
|
#endif
|
|
}
|
|
|
|
// Broadcast 16-bit integer a to all elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi16
|
|
FORCE_INLINE __m128i _mm_set1_epi16(short w)
|
|
{
|
|
return vreinterpretq_m128i_s16(vdupq_n_s16(w));
|
|
}
|
|
|
|
// Broadcast 32-bit integer a to all elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi32
|
|
FORCE_INLINE __m128i _mm_set1_epi32(int _i)
|
|
{
|
|
return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
|
|
}
|
|
|
|
// Broadcast 64-bit integer a to all elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64
|
|
FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i)
|
|
{
|
|
return vreinterpretq_m128i_s64(vdupq_lane_s64(_i, 0));
|
|
}
|
|
|
|
// Broadcast 64-bit integer a to all elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64x
|
|
FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i)
|
|
{
|
|
return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
|
|
}
|
|
|
|
// Broadcast 8-bit integer a to all elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi8
|
|
FORCE_INLINE __m128i _mm_set1_epi8(signed char w)
|
|
{
|
|
return vreinterpretq_m128i_s8(vdupq_n_s8(w));
|
|
}
|
|
|
|
// Broadcast double-precision (64-bit) floating-point value a to all elements of
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_pd
|
|
FORCE_INLINE __m128d _mm_set1_pd(double d)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(vdupq_n_f64(d));
|
|
#else
|
|
int64_t _d = sse2neon_recast_f64_s64(d);
|
|
return vreinterpretq_m128d_s64(vdupq_n_s64(_d));
|
|
#endif
|
|
}
|
|
|
|
// Set packed 16-bit integers in dst with the supplied values in reverse order.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi16
|
|
FORCE_INLINE __m128i _mm_setr_epi16(short w0,
|
|
short w1,
|
|
short w2,
|
|
short w3,
|
|
short w4,
|
|
short w5,
|
|
short w6,
|
|
short w7)
|
|
{
|
|
int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
|
|
return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data));
|
|
}
|
|
|
|
// Set packed 32-bit integers in dst with the supplied values in reverse order.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi32
|
|
FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
|
|
{
|
|
int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0};
|
|
return vreinterpretq_m128i_s32(vld1q_s32(data));
|
|
}
|
|
|
|
// Set packed 64-bit integers in dst with the supplied values in reverse order.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi64
|
|
FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0)
|
|
{
|
|
return vreinterpretq_m128i_s64(vcombine_s64(e1, e0));
|
|
}
|
|
|
|
// Set packed 8-bit integers in dst with the supplied values in reverse order.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi8
|
|
FORCE_INLINE __m128i _mm_setr_epi8(signed char b0,
|
|
signed char b1,
|
|
signed char b2,
|
|
signed char b3,
|
|
signed char b4,
|
|
signed char b5,
|
|
signed char b6,
|
|
signed char b7,
|
|
signed char b8,
|
|
signed char b9,
|
|
signed char b10,
|
|
signed char b11,
|
|
signed char b12,
|
|
signed char b13,
|
|
signed char b14,
|
|
signed char b15)
|
|
{
|
|
int8_t ALIGN_STRUCT(16)
|
|
data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
|
|
(int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
|
|
(int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
|
|
(int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
|
|
return (__m128i) vld1q_s8(data);
|
|
}
|
|
|
|
// Set packed double-precision (64-bit) floating-point elements in dst with the
|
|
// supplied values in reverse order.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_pd
|
|
FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0)
|
|
{
|
|
return _mm_set_pd(e0, e1);
|
|
}
|
|
|
|
// Return vector of type __m128d with all elements set to zero.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_pd
|
|
FORCE_INLINE __m128d _mm_setzero_pd(void)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(vdupq_n_f64(0));
|
|
#else
|
|
return vreinterpretq_m128d_f32(vdupq_n_f32(0));
|
|
#endif
|
|
}
|
|
|
|
// Return vector of type __m128i with all elements set to zero.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_si128
|
|
FORCE_INLINE __m128i _mm_setzero_si128(void)
|
|
{
|
|
return vreinterpretq_m128i_s32(vdupq_n_s32(0));
|
|
}
|
|
|
|
// Shuffle 32-bit integers in a using the control in imm8, and store the results
|
|
// in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi32
|
|
// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a,
|
|
// __constrange(0,255) int imm)
|
|
#if defined(_sse2neon_shuffle)
|
|
#define _mm_shuffle_epi32(a, imm) \
|
|
__extension__({ \
|
|
int32x4_t _input = vreinterpretq_s32_m128i(a); \
|
|
int32x4_t _shuf = \
|
|
vshuffleq_s32(_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
|
|
((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \
|
|
vreinterpretq_m128i_s32(_shuf); \
|
|
})
|
|
#else // generic
|
|
#define _mm_shuffle_epi32(a, imm) \
|
|
_sse2neon_define1( \
|
|
__m128i, a, __m128i ret; switch (imm) { \
|
|
case _MM_SHUFFLE(1, 0, 3, 2): \
|
|
ret = _mm_shuffle_epi_1032(_a); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 3, 0, 1): \
|
|
ret = _mm_shuffle_epi_2301(_a); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 3, 2, 1): \
|
|
ret = _mm_shuffle_epi_0321(_a); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 1, 0, 3): \
|
|
ret = _mm_shuffle_epi_2103(_a); \
|
|
break; \
|
|
case _MM_SHUFFLE(1, 0, 1, 0): \
|
|
ret = _mm_shuffle_epi_1010(_a); \
|
|
break; \
|
|
case _MM_SHUFFLE(1, 0, 0, 1): \
|
|
ret = _mm_shuffle_epi_1001(_a); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 1, 0, 1): \
|
|
ret = _mm_shuffle_epi_0101(_a); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 2, 1, 1): \
|
|
ret = _mm_shuffle_epi_2211(_a); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 1, 2, 2): \
|
|
ret = _mm_shuffle_epi_0122(_a); \
|
|
break; \
|
|
case _MM_SHUFFLE(3, 3, 3, 2): \
|
|
ret = _mm_shuffle_epi_3332(_a); \
|
|
break; \
|
|
case _MM_SHUFFLE(0, 0, 0, 0): \
|
|
ret = _mm_shuffle_epi32_splat(_a, 0); \
|
|
break; \
|
|
case _MM_SHUFFLE(1, 1, 1, 1): \
|
|
ret = _mm_shuffle_epi32_splat(_a, 1); \
|
|
break; \
|
|
case _MM_SHUFFLE(2, 2, 2, 2): \
|
|
ret = _mm_shuffle_epi32_splat(_a, 2); \
|
|
break; \
|
|
case _MM_SHUFFLE(3, 3, 3, 3): \
|
|
ret = _mm_shuffle_epi32_splat(_a, 3); \
|
|
break; \
|
|
default: \
|
|
ret = _mm_shuffle_epi32_default(_a, (imm)); \
|
|
break; \
|
|
} _sse2neon_return(ret);)
|
|
#endif
|
|
|
|
// Shuffle double-precision (64-bit) floating-point elements using the control
|
|
// in imm8, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pd
|
|
#ifdef _sse2neon_shuffle
|
|
#define _mm_shuffle_pd(a, b, imm8) \
|
|
vreinterpretq_m128d_s64( \
|
|
vshuffleq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), \
|
|
imm8 & 0x1, ((imm8 & 0x2) >> 1) + 2))
|
|
#else
|
|
#define _mm_shuffle_pd(a, b, imm8) \
|
|
_mm_castsi128_pd(_mm_set_epi64x( \
|
|
vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \
|
|
vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1)))
|
|
#endif
|
|
|
|
// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a,
|
|
// __constrange(0,255) int imm)
|
|
#if defined(_sse2neon_shuffle)
|
|
#define _mm_shufflehi_epi16(a, imm) \
|
|
__extension__({ \
|
|
int16x8_t _input = vreinterpretq_s16_m128i(a); \
|
|
int16x8_t _shuf = \
|
|
vshuffleq_s16(_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \
|
|
(((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
|
|
(((imm) >> 6) & 0x3) + 4); \
|
|
vreinterpretq_m128i_s16(_shuf); \
|
|
})
|
|
#else // generic
|
|
#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
|
|
#endif
|
|
|
|
// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a,
|
|
// __constrange(0,255) int imm)
|
|
#if defined(_sse2neon_shuffle)
|
|
#define _mm_shufflelo_epi16(a, imm) \
|
|
__extension__({ \
|
|
int16x8_t _input = vreinterpretq_s16_m128i(a); \
|
|
int16x8_t _shuf = vshuffleq_s16( \
|
|
_input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \
|
|
(((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \
|
|
vreinterpretq_m128i_s16(_shuf); \
|
|
})
|
|
#else // generic
|
|
#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm))
|
|
#endif
|
|
|
|
// Shift packed 16-bit integers in a left by count while shifting in zeros, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi16
|
|
FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
|
|
{
|
|
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
|
|
if (_sse2neon_unlikely(c & ~15))
|
|
return _mm_setzero_si128();
|
|
|
|
int16x8_t vc = vdupq_n_s16((int16_t) c);
|
|
return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc));
|
|
}
|
|
|
|
// Shift packed 32-bit integers in a left by count while shifting in zeros, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi32
|
|
FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
|
|
{
|
|
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
|
|
if (_sse2neon_unlikely(c & ~31))
|
|
return _mm_setzero_si128();
|
|
|
|
int32x4_t vc = vdupq_n_s32((int32_t) c);
|
|
return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc));
|
|
}
|
|
|
|
// Shift packed 64-bit integers in a left by count while shifting in zeros, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi64
|
|
FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
|
|
{
|
|
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
|
|
if (_sse2neon_unlikely(c & ~63))
|
|
return _mm_setzero_si128();
|
|
|
|
int64x2_t vc = vdupq_n_s64((int64_t) c);
|
|
return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc));
|
|
}
|
|
|
|
// Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi16
|
|
FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm)
|
|
{
|
|
if (_sse2neon_unlikely(imm & ~15))
|
|
return _mm_setzero_si128();
|
|
return vreinterpretq_m128i_s16(
|
|
vshlq_s16(vreinterpretq_s16_m128i(a), vdupq_n_s16(imm)));
|
|
}
|
|
|
|
// Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi32
|
|
FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm)
|
|
{
|
|
if (_sse2neon_unlikely(imm & ~31))
|
|
return _mm_setzero_si128();
|
|
return vreinterpretq_m128i_s32(
|
|
vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm)));
|
|
}
|
|
|
|
// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi64
|
|
FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm)
|
|
{
|
|
if (_sse2neon_unlikely(imm & ~63))
|
|
return _mm_setzero_si128();
|
|
return vreinterpretq_m128i_s64(
|
|
vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm)));
|
|
}
|
|
|
|
// Shift a left by imm8 bytes while shifting in zeros, and store the results in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_si128
|
|
#define _mm_slli_si128(a, imm) \
|
|
_sse2neon_define1( \
|
|
__m128i, a, int8x16_t ret; \
|
|
if (_sse2neon_unlikely(imm == 0)) ret = vreinterpretq_s8_m128i(_a); \
|
|
else if (_sse2neon_unlikely((imm) & ~15)) ret = vdupq_n_s8(0); \
|
|
else ret = vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(_a), \
|
|
((imm <= 0 || imm > 15) ? 0 : (16 - imm))); \
|
|
_sse2neon_return(vreinterpretq_m128i_s8(ret));)
|
|
|
|
// Compute the square root of packed double-precision (64-bit) floating-point
|
|
// elements in a, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_pd
|
|
FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a)));
|
|
#else
|
|
double a0, a1;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double _a0 = sqrt(a0);
|
|
double _a1 = sqrt(a1);
|
|
return _mm_set_pd(_a1, _a0);
|
|
#endif
|
|
}
|
|
|
|
// Compute the square root of the lower double-precision (64-bit) floating-point
|
|
// element in b, store the result in the lower element of dst, and copy the
|
|
// upper element from a to the upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_sd
|
|
FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return _mm_move_sd(a, _mm_sqrt_pd(b));
|
|
#else
|
|
double _a, _b;
|
|
_a = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
_b = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
return _mm_set_pd(_a, sqrt(_b));
|
|
#endif
|
|
}
|
|
|
|
// Shift packed 16-bit integers in a right by count while shifting in sign bits,
|
|
// and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi16
|
|
FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
|
|
{
|
|
int64_t c = vgetq_lane_s64(count, 0);
|
|
if (_sse2neon_unlikely(c & ~15))
|
|
return _mm_cmplt_epi16(a, _mm_setzero_si128());
|
|
return vreinterpretq_m128i_s16(
|
|
vshlq_s16((int16x8_t) a, vdupq_n_s16((int) -c)));
|
|
}
|
|
|
|
// Shift packed 32-bit integers in a right by count while shifting in sign bits,
|
|
// and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi32
|
|
FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
|
|
{
|
|
int64_t c = vgetq_lane_s64(count, 0);
|
|
if (_sse2neon_unlikely(c & ~31))
|
|
return _mm_cmplt_epi32(a, _mm_setzero_si128());
|
|
return vreinterpretq_m128i_s32(
|
|
vshlq_s32((int32x4_t) a, vdupq_n_s32((int) -c)));
|
|
}
|
|
|
|
// Shift packed 16-bit integers in a right by imm8 while shifting in sign
|
|
// bits, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi16
|
|
FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
|
|
{
|
|
const int count = (imm & ~15) ? 15 : imm;
|
|
return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count));
|
|
}
|
|
|
|
// Shift packed 32-bit integers in a right by imm8 while shifting in sign bits,
|
|
// and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi32
|
|
// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
|
|
#define _mm_srai_epi32(a, imm) \
|
|
_sse2neon_define0( \
|
|
__m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) == 0)) { \
|
|
ret = _a; \
|
|
} else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \
|
|
ret = vreinterpretq_m128i_s32( \
|
|
vshlq_s32(vreinterpretq_s32_m128i(_a), vdupq_n_s32(-(imm)))); \
|
|
} else { \
|
|
ret = vreinterpretq_m128i_s32( \
|
|
vshrq_n_s32(vreinterpretq_s32_m128i(_a), 31)); \
|
|
} _sse2neon_return(ret);)
|
|
|
|
// Shift packed 16-bit integers in a right by count while shifting in zeros, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi16
|
|
FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
|
|
{
|
|
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
|
|
if (_sse2neon_unlikely(c & ~15))
|
|
return _mm_setzero_si128();
|
|
|
|
int16x8_t vc = vdupq_n_s16(-(int16_t) c);
|
|
return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc));
|
|
}
|
|
|
|
// Shift packed 32-bit integers in a right by count while shifting in zeros, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi32
|
|
FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
|
|
{
|
|
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
|
|
if (_sse2neon_unlikely(c & ~31))
|
|
return _mm_setzero_si128();
|
|
|
|
int32x4_t vc = vdupq_n_s32(-(int32_t) c);
|
|
return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc));
|
|
}
|
|
|
|
// Shift packed 64-bit integers in a right by count while shifting in zeros, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi64
|
|
FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
|
|
{
|
|
uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
|
|
if (_sse2neon_unlikely(c & ~63))
|
|
return _mm_setzero_si128();
|
|
|
|
int64x2_t vc = vdupq_n_s64(-(int64_t) c);
|
|
return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc));
|
|
}
|
|
|
|
// Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi16
|
|
#define _mm_srli_epi16(a, imm) \
|
|
_sse2neon_define0( \
|
|
__m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~15)) { \
|
|
ret = _mm_setzero_si128(); \
|
|
} else { \
|
|
ret = vreinterpretq_m128i_u16( \
|
|
vshlq_u16(vreinterpretq_u16_m128i(_a), vdupq_n_s16(-(imm)))); \
|
|
} _sse2neon_return(ret);)
|
|
|
|
// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi32
|
|
// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
|
|
#define _mm_srli_epi32(a, imm) \
|
|
_sse2neon_define0( \
|
|
__m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~31)) { \
|
|
ret = _mm_setzero_si128(); \
|
|
} else { \
|
|
ret = vreinterpretq_m128i_u32( \
|
|
vshlq_u32(vreinterpretq_u32_m128i(_a), vdupq_n_s32(-(imm)))); \
|
|
} _sse2neon_return(ret);)
|
|
|
|
// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi64
|
|
#define _mm_srli_epi64(a, imm) \
|
|
_sse2neon_define0( \
|
|
__m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~63)) { \
|
|
ret = _mm_setzero_si128(); \
|
|
} else { \
|
|
ret = vreinterpretq_m128i_u64( \
|
|
vshlq_u64(vreinterpretq_u64_m128i(_a), vdupq_n_s64(-(imm)))); \
|
|
} _sse2neon_return(ret);)
|
|
|
|
// Shift a right by imm8 bytes while shifting in zeros, and store the results in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_si128
|
|
#define _mm_srli_si128(a, imm) \
|
|
_sse2neon_define1( \
|
|
__m128i, a, int8x16_t ret; \
|
|
if (_sse2neon_unlikely((imm) & ~15)) ret = vdupq_n_s8(0); \
|
|
else ret = vextq_s8(vreinterpretq_s8_m128i(_a), vdupq_n_s8(0), \
|
|
(imm > 15 ? 0 : imm)); \
|
|
_sse2neon_return(vreinterpretq_m128i_s8(ret));)
|
|
|
|
// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
|
|
// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
|
|
// or a general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd
|
|
FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a));
|
|
#else
|
|
vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a));
|
|
#endif
|
|
}
|
|
|
|
// Store the lower double-precision (64-bit) floating-point element from a into
|
|
// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
|
|
// boundary or a general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd1
|
|
FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a));
|
|
vst1q_f64((float64_t *) mem_addr,
|
|
vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low)));
|
|
#else
|
|
float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a));
|
|
vst1q_f32((float32_t *) mem_addr,
|
|
vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low)));
|
|
#endif
|
|
}
|
|
|
|
// Store the lower double-precision (64-bit) floating-point element from a into
|
|
// memory. mem_addr does not need to be aligned on any particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_store_sd
|
|
FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
|
|
#else
|
|
vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a)));
|
|
#endif
|
|
}
|
|
|
|
// Store 128-bits of integer data from a into memory. mem_addr must be aligned
|
|
// on a 16-byte boundary or a general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_si128
|
|
FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
|
|
{
|
|
vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
|
|
}
|
|
|
|
// Store the lower double-precision (64-bit) floating-point element from a into
|
|
// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
|
|
// boundary or a general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=9,526,5601&text=_mm_store1_pd
|
|
#define _mm_store1_pd _mm_store_pd1
|
|
|
|
// Store the upper double-precision (64-bit) floating-point element from a into
|
|
// memory.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pd
|
|
FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a)));
|
|
#else
|
|
vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a)));
|
|
#endif
|
|
}
|
|
|
|
// Store 64-bit integer from the first element of a into memory.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_epi64
|
|
FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
|
|
{
|
|
vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b)));
|
|
}
|
|
|
|
// Store the lower double-precision (64-bit) floating-point element from a into
|
|
// memory.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pd
|
|
FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
|
|
#else
|
|
vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a)));
|
|
#endif
|
|
}
|
|
|
|
// Store 2 double-precision (64-bit) floating-point elements from a into memory
|
|
// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
|
|
// general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_pd
|
|
FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a)
|
|
{
|
|
float32x4_t f = vreinterpretq_f32_m128d(a);
|
|
_mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2)));
|
|
}
|
|
|
|
// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
|
|
// elements) from a into memory. mem_addr does not need to be aligned on any
|
|
// particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_pd
|
|
FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a)
|
|
{
|
|
_mm_store_pd(mem_addr, a);
|
|
}
|
|
|
|
// Store 128-bits of integer data from a into memory. mem_addr does not need to
|
|
// be aligned on any particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si128
|
|
FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
|
|
{
|
|
vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
|
|
}
|
|
|
|
// Store 32-bit integer from the first element of a into memory. mem_addr does
|
|
// not need to be aligned on any particular boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si32
|
|
FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a)
|
|
{
|
|
vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0);
|
|
}
|
|
|
|
// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
|
|
// elements) from a into memory using a non-temporal memory hint. mem_addr must
|
|
// be aligned on a 16-byte boundary or a general-protection exception may be
|
|
// generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pd
|
|
FORCE_INLINE void _mm_stream_pd(double *p, __m128d a)
|
|
{
|
|
#if __has_builtin(__builtin_nontemporal_store)
|
|
__builtin_nontemporal_store(a, (__m128d *) p);
|
|
#elif defined(__aarch64__) || defined(_M_ARM64)
|
|
vst1q_f64(p, vreinterpretq_f64_m128d(a));
|
|
#else
|
|
vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a));
|
|
#endif
|
|
}
|
|
|
|
// Store 128-bits of integer data from a into memory using a non-temporal memory
|
|
// hint. mem_addr must be aligned on a 16-byte boundary or a general-protection
|
|
// exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si128
|
|
FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
|
|
{
|
|
#if __has_builtin(__builtin_nontemporal_store)
|
|
__builtin_nontemporal_store(a, p);
|
|
#else
|
|
vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a));
|
|
#endif
|
|
}
|
|
|
|
// Store 32-bit integer a into memory using a non-temporal hint to minimize
|
|
// cache pollution. If the cache line containing address mem_addr is already in
|
|
// the cache, the cache will be updated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si32
|
|
FORCE_INLINE void _mm_stream_si32(int *p, int a)
|
|
{
|
|
vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0);
|
|
}
|
|
|
|
// Store 64-bit integer a into memory using a non-temporal hint to minimize
|
|
// cache pollution. If the cache line containing address mem_addr is already in
|
|
// the cache, the cache will be updated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si64
|
|
FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a)
|
|
{
|
|
vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a));
|
|
}
|
|
|
|
// Subtract packed 16-bit integers in b from packed 16-bit integers in a, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi16
|
|
FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Subtract packed 32-bit integers in b from packed 32-bit integers in a, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi32
|
|
FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Subtract packed 64-bit integers in b from packed 64-bit integers in a, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi64
|
|
FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
|
|
}
|
|
|
|
// Subtract packed 8-bit integers in b from packed 8-bit integers in a, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi8
|
|
FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Subtract packed double-precision (64-bit) floating-point elements in b from
|
|
// packed double-precision (64-bit) floating-point elements in a, and store the
|
|
// results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_sub_pd
|
|
FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
double c[2];
|
|
c[0] = a0 - b0;
|
|
c[1] = a1 - b1;
|
|
return vld1q_f32((float32_t *) c);
|
|
#endif
|
|
}
|
|
|
|
// Subtract the lower double-precision (64-bit) floating-point element in b from
|
|
// the lower double-precision (64-bit) floating-point element in a, store the
|
|
// result in the lower element of dst, and copy the upper element from a to the
|
|
// upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_sd
|
|
FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_sub_pd(a, b));
|
|
}
|
|
|
|
// Subtract 64-bit integer b from 64-bit integer a, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_si64
|
|
FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_s64(
|
|
vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
|
|
}
|
|
|
|
// Subtract packed signed 16-bit integers in b from packed 16-bit integers in a
|
|
// using saturation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi16
|
|
FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s16(
|
|
vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
}
|
|
|
|
// Subtract packed signed 8-bit integers in b from packed 8-bit integers in a
|
|
// using saturation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi8
|
|
FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit
|
|
// integers in a using saturation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu16
|
|
FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
|
|
}
|
|
|
|
// Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit
|
|
// integers in a using saturation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu8
|
|
FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
|
|
}
|
|
|
|
#define _mm_ucomieq_sd _mm_comieq_sd
|
|
#define _mm_ucomige_sd _mm_comige_sd
|
|
#define _mm_ucomigt_sd _mm_comigt_sd
|
|
#define _mm_ucomile_sd _mm_comile_sd
|
|
#define _mm_ucomilt_sd _mm_comilt_sd
|
|
#define _mm_ucomineq_sd _mm_comineq_sd
|
|
|
|
// Return vector of type __m128d with undefined elements.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_pd
|
|
FORCE_INLINE __m128d _mm_undefined_pd(void)
|
|
{
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wuninitialized"
|
|
#endif
|
|
__m128d a;
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
a = _mm_setzero_pd();
|
|
#endif
|
|
return a;
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave 16-bit integers from the high half of a and b, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi16
|
|
FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s16(
|
|
vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
#else
|
|
int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
|
|
int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
|
|
int16x4x2_t result = vzip_s16(a1, b1);
|
|
return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave 32-bit integers from the high half of a and b, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi32
|
|
FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s32(
|
|
vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
#else
|
|
int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
|
|
int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
|
|
int32x2x2_t result = vzip_s32(a1, b1);
|
|
return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave 64-bit integers from the high half of a and b, and
|
|
// store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi64
|
|
FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s64(
|
|
vzip2q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
|
|
#else
|
|
int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
|
|
int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
|
|
return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave 8-bit integers from the high half of a and b, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi8
|
|
FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s8(
|
|
vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
#else
|
|
int8x8_t a1 =
|
|
vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
|
|
int8x8_t b1 =
|
|
vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
|
|
int8x8x2_t result = vzip_s8(a1, b1);
|
|
return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave double-precision (64-bit) floating-point elements from
|
|
// the high half of a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_pd
|
|
FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
return vreinterpretq_m128d_s64(
|
|
vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)),
|
|
vget_high_s64(vreinterpretq_s64_m128d(b))));
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave 16-bit integers from the low half of a and b, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi16
|
|
FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s16(
|
|
vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
|
|
#else
|
|
int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
|
|
int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
|
|
int16x4x2_t result = vzip_s16(a1, b1);
|
|
return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave 32-bit integers from the low half of a and b, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi32
|
|
FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s32(
|
|
vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
#else
|
|
int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
|
|
int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
|
|
int32x2x2_t result = vzip_s32(a1, b1);
|
|
return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave 64-bit integers from the low half of a and b, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi64
|
|
FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s64(
|
|
vzip1q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
|
|
#else
|
|
int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
|
|
int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
|
|
return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave 8-bit integers from the low half of a and b, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi8
|
|
FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s8(
|
|
vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
#else
|
|
int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
|
|
int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
|
|
int8x8x2_t result = vzip_s8(a1, b1);
|
|
return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Unpack and interleave double-precision (64-bit) floating-point elements from
|
|
// the low half of a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_pd
|
|
FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
return vreinterpretq_m128d_s64(
|
|
vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)),
|
|
vget_low_s64(vreinterpretq_s64_m128d(b))));
|
|
#endif
|
|
}
|
|
|
|
// Compute the bitwise XOR of packed double-precision (64-bit) floating-point
|
|
// elements in a and b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_pd
|
|
FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b)
|
|
{
|
|
return vreinterpretq_m128d_s64(
|
|
veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
|
|
}
|
|
|
|
// Compute the bitwise XOR of 128 bits (representing integer data) in a and b,
|
|
// and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_si128
|
|
FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
/* SSE3 */
|
|
|
|
// Alternatively add and subtract packed double-precision (64-bit)
|
|
// floating-point elements in a to/from packed elements in b, and store the
|
|
// results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_addsub_pd
|
|
FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b)
|
|
{
|
|
_sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a),
|
|
vreinterpretq_f64_m128d(b),
|
|
vreinterpretq_f64_m128d(mask)));
|
|
#else
|
|
return _mm_add_pd(_mm_mul_pd(b, mask), a);
|
|
#endif
|
|
}
|
|
|
|
// Alternatively add and subtract packed single-precision (32-bit)
|
|
// floating-point elements in a to/from packed elements in b, and store the
|
|
// results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=addsub_ps
|
|
FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
|
|
{
|
|
_sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f);
|
|
#if (defined(__aarch64__) || defined(_M_ARM64)) || \
|
|
defined(__ARM_FEATURE_FMA) /* VFPv4+ */
|
|
return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a),
|
|
vreinterpretq_f32_m128(mask),
|
|
vreinterpretq_f32_m128(b)));
|
|
#else
|
|
return _mm_add_ps(_mm_mul_ps(b, mask), a);
|
|
#endif
|
|
}
|
|
|
|
// Horizontally add adjacent pairs of double-precision (64-bit) floating-point
|
|
// elements in a and b, and pack the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pd
|
|
FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
double c[] = {a0 + a1, b0 + b1};
|
|
return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally add adjacent pairs of single-precision (32-bit) floating-point
|
|
// elements in a and b, and pack the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_ps
|
|
FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128_f32(
|
|
vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
|
|
#else
|
|
float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
|
|
float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
|
|
float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
|
|
return vreinterpretq_m128_f32(
|
|
vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of double-precision (64-bit)
|
|
// floating-point elements in a and b, and pack the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pd
|
|
FORCE_INLINE __m128d _mm_hsub_pd(__m128d a, __m128d b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
float64x2_t _a = vreinterpretq_f64_m128d(a);
|
|
float64x2_t _b = vreinterpretq_f64_m128d(b);
|
|
return vreinterpretq_m128d_f64(
|
|
vsubq_f64(vuzp1q_f64(_a, _b), vuzp2q_f64(_a, _b)));
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
double c[] = {a0 - a1, b0 - b1};
|
|
return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of single-precision (32-bit)
|
|
// floating-point elements in a and b, and pack the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_ps
|
|
FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
|
|
{
|
|
float32x4_t a = vreinterpretq_f32_m128(_a);
|
|
float32x4_t b = vreinterpretq_f32_m128(_b);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128_f32(
|
|
vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b)));
|
|
#else
|
|
float32x4x2_t c = vuzpq_f32(a, b);
|
|
return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Load 128-bits of integer data from unaligned memory into dst. This intrinsic
|
|
// may perform better than _mm_loadu_si128 when the data crosses a cache line
|
|
// boundary.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128
|
|
#define _mm_lddqu_si128 _mm_loadu_si128
|
|
|
|
// Load a double-precision (64-bit) floating-point element from memory into both
|
|
// elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loaddup_pd
|
|
#define _mm_loaddup_pd _mm_load1_pd
|
|
|
|
// Duplicate the low double-precision (64-bit) floating-point element from a,
|
|
// and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movedup_pd
|
|
FORCE_INLINE __m128d _mm_movedup_pd(__m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(
|
|
vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0));
|
|
#else
|
|
return vreinterpretq_m128d_u64(
|
|
vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)));
|
|
#endif
|
|
}
|
|
|
|
// Duplicate odd-indexed single-precision (32-bit) floating-point elements
|
|
// from a, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehdup_ps
|
|
FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128_f32(
|
|
vtrn2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)));
|
|
#elif defined(_sse2neon_shuffle)
|
|
return vreinterpretq_m128_f32(vshuffleq_s32(
|
|
vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3));
|
|
#else
|
|
float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
|
|
float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3);
|
|
float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3};
|
|
return vreinterpretq_m128_f32(vld1q_f32(data));
|
|
#endif
|
|
}
|
|
|
|
// Duplicate even-indexed single-precision (32-bit) floating-point elements
|
|
// from a, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_moveldup_ps
|
|
FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128_f32(
|
|
vtrn1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)));
|
|
#elif defined(_sse2neon_shuffle)
|
|
return vreinterpretq_m128_f32(vshuffleq_s32(
|
|
vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2));
|
|
#else
|
|
float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
|
|
float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2);
|
|
float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2};
|
|
return vreinterpretq_m128_f32(vld1q_f32(data));
|
|
#endif
|
|
}
|
|
|
|
/* SSSE3 */
|
|
|
|
// Compute the absolute value of packed signed 16-bit integers in a, and store
|
|
// the unsigned results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi16
|
|
FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
|
|
}
|
|
|
|
// Compute the absolute value of packed signed 32-bit integers in a, and store
|
|
// the unsigned results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi32
|
|
FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
|
|
}
|
|
|
|
// Compute the absolute value of packed signed 8-bit integers in a, and store
|
|
// the unsigned results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi8
|
|
FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
|
|
}
|
|
|
|
// Compute the absolute value of packed signed 16-bit integers in a, and store
|
|
// the unsigned results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi16
|
|
FORCE_INLINE __m64 _mm_abs_pi16(__m64 a)
|
|
{
|
|
return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a)));
|
|
}
|
|
|
|
// Compute the absolute value of packed signed 32-bit integers in a, and store
|
|
// the unsigned results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi32
|
|
FORCE_INLINE __m64 _mm_abs_pi32(__m64 a)
|
|
{
|
|
return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a)));
|
|
}
|
|
|
|
// Compute the absolute value of packed signed 8-bit integers in a, and store
|
|
// the unsigned results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi8
|
|
FORCE_INLINE __m64 _mm_abs_pi8(__m64 a)
|
|
{
|
|
return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a)));
|
|
}
|
|
|
|
// Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift
|
|
// the result right by imm8 bytes, and store the low 16 bytes in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_epi8
|
|
#if defined(__GNUC__) && !defined(__clang__)
|
|
#define _mm_alignr_epi8(a, b, imm) \
|
|
__extension__({ \
|
|
uint8x16_t _a = vreinterpretq_u8_m128i(a); \
|
|
uint8x16_t _b = vreinterpretq_u8_m128i(b); \
|
|
__m128i ret; \
|
|
if (_sse2neon_unlikely((imm) & ~31)) \
|
|
ret = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \
|
|
else if (imm >= 16) \
|
|
ret = _mm_srli_si128(a, imm >= 16 ? imm - 16 : 0); \
|
|
else \
|
|
ret = \
|
|
vreinterpretq_m128i_u8(vextq_u8(_b, _a, imm < 16 ? imm : 0)); \
|
|
ret; \
|
|
})
|
|
|
|
#else
|
|
#define _mm_alignr_epi8(a, b, imm) \
|
|
_sse2neon_define2( \
|
|
__m128i, a, b, uint8x16_t __a = vreinterpretq_u8_m128i(_a); \
|
|
uint8x16_t __b = vreinterpretq_u8_m128i(_b); __m128i ret; \
|
|
if (_sse2neon_unlikely((imm) & ~31)) ret = \
|
|
vreinterpretq_m128i_u8(vdupq_n_u8(0)); \
|
|
else if (imm >= 16) ret = \
|
|
_mm_srli_si128(_a, imm >= 16 ? imm - 16 : 0); \
|
|
else ret = \
|
|
vreinterpretq_m128i_u8(vextq_u8(__b, __a, imm < 16 ? imm : 0)); \
|
|
_sse2neon_return(ret);)
|
|
|
|
#endif
|
|
|
|
// Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift
|
|
// the result right by imm8 bytes, and store the low 8 bytes in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_pi8
|
|
#define _mm_alignr_pi8(a, b, imm) \
|
|
_sse2neon_define2( \
|
|
__m64, a, b, __m64 ret; if (_sse2neon_unlikely((imm) >= 16)) { \
|
|
ret = vreinterpret_m64_s8(vdup_n_s8(0)); \
|
|
} else { \
|
|
uint8x8_t tmp_low; \
|
|
uint8x8_t tmp_high; \
|
|
if ((imm) >= 8) { \
|
|
const int idx = (imm) -8; \
|
|
tmp_low = vreinterpret_u8_m64(_a); \
|
|
tmp_high = vdup_n_u8(0); \
|
|
ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
|
|
} else { \
|
|
const int idx = (imm); \
|
|
tmp_low = vreinterpret_u8_m64(_b); \
|
|
tmp_high = vreinterpret_u8_m64(_a); \
|
|
ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
|
|
} \
|
|
} _sse2neon_return(ret);)
|
|
|
|
// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
|
|
// signed 16-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi16
|
|
FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b)
|
|
{
|
|
int16x8_t a = vreinterpretq_s16_m128i(_a);
|
|
int16x8_t b = vreinterpretq_s16_m128i(_b);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s16(vpaddq_s16(a, b));
|
|
#else
|
|
return vreinterpretq_m128i_s16(
|
|
vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)),
|
|
vpadd_s16(vget_low_s16(b), vget_high_s16(b))));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
|
|
// signed 32-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi32
|
|
FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b)
|
|
{
|
|
int32x4_t a = vreinterpretq_s32_m128i(_a);
|
|
int32x4_t b = vreinterpretq_s32_m128i(_b);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s32(vpaddq_s32(a, b));
|
|
#else
|
|
return vreinterpretq_m128i_s32(
|
|
vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
|
|
vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
|
|
// signed 16-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi16
|
|
FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_s16(
|
|
vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
|
|
}
|
|
|
|
// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
|
|
// signed 32-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi32
|
|
FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b)
|
|
{
|
|
return vreinterpret_m64_s32(
|
|
vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)));
|
|
}
|
|
|
|
// Horizontally add adjacent pairs of signed 16-bit integers in a and b using
|
|
// saturation, and pack the signed 16-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_epi16
|
|
FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
int16x8_t a = vreinterpretq_s16_m128i(_a);
|
|
int16x8_t b = vreinterpretq_s16_m128i(_b);
|
|
return vreinterpretq_s64_s16(
|
|
vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
|
|
#else
|
|
int32x4_t a = vreinterpretq_s32_m128i(_a);
|
|
int32x4_t b = vreinterpretq_s32_m128i(_b);
|
|
// Interleave using vshrn/vmovn
|
|
// [a0|a2|a4|a6|b0|b2|b4|b6]
|
|
// [a1|a3|a5|a7|b1|b3|b5|b7]
|
|
int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
|
|
int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
|
|
// Saturated add
|
|
return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally add adjacent pairs of signed 16-bit integers in a and b using
|
|
// saturation, and pack the signed 16-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_pi16
|
|
FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b)
|
|
{
|
|
int16x4_t a = vreinterpret_s16_m64(_a);
|
|
int16x4_t b = vreinterpret_s16_m64(_b);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpret_s64_s16(vqadd_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
|
|
#else
|
|
int16x4x2_t res = vuzp_s16(a, b);
|
|
return vreinterpret_s64_s16(vqadd_s16(res.val[0], res.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
|
|
// the signed 16-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi16
|
|
FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b)
|
|
{
|
|
int16x8_t a = vreinterpretq_s16_m128i(_a);
|
|
int16x8_t b = vreinterpretq_s16_m128i(_b);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s16(
|
|
vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
|
|
#else
|
|
int16x8x2_t c = vuzpq_s16(a, b);
|
|
return vreinterpretq_m128i_s16(vsubq_s16(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
|
|
// the signed 32-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi32
|
|
FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b)
|
|
{
|
|
int32x4_t a = vreinterpretq_s32_m128i(_a);
|
|
int32x4_t b = vreinterpretq_s32_m128i(_b);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s32(
|
|
vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b)));
|
|
#else
|
|
int32x4x2_t c = vuzpq_s32(a, b);
|
|
return vreinterpretq_m128i_s32(vsubq_s32(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
|
|
// the signed 16-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pi16
|
|
FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b)
|
|
{
|
|
int16x4_t a = vreinterpret_s16_m64(_a);
|
|
int16x4_t b = vreinterpret_s16_m64(_b);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
|
|
#else
|
|
int16x4x2_t c = vuzp_s16(a, b);
|
|
return vreinterpret_m64_s16(vsub_s16(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
|
|
// the signed 32-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_hsub_pi32
|
|
FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b)
|
|
{
|
|
int32x2_t a = vreinterpret_s32_m64(_a);
|
|
int32x2_t b = vreinterpret_s32_m64(_b);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b)));
|
|
#else
|
|
int32x2x2_t c = vuzp_s32(a, b);
|
|
return vreinterpret_m64_s32(vsub_s32(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b
|
|
// using saturation, and pack the signed 16-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_epi16
|
|
FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b)
|
|
{
|
|
int16x8_t a = vreinterpretq_s16_m128i(_a);
|
|
int16x8_t b = vreinterpretq_s16_m128i(_b);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s16(
|
|
vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
|
|
#else
|
|
int16x8x2_t c = vuzpq_s16(a, b);
|
|
return vreinterpretq_m128i_s16(vqsubq_s16(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b
|
|
// using saturation, and pack the signed 16-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_pi16
|
|
FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b)
|
|
{
|
|
int16x4_t a = vreinterpret_s16_m64(_a);
|
|
int16x4_t b = vreinterpret_s16_m64(_b);
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
|
|
#else
|
|
int16x4x2_t c = vuzp_s16(a, b);
|
|
return vreinterpret_m64_s16(vqsub_s16(c.val[0], c.val[1]));
|
|
#endif
|
|
}
|
|
|
|
// Vertically multiply each unsigned 8-bit integer from a with the corresponding
|
|
// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
|
|
// Horizontally add adjacent pairs of intermediate signed 16-bit integers,
|
|
// and pack the saturated results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_epi16
|
|
FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
uint8x16_t a = vreinterpretq_u8_m128i(_a);
|
|
int8x16_t b = vreinterpretq_s8_m128i(_b);
|
|
int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))),
|
|
vmovl_s8(vget_low_s8(b)));
|
|
int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))),
|
|
vmovl_s8(vget_high_s8(b)));
|
|
return vreinterpretq_m128i_s16(
|
|
vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th)));
|
|
#else
|
|
// This would be much simpler if x86 would choose to zero extend OR sign
|
|
// extend, not both. This could probably be optimized better.
|
|
uint16x8_t a = vreinterpretq_u16_m128i(_a);
|
|
int16x8_t b = vreinterpretq_s16_m128i(_b);
|
|
|
|
// Zero extend a
|
|
int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8));
|
|
int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00)));
|
|
|
|
// Sign extend by shifting left then shifting right.
|
|
int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8);
|
|
int16x8_t b_odd = vshrq_n_s16(b, 8);
|
|
|
|
// multiply
|
|
int16x8_t prod1 = vmulq_s16(a_even, b_even);
|
|
int16x8_t prod2 = vmulq_s16(a_odd, b_odd);
|
|
|
|
// saturated add
|
|
return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2));
|
|
#endif
|
|
}
|
|
|
|
// Vertically multiply each unsigned 8-bit integer from a with the corresponding
|
|
// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
|
|
// Horizontally add adjacent pairs of intermediate signed 16-bit integers, and
|
|
// pack the saturated results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_pi16
|
|
FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b)
|
|
{
|
|
uint16x4_t a = vreinterpret_u16_m64(_a);
|
|
int16x4_t b = vreinterpret_s16_m64(_b);
|
|
|
|
// Zero extend a
|
|
int16x4_t a_odd = vreinterpret_s16_u16(vshr_n_u16(a, 8));
|
|
int16x4_t a_even = vreinterpret_s16_u16(vand_u16(a, vdup_n_u16(0xff)));
|
|
|
|
// Sign extend by shifting left then shifting right.
|
|
int16x4_t b_even = vshr_n_s16(vshl_n_s16(b, 8), 8);
|
|
int16x4_t b_odd = vshr_n_s16(b, 8);
|
|
|
|
// multiply
|
|
int16x4_t prod1 = vmul_s16(a_even, b_even);
|
|
int16x4_t prod2 = vmul_s16(a_odd, b_odd);
|
|
|
|
// saturated add
|
|
return vreinterpret_m64_s16(vqadd_s16(prod1, prod2));
|
|
}
|
|
|
|
// Multiply packed signed 16-bit integers in a and b, producing intermediate
|
|
// signed 32-bit integers. Shift right by 15 bits while rounding up, and store
|
|
// the packed 16-bit integers in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_epi16
|
|
FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b)
|
|
{
|
|
// Has issues due to saturation
|
|
// return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b));
|
|
|
|
// Multiply
|
|
int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
|
|
vget_low_s16(vreinterpretq_s16_m128i(b)));
|
|
int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
|
|
vget_high_s16(vreinterpretq_s16_m128i(b)));
|
|
|
|
// Rounding narrowing shift right
|
|
// narrow = (int16_t)((mul + 16384) >> 15);
|
|
int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15);
|
|
int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15);
|
|
|
|
// Join together
|
|
return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi));
|
|
}
|
|
|
|
// Multiply packed signed 16-bit integers in a and b, producing intermediate
|
|
// signed 32-bit integers. Truncate each intermediate integer to the 18 most
|
|
// significant bits, round by adding 1, and store bits [16:1] to dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_pi16
|
|
FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b)
|
|
{
|
|
int32x4_t mul_extend =
|
|
vmull_s16((vreinterpret_s16_m64(a)), (vreinterpret_s16_m64(b)));
|
|
|
|
// Rounding narrowing shift right
|
|
return vreinterpret_m64_s16(vrshrn_n_s32(mul_extend, 15));
|
|
}
|
|
|
|
// Shuffle packed 8-bit integers in a according to shuffle control mask in the
|
|
// corresponding 8-bit element of b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi8
|
|
FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
|
|
{
|
|
int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a
|
|
uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b
|
|
uint8x16_t idx_masked =
|
|
vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
|
|
#elif defined(__GNUC__)
|
|
int8x16_t ret;
|
|
// %e and %f represent the even and odd D registers
|
|
// respectively.
|
|
__asm__ __volatile__(
|
|
"vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n"
|
|
"vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n"
|
|
: [ret] "=&w"(ret)
|
|
: [tbl] "w"(tbl), [idx] "w"(idx_masked));
|
|
return vreinterpretq_m128i_s8(ret);
|
|
#else
|
|
// use this line if testing on aarch64
|
|
int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)};
|
|
return vreinterpretq_m128i_s8(
|
|
vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)),
|
|
vtbl2_s8(a_split, vget_high_u8(idx_masked))));
|
|
#endif
|
|
}
|
|
|
|
// Shuffle packed 8-bit integers in a according to shuffle control mask in the
|
|
// corresponding 8-bit element of b, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi8
|
|
FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b)
|
|
{
|
|
const int8x8_t controlMask =
|
|
vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t) (0x1 << 7 | 0x07)));
|
|
int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask);
|
|
return vreinterpret_m64_s8(res);
|
|
}
|
|
|
|
// Negate packed 16-bit integers in a when the corresponding signed
|
|
// 16-bit integer in b is negative, and store the results in dst.
|
|
// Element in dst are zeroed out when the corresponding element
|
|
// in b is zero.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi16
|
|
FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b)
|
|
{
|
|
int16x8_t a = vreinterpretq_s16_m128i(_a);
|
|
int16x8_t b = vreinterpretq_s16_m128i(_b);
|
|
|
|
// signed shift right: faster than vclt
|
|
// (b < 0) ? 0xFFFF : 0
|
|
uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15));
|
|
// (b == 0) ? 0xFFFF : 0
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b));
|
|
#else
|
|
int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0)));
|
|
#endif
|
|
|
|
// bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative
|
|
// 'a') based on ltMask
|
|
int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a);
|
|
// res = masked & (~zeroMask)
|
|
int16x8_t res = vbicq_s16(masked, zeroMask);
|
|
return vreinterpretq_m128i_s16(res);
|
|
}
|
|
|
|
// Negate packed 32-bit integers in a when the corresponding signed
|
|
// 32-bit integer in b is negative, and store the results in dst.
|
|
// Element in dst are zeroed out when the corresponding element
|
|
// in b is zero.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi32
|
|
FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b)
|
|
{
|
|
int32x4_t a = vreinterpretq_s32_m128i(_a);
|
|
int32x4_t b = vreinterpretq_s32_m128i(_b);
|
|
|
|
// signed shift right: faster than vclt
|
|
// (b < 0) ? 0xFFFFFFFF : 0
|
|
uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31));
|
|
|
|
// (b == 0) ? 0xFFFFFFFF : 0
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b));
|
|
#else
|
|
int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0)));
|
|
#endif
|
|
|
|
// bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative
|
|
// 'a') based on ltMask
|
|
int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a);
|
|
// res = masked & (~zeroMask)
|
|
int32x4_t res = vbicq_s32(masked, zeroMask);
|
|
return vreinterpretq_m128i_s32(res);
|
|
}
|
|
|
|
// Negate packed 8-bit integers in a when the corresponding signed
|
|
// 8-bit integer in b is negative, and store the results in dst.
|
|
// Element in dst are zeroed out when the corresponding element
|
|
// in b is zero.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi8
|
|
FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
|
|
{
|
|
int8x16_t a = vreinterpretq_s8_m128i(_a);
|
|
int8x16_t b = vreinterpretq_s8_m128i(_b);
|
|
|
|
// signed shift right: faster than vclt
|
|
// (b < 0) ? 0xFF : 0
|
|
uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7));
|
|
|
|
// (b == 0) ? 0xFF : 0
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b));
|
|
#else
|
|
int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0)));
|
|
#endif
|
|
|
|
// bitwise select either a or negative 'a' (vnegq_s8(a) return negative 'a')
|
|
// based on ltMask
|
|
int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a);
|
|
// res = masked & (~zeroMask)
|
|
int8x16_t res = vbicq_s8(masked, zeroMask);
|
|
|
|
return vreinterpretq_m128i_s8(res);
|
|
}
|
|
|
|
// Negate packed 16-bit integers in a when the corresponding signed 16-bit
|
|
// integer in b is negative, and store the results in dst. Element in dst are
|
|
// zeroed out when the corresponding element in b is zero.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi16
|
|
FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
|
|
{
|
|
int16x4_t a = vreinterpret_s16_m64(_a);
|
|
int16x4_t b = vreinterpret_s16_m64(_b);
|
|
|
|
// signed shift right: faster than vclt
|
|
// (b < 0) ? 0xFFFF : 0
|
|
uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15));
|
|
|
|
// (b == 0) ? 0xFFFF : 0
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b));
|
|
#else
|
|
int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0)));
|
|
#endif
|
|
|
|
// bitwise select either a or negative 'a' (vneg_s16(a) return negative 'a')
|
|
// based on ltMask
|
|
int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a);
|
|
// res = masked & (~zeroMask)
|
|
int16x4_t res = vbic_s16(masked, zeroMask);
|
|
|
|
return vreinterpret_m64_s16(res);
|
|
}
|
|
|
|
// Negate packed 32-bit integers in a when the corresponding signed 32-bit
|
|
// integer in b is negative, and store the results in dst. Element in dst are
|
|
// zeroed out when the corresponding element in b is zero.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi32
|
|
FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
|
|
{
|
|
int32x2_t a = vreinterpret_s32_m64(_a);
|
|
int32x2_t b = vreinterpret_s32_m64(_b);
|
|
|
|
// signed shift right: faster than vclt
|
|
// (b < 0) ? 0xFFFFFFFF : 0
|
|
uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31));
|
|
|
|
// (b == 0) ? 0xFFFFFFFF : 0
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b));
|
|
#else
|
|
int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0)));
|
|
#endif
|
|
|
|
// bitwise select either a or negative 'a' (vneg_s32(a) return negative 'a')
|
|
// based on ltMask
|
|
int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a);
|
|
// res = masked & (~zeroMask)
|
|
int32x2_t res = vbic_s32(masked, zeroMask);
|
|
|
|
return vreinterpret_m64_s32(res);
|
|
}
|
|
|
|
// Negate packed 8-bit integers in a when the corresponding signed 8-bit integer
|
|
// in b is negative, and store the results in dst. Element in dst are zeroed out
|
|
// when the corresponding element in b is zero.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi8
|
|
FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
|
|
{
|
|
int8x8_t a = vreinterpret_s8_m64(_a);
|
|
int8x8_t b = vreinterpret_s8_m64(_b);
|
|
|
|
// signed shift right: faster than vclt
|
|
// (b < 0) ? 0xFF : 0
|
|
uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7));
|
|
|
|
// (b == 0) ? 0xFF : 0
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b));
|
|
#else
|
|
int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0)));
|
|
#endif
|
|
|
|
// bitwise select either a or negative 'a' (vneg_s8(a) return negative 'a')
|
|
// based on ltMask
|
|
int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a);
|
|
// res = masked & (~zeroMask)
|
|
int8x8_t res = vbic_s8(masked, zeroMask);
|
|
|
|
return vreinterpret_m64_s8(res);
|
|
}
|
|
|
|
/* SSE4.1 */
|
|
|
|
// Blend packed 16-bit integers from a and b using control mask imm8, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi16
|
|
// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b,
|
|
// __constrange(0,255) int imm)
|
|
#define _mm_blend_epi16(a, b, imm) \
|
|
_sse2neon_define2( \
|
|
__m128i, a, b, \
|
|
const uint16_t _mask[8] = \
|
|
_sse2neon_init(((imm) & (1 << 0)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 1)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 2)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 3)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 4)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 5)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 6)) ? (uint16_t) -1 : 0x0, \
|
|
((imm) & (1 << 7)) ? (uint16_t) -1 : 0x0); \
|
|
uint16x8_t _mask_vec = vld1q_u16(_mask); \
|
|
uint16x8_t __a = vreinterpretq_u16_m128i(_a); \
|
|
uint16x8_t __b = vreinterpretq_u16_m128i(_b); _sse2neon_return( \
|
|
vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, __b, __a)));)
|
|
|
|
// Blend packed double-precision (64-bit) floating-point elements from a and b
|
|
// using control mask imm8, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd
|
|
#define _mm_blend_pd(a, b, imm) \
|
|
_sse2neon_define2( \
|
|
__m128d, a, b, \
|
|
const uint64_t _mask[2] = \
|
|
_sse2neon_init(((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0), \
|
|
((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)); \
|
|
uint64x2_t _mask_vec = vld1q_u64(_mask); \
|
|
uint64x2_t __a = vreinterpretq_u64_m128d(_a); \
|
|
uint64x2_t __b = vreinterpretq_u64_m128d(_b); _sse2neon_return( \
|
|
vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, __b, __a)));)
|
|
|
|
// Blend packed single-precision (32-bit) floating-point elements from a and b
|
|
// using mask, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps
|
|
FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8)
|
|
{
|
|
const uint32_t ALIGN_STRUCT(16)
|
|
data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0,
|
|
((imm8) & (1 << 1)) ? UINT32_MAX : 0,
|
|
((imm8) & (1 << 2)) ? UINT32_MAX : 0,
|
|
((imm8) & (1 << 3)) ? UINT32_MAX : 0};
|
|
uint32x4_t mask = vld1q_u32(data);
|
|
float32x4_t a = vreinterpretq_f32_m128(_a);
|
|
float32x4_t b = vreinterpretq_f32_m128(_b);
|
|
return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
|
|
}
|
|
|
|
// Blend packed 8-bit integers from a and b using mask, and store the results in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_epi8
|
|
FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask)
|
|
{
|
|
// Use a signed shift right to create a mask with the sign bit
|
|
uint8x16_t mask =
|
|
vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7));
|
|
uint8x16_t a = vreinterpretq_u8_m128i(_a);
|
|
uint8x16_t b = vreinterpretq_u8_m128i(_b);
|
|
return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a));
|
|
}
|
|
|
|
// Blend packed double-precision (64-bit) floating-point elements from a and b
|
|
// using mask, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd
|
|
FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask)
|
|
{
|
|
uint64x2_t mask =
|
|
vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63));
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
float64x2_t a = vreinterpretq_f64_m128d(_a);
|
|
float64x2_t b = vreinterpretq_f64_m128d(_b);
|
|
return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a));
|
|
#else
|
|
uint64x2_t a = vreinterpretq_u64_m128d(_a);
|
|
uint64x2_t b = vreinterpretq_u64_m128d(_b);
|
|
return vreinterpretq_m128d_u64(vbslq_u64(mask, b, a));
|
|
#endif
|
|
}
|
|
|
|
// Blend packed single-precision (32-bit) floating-point elements from a and b
|
|
// using mask, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps
|
|
FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask)
|
|
{
|
|
// Use a signed shift right to create a mask with the sign bit
|
|
uint32x4_t mask =
|
|
vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31));
|
|
float32x4_t a = vreinterpretq_f32_m128(_a);
|
|
float32x4_t b = vreinterpretq_f32_m128(_b);
|
|
return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
|
|
}
|
|
|
|
// Round the packed double-precision (64-bit) floating-point elements in a up
|
|
// to an integer value, and store the results as packed double-precision
|
|
// floating-point elements in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd
|
|
FORCE_INLINE __m128d _mm_ceil_pd(__m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(vrndpq_f64(vreinterpretq_f64_m128d(a)));
|
|
#else
|
|
double a0, a1;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
return _mm_set_pd(ceil(a1), ceil(a0));
|
|
#endif
|
|
}
|
|
|
|
// Round the packed single-precision (32-bit) floating-point elements in a up to
|
|
// an integer value, and store the results as packed single-precision
|
|
// floating-point elements in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps
|
|
FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
|
|
{
|
|
#if (defined(__aarch64__) || defined(_M_ARM64)) || \
|
|
defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a)));
|
|
#else
|
|
float *f = (float *) &a;
|
|
return _mm_set_ps(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), ceilf(f[0]));
|
|
#endif
|
|
}
|
|
|
|
// Round the lower double-precision (64-bit) floating-point element in b up to
|
|
// an integer value, store the result as a double-precision floating-point
|
|
// element in the lower element of dst, and copy the upper element from a to the
|
|
// upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd
|
|
FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_ceil_pd(b));
|
|
}
|
|
|
|
// Round the lower single-precision (32-bit) floating-point element in b up to
|
|
// an integer value, store the result as a single-precision floating-point
|
|
// element in the lower element of dst, and copy the upper 3 packed elements
|
|
// from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss
|
|
FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_ceil_ps(b));
|
|
}
|
|
|
|
// Compare packed 64-bit integers in a and b for equality, and store the results
|
|
// in dst
|
|
FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_u64(
|
|
vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b)));
|
|
#else
|
|
// ARMv7 lacks vceqq_u64
|
|
// (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
|
|
uint32x4_t cmp =
|
|
vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b));
|
|
uint32x4_t swapped = vrev64q_u32(cmp);
|
|
return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped));
|
|
#endif
|
|
}
|
|
|
|
// Sign extend packed 16-bit integers in a to packed 32-bit integers, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi32
|
|
FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
|
|
}
|
|
|
|
// Sign extend packed 16-bit integers in a to packed 64-bit integers, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi64
|
|
FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a)
|
|
{
|
|
int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */
|
|
int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
|
|
int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
|
|
return vreinterpretq_m128i_s64(s64x2);
|
|
}
|
|
|
|
// Sign extend packed 32-bit integers in a to packed 64-bit integers, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_epi64
|
|
FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_s64(
|
|
vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))));
|
|
}
|
|
|
|
// Sign extend packed 8-bit integers in a to packed 16-bit integers, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi16
|
|
FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a)
|
|
{
|
|
int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
|
|
int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
|
|
return vreinterpretq_m128i_s16(s16x8);
|
|
}
|
|
|
|
// Sign extend packed 8-bit integers in a to packed 32-bit integers, and store
|
|
// the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi32
|
|
FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a)
|
|
{
|
|
int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
|
|
int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
|
|
int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */
|
|
return vreinterpretq_m128i_s32(s32x4);
|
|
}
|
|
|
|
// Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit
|
|
// integers, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi64
|
|
FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a)
|
|
{
|
|
int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */
|
|
int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */
|
|
int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
|
|
int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
|
|
return vreinterpretq_m128i_s64(s64x2);
|
|
}
|
|
|
|
// Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers,
|
|
// and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi32
|
|
FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_u32(
|
|
vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a))));
|
|
}
|
|
|
|
// Zero extend packed unsigned 16-bit integers in a to packed 64-bit integers,
|
|
// and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi64
|
|
FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a)
|
|
{
|
|
uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */
|
|
uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
|
|
uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
|
|
return vreinterpretq_m128i_u64(u64x2);
|
|
}
|
|
|
|
// Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers,
|
|
// and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu32_epi64
|
|
FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_u64(
|
|
vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a))));
|
|
}
|
|
|
|
// Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers,
|
|
// and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16
|
|
FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a)
|
|
{
|
|
uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */
|
|
uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0H0G 0F0E 0D0C 0B0A */
|
|
return vreinterpretq_m128i_u16(u16x8);
|
|
}
|
|
|
|
// Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers,
|
|
// and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi32
|
|
FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a)
|
|
{
|
|
uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */
|
|
uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
|
|
uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
|
|
return vreinterpretq_m128i_u32(u32x4);
|
|
}
|
|
|
|
// Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed
|
|
// 64-bit integers, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi64
|
|
FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a)
|
|
{
|
|
uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */
|
|
uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */
|
|
uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
|
|
uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
|
|
return vreinterpretq_m128i_u64(u64x2);
|
|
}
|
|
|
|
// Conditionally multiply the packed double-precision (64-bit) floating-point
|
|
// elements in a and b using the high 4 bits in imm8, sum the four products, and
|
|
// conditionally store the sum in dst using the low 4 bits of imm8.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd
|
|
FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm)
|
|
{
|
|
// Generate mask value from constant immediate bit value
|
|
const int64_t bit0Mask = imm & 0x01 ? UINT64_MAX : 0;
|
|
const int64_t bit1Mask = imm & 0x02 ? UINT64_MAX : 0;
|
|
#if !SSE2NEON_PRECISE_DP
|
|
const int64_t bit4Mask = imm & 0x10 ? UINT64_MAX : 0;
|
|
const int64_t bit5Mask = imm & 0x20 ? UINT64_MAX : 0;
|
|
#endif
|
|
// Conditional multiplication
|
|
#if !SSE2NEON_PRECISE_DP
|
|
__m128d mul = _mm_mul_pd(a, b);
|
|
const __m128d mulMask =
|
|
_mm_castsi128_pd(_mm_set_epi64x(bit5Mask, bit4Mask));
|
|
__m128d tmp = _mm_and_pd(mul, mulMask);
|
|
#else
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
double d0 = (imm & 0x10) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0) *
|
|
vgetq_lane_f64(vreinterpretq_f64_m128d(b), 0)
|
|
: 0;
|
|
double d1 = (imm & 0x20) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1) *
|
|
vgetq_lane_f64(vreinterpretq_f64_m128d(b), 1)
|
|
: 0;
|
|
#else
|
|
double a0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
double a1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
double b0 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 0));
|
|
double b1 =
|
|
sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(b), 1));
|
|
double d0 = (imm & 0x10) ? a0 * b0 : 0;
|
|
double d1 = (imm & 0x20) ? a1 * b1 : 0;
|
|
#endif
|
|
__m128d tmp = _mm_set_pd(d1, d0);
|
|
#endif
|
|
// Sum the products
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
double sum = vpaddd_f64(vreinterpretq_f64_m128d(tmp));
|
|
#else
|
|
double _tmp0 = sse2neon_recast_u64_f64(
|
|
vgetq_lane_u64(vreinterpretq_u64_m128d(tmp), 0));
|
|
double _tmp1 = sse2neon_recast_u64_f64(
|
|
vgetq_lane_u64(vreinterpretq_u64_m128d(tmp), 1));
|
|
double sum = _tmp0 + _tmp1;
|
|
#endif
|
|
// Conditionally store the sum
|
|
const __m128d sumMask =
|
|
_mm_castsi128_pd(_mm_set_epi64x(bit1Mask, bit0Mask));
|
|
__m128d res = _mm_and_pd(_mm_set_pd1(sum), sumMask);
|
|
return res;
|
|
}
|
|
|
|
// Conditionally multiply the packed single-precision (32-bit) floating-point
|
|
// elements in a and b using the high 4 bits in imm8, sum the four products,
|
|
// and conditionally store the sum in dst using the low 4 bits of imm.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps
|
|
FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
|
|
{
|
|
float32x4_t elementwise_prod = _mm_mul_ps(a, b);
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
/* shortcuts */
|
|
if (imm == 0xFF) {
|
|
return _mm_set1_ps(vaddvq_f32(elementwise_prod));
|
|
}
|
|
|
|
if ((imm & 0x0F) == 0x0F) {
|
|
if (!(imm & (1 << 4)))
|
|
elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 0);
|
|
if (!(imm & (1 << 5)))
|
|
elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 1);
|
|
if (!(imm & (1 << 6)))
|
|
elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 2);
|
|
if (!(imm & (1 << 7)))
|
|
elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 3);
|
|
|
|
return _mm_set1_ps(vaddvq_f32(elementwise_prod));
|
|
}
|
|
#endif
|
|
|
|
float s = 0.0f;
|
|
|
|
if (imm & (1 << 4))
|
|
s += vgetq_lane_f32(elementwise_prod, 0);
|
|
if (imm & (1 << 5))
|
|
s += vgetq_lane_f32(elementwise_prod, 1);
|
|
if (imm & (1 << 6))
|
|
s += vgetq_lane_f32(elementwise_prod, 2);
|
|
if (imm & (1 << 7))
|
|
s += vgetq_lane_f32(elementwise_prod, 3);
|
|
|
|
const float32_t res[4] = {
|
|
(imm & 0x1) ? s : 0.0f,
|
|
(imm & 0x2) ? s : 0.0f,
|
|
(imm & 0x4) ? s : 0.0f,
|
|
(imm & 0x8) ? s : 0.0f,
|
|
};
|
|
return vreinterpretq_m128_f32(vld1q_f32(res));
|
|
}
|
|
|
|
// Extract a 32-bit integer from a, selected with imm8, and store the result in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi32
|
|
// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm)
|
|
#define _mm_extract_epi32(a, imm) \
|
|
vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))
|
|
|
|
// Extract a 64-bit integer from a, selected with imm8, and store the result in
|
|
// dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi64
|
|
// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm)
|
|
#define _mm_extract_epi64(a, imm) \
|
|
vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm))
|
|
|
|
// Extract an 8-bit integer from a, selected with imm8, and store the result in
|
|
// the lower element of dst. FORCE_INLINE int _mm_extract_epi8(__m128i a,
|
|
// __constrange(0,16) int imm)
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8
|
|
#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))
|
|
|
|
// Extracts the selected single-precision (32-bit) floating-point from a.
|
|
// FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm)
|
|
#define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm))
|
|
|
|
// Round the packed double-precision (64-bit) floating-point elements in a down
|
|
// to an integer value, and store the results as packed double-precision
|
|
// floating-point elements in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd
|
|
FORCE_INLINE __m128d _mm_floor_pd(__m128d a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128d_f64(vrndmq_f64(vreinterpretq_f64_m128d(a)));
|
|
#else
|
|
double a0, a1;
|
|
a0 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0));
|
|
a1 = sse2neon_recast_u64_f64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 1));
|
|
return _mm_set_pd(floor(a1), floor(a0));
|
|
#endif
|
|
}
|
|
|
|
// Round the packed single-precision (32-bit) floating-point elements in a down
|
|
// to an integer value, and store the results as packed single-precision
|
|
// floating-point elements in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps
|
|
FORCE_INLINE __m128 _mm_floor_ps(__m128 a)
|
|
{
|
|
#if (defined(__aarch64__) || defined(_M_ARM64)) || \
|
|
defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a)));
|
|
#else
|
|
float *f = (float *) &a;
|
|
return _mm_set_ps(floorf(f[3]), floorf(f[2]), floorf(f[1]), floorf(f[0]));
|
|
#endif
|
|
}
|
|
|
|
// Round the lower double-precision (64-bit) floating-point element in b down to
|
|
// an integer value, store the result as a double-precision floating-point
|
|
// element in the lower element of dst, and copy the upper element from a to the
|
|
// upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd
|
|
FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b)
|
|
{
|
|
return _mm_move_sd(a, _mm_floor_pd(b));
|
|
}
|
|
|
|
// Round the lower single-precision (32-bit) floating-point element in b down to
|
|
// an integer value, store the result as a single-precision floating-point
|
|
// element in the lower element of dst, and copy the upper 3 packed elements
|
|
// from a to the upper elements of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss
|
|
FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b)
|
|
{
|
|
return _mm_move_ss(a, _mm_floor_ps(b));
|
|
}
|
|
|
|
// Copy a to dst, and insert the 32-bit integer i into dst at the location
|
|
// specified by imm8.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi32
|
|
// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b,
|
|
// __constrange(0,4) int imm)
|
|
#define _mm_insert_epi32(a, b, imm) \
|
|
vreinterpretq_m128i_s32( \
|
|
vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm)))
|
|
|
|
// Copy a to dst, and insert the 64-bit integer i into dst at the location
|
|
// specified by imm8.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi64
|
|
// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b,
|
|
// __constrange(0,2) int imm)
|
|
#define _mm_insert_epi64(a, b, imm) \
|
|
vreinterpretq_m128i_s64( \
|
|
vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm)))
|
|
|
|
// Copy a to dst, and insert the lower 8-bit integer from i into dst at the
|
|
// location specified by imm8.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi8
|
|
// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b,
|
|
// __constrange(0,16) int imm)
|
|
#define _mm_insert_epi8(a, b, imm) \
|
|
vreinterpretq_m128i_s8(vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm)))
|
|
|
|
// Copy a to tmp, then insert a single-precision (32-bit) floating-point
|
|
// element from b into tmp using the control in imm8. Store tmp to dst using
|
|
// the mask in imm8 (elements are zeroed out when the corresponding bit is set).
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=insert_ps
|
|
#define _mm_insert_ps(a, b, imm8) \
|
|
_sse2neon_define2( \
|
|
__m128, a, b, \
|
|
float32x4_t tmp1 = \
|
|
vsetq_lane_f32(vgetq_lane_f32(_b, (imm8 >> 6) & 0x3), \
|
|
vreinterpretq_f32_m128(_a), 0); \
|
|
float32x4_t tmp2 = \
|
|
vsetq_lane_f32(vgetq_lane_f32(tmp1, 0), \
|
|
vreinterpretq_f32_m128(_a), ((imm8 >> 4) & 0x3)); \
|
|
const uint32_t data[4] = \
|
|
_sse2neon_init(((imm8) & (1 << 0)) ? UINT32_MAX : 0, \
|
|
((imm8) & (1 << 1)) ? UINT32_MAX : 0, \
|
|
((imm8) & (1 << 2)) ? UINT32_MAX : 0, \
|
|
((imm8) & (1 << 3)) ? UINT32_MAX : 0); \
|
|
uint32x4_t mask = vld1q_u32(data); \
|
|
float32x4_t all_zeros = vdupq_n_f32(0); \
|
|
\
|
|
_sse2neon_return(vreinterpretq_m128_f32( \
|
|
vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))));)
|
|
|
|
// Compare packed signed 32-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi32
|
|
FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Compare packed signed 8-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8
|
|
FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed unsigned 16-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16
|
|
FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
|
|
}
|
|
|
|
// Compare packed unsigned 32-bit integers in a and b, and store packed maximum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32
|
|
FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u32(
|
|
vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
|
|
}
|
|
|
|
// Compare packed signed 32-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi32
|
|
FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Compare packed signed 8-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8
|
|
FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s8(
|
|
vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
|
|
}
|
|
|
|
// Compare packed unsigned 16-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16
|
|
FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
|
|
}
|
|
|
|
// Compare packed unsigned 32-bit integers in a and b, and store packed minimum
|
|
// values in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32
|
|
FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u32(
|
|
vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
|
|
}
|
|
|
|
// Horizontally compute the minimum amongst the packed unsigned 16-bit integers
|
|
// in a, store the minimum and index in dst, and zero the remaining bits in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16
|
|
FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
|
|
{
|
|
__m128i dst;
|
|
uint16_t min, idx = 0;
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
// Find the minimum value
|
|
min = vminvq_u16(vreinterpretq_u16_m128i(a));
|
|
|
|
// Get the index of the minimum value
|
|
static const uint16_t idxv[] = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
uint16x8_t minv = vdupq_n_u16(min);
|
|
uint16x8_t cmeq = vceqq_u16(minv, vreinterpretq_u16_m128i(a));
|
|
idx = vminvq_u16(vornq_u16(vld1q_u16(idxv), cmeq));
|
|
#else
|
|
// Find the minimum value
|
|
__m64 tmp;
|
|
tmp = vreinterpret_m64_u16(
|
|
vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)),
|
|
vget_high_u16(vreinterpretq_u16_m128i(a))));
|
|
tmp = vreinterpret_m64_u16(
|
|
vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
|
|
tmp = vreinterpret_m64_u16(
|
|
vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
|
|
min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0);
|
|
// Get the index of the minimum value
|
|
int i;
|
|
for (i = 0; i < 8; i++) {
|
|
if (min == vgetq_lane_u16(vreinterpretq_u16_m128i(a), 0)) {
|
|
idx = (uint16_t) i;
|
|
break;
|
|
}
|
|
a = _mm_srli_si128(a, 2);
|
|
}
|
|
#endif
|
|
// Generate result
|
|
dst = _mm_setzero_si128();
|
|
dst = vreinterpretq_m128i_u16(
|
|
vsetq_lane_u16(min, vreinterpretq_u16_m128i(dst), 0));
|
|
dst = vreinterpretq_m128i_u16(
|
|
vsetq_lane_u16(idx, vreinterpretq_u16_m128i(dst), 1));
|
|
return dst;
|
|
}
|
|
|
|
// Compute the sum of absolute differences (SADs) of quadruplets of unsigned
|
|
// 8-bit integers in a compared to those in b, and store the 16-bit results in
|
|
// dst. Eight SADs are performed using one quadruplet from b and eight
|
|
// quadruplets from a. One quadruplet is selected from b starting at on the
|
|
// offset specified in imm8. Eight quadruplets are formed from sequential 8-bit
|
|
// integers selected from a starting at the offset specified in imm8.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8
|
|
FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm)
|
|
{
|
|
uint8x16_t _a, _b;
|
|
|
|
switch (imm & 0x4) {
|
|
case 0:
|
|
// do nothing
|
|
_a = vreinterpretq_u8_m128i(a);
|
|
break;
|
|
case 4:
|
|
_a = vreinterpretq_u8_u32(vextq_u32(vreinterpretq_u32_m128i(a),
|
|
vreinterpretq_u32_m128i(a), 1));
|
|
break;
|
|
default:
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
__builtin_unreachable();
|
|
#elif defined(_MSC_VER)
|
|
__assume(0);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
switch (imm & 0x3) {
|
|
case 0:
|
|
_b = vreinterpretq_u8_u32(
|
|
vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 0)));
|
|
break;
|
|
case 1:
|
|
_b = vreinterpretq_u8_u32(
|
|
vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 1)));
|
|
break;
|
|
case 2:
|
|
_b = vreinterpretq_u8_u32(
|
|
vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 2)));
|
|
break;
|
|
case 3:
|
|
_b = vreinterpretq_u8_u32(
|
|
vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 3)));
|
|
break;
|
|
default:
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
__builtin_unreachable();
|
|
#elif defined(_MSC_VER)
|
|
__assume(0);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
int16x8_t c04, c15, c26, c37;
|
|
uint8x8_t low_b = vget_low_u8(_b);
|
|
c04 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a), low_b));
|
|
uint8x16_t _a_1 = vextq_u8(_a, _a, 1);
|
|
c15 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_1), low_b));
|
|
uint8x16_t _a_2 = vextq_u8(_a, _a, 2);
|
|
c26 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_2), low_b));
|
|
uint8x16_t _a_3 = vextq_u8(_a, _a, 3);
|
|
c37 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_3), low_b));
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
// |0|4|2|6|
|
|
c04 = vpaddq_s16(c04, c26);
|
|
// |1|5|3|7|
|
|
c15 = vpaddq_s16(c15, c37);
|
|
|
|
int32x4_t trn1_c =
|
|
vtrn1q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
|
|
int32x4_t trn2_c =
|
|
vtrn2q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
|
|
return vreinterpretq_m128i_s16(vpaddq_s16(vreinterpretq_s16_s32(trn1_c),
|
|
vreinterpretq_s16_s32(trn2_c)));
|
|
#else
|
|
int16x4_t c01, c23, c45, c67;
|
|
c01 = vpadd_s16(vget_low_s16(c04), vget_low_s16(c15));
|
|
c23 = vpadd_s16(vget_low_s16(c26), vget_low_s16(c37));
|
|
c45 = vpadd_s16(vget_high_s16(c04), vget_high_s16(c15));
|
|
c67 = vpadd_s16(vget_high_s16(c26), vget_high_s16(c37));
|
|
|
|
return vreinterpretq_m128i_s16(
|
|
vcombine_s16(vpadd_s16(c01, c23), vpadd_s16(c45, c67)));
|
|
#endif
|
|
}
|
|
|
|
// Multiply the low signed 32-bit integers from each packed 64-bit element in
|
|
// a and b, and store the signed 64-bit results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epi32
|
|
FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b)
|
|
{
|
|
// vmull_s32 upcasts instead of masking, so we downcast.
|
|
int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a));
|
|
int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b));
|
|
return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo));
|
|
}
|
|
|
|
// Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit
|
|
// integers, and store the low 32 bits of the intermediate integers in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi32
|
|
FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_s32(
|
|
vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
|
|
}
|
|
|
|
// Convert packed signed 32-bit integers from a and b to packed 16-bit integers
|
|
// using unsigned saturation, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi32
|
|
FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u16(
|
|
vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)),
|
|
vqmovun_s32(vreinterpretq_s32_m128i(b))));
|
|
}
|
|
|
|
// Round the packed double-precision (64-bit) floating-point elements in a using
|
|
// the rounding parameter, and store the results as packed double-precision
|
|
// floating-point elements in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd
|
|
FORCE_INLINE_OPTNONE __m128d _mm_round_pd(__m128d a, int rounding)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
switch (rounding) {
|
|
case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
|
|
return vreinterpretq_m128d_f64(vrndnq_f64(vreinterpretq_f64_m128d(a)));
|
|
case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
|
|
return _mm_floor_pd(a);
|
|
case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
|
|
return _mm_ceil_pd(a);
|
|
case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
|
|
return vreinterpretq_m128d_f64(vrndq_f64(vreinterpretq_f64_m128d(a)));
|
|
default: //_MM_FROUND_CUR_DIRECTION
|
|
return vreinterpretq_m128d_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)));
|
|
}
|
|
#else
|
|
double *v_double = (double *) &a;
|
|
|
|
if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
|
|
(rounding == _MM_FROUND_CUR_DIRECTION &&
|
|
_MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
|
|
double res[2], tmp;
|
|
for (int i = 0; i < 2; i++) {
|
|
tmp = (v_double[i] < 0) ? -v_double[i] : v_double[i];
|
|
double roundDown = floor(tmp); // Round down value
|
|
double roundUp = ceil(tmp); // Round up value
|
|
double diffDown = tmp - roundDown;
|
|
double diffUp = roundUp - tmp;
|
|
if (diffDown < diffUp) {
|
|
/* If it's closer to the round down value, then use it */
|
|
res[i] = roundDown;
|
|
} else if (diffDown > diffUp) {
|
|
/* If it's closer to the round up value, then use it */
|
|
res[i] = roundUp;
|
|
} else {
|
|
/* If it's equidistant between round up and round down value,
|
|
* pick the one which is an even number */
|
|
double half = roundDown / 2;
|
|
if (half != floor(half)) {
|
|
/* If the round down value is odd, return the round up value
|
|
*/
|
|
res[i] = roundUp;
|
|
} else {
|
|
/* If the round up value is odd, return the round down value
|
|
*/
|
|
res[i] = roundDown;
|
|
}
|
|
}
|
|
res[i] = (v_double[i] < 0) ? -res[i] : res[i];
|
|
}
|
|
return _mm_set_pd(res[1], res[0]);
|
|
} else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
|
|
(rounding == _MM_FROUND_CUR_DIRECTION &&
|
|
_MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
|
|
return _mm_floor_pd(a);
|
|
} else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
|
|
(rounding == _MM_FROUND_CUR_DIRECTION &&
|
|
_MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
|
|
return _mm_ceil_pd(a);
|
|
}
|
|
return _mm_set_pd(v_double[1] > 0 ? floor(v_double[1]) : ceil(v_double[1]),
|
|
v_double[0] > 0 ? floor(v_double[0]) : ceil(v_double[0]));
|
|
#endif
|
|
}
|
|
|
|
// Round the packed single-precision (32-bit) floating-point elements in a using
|
|
// the rounding parameter, and store the results as packed single-precision
|
|
// floating-point elements in dst.
|
|
// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps
|
|
FORCE_INLINE_OPTNONE __m128 _mm_round_ps(__m128 a, int rounding)
|
|
{
|
|
#if (defined(__aarch64__) || defined(_M_ARM64)) || \
|
|
defined(__ARM_FEATURE_DIRECTED_ROUNDING)
|
|
switch (rounding) {
|
|
case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
|
|
return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a)));
|
|
case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
|
|
return _mm_floor_ps(a);
|
|
case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
|
|
return _mm_ceil_ps(a);
|
|
case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
|
|
return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a)));
|
|
default: //_MM_FROUND_CUR_DIRECTION
|
|
return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a)));
|
|
}
|
|
#else
|
|
float *v_float = (float *) &a;
|
|
|
|
if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
|
|
(rounding == _MM_FROUND_CUR_DIRECTION &&
|
|
_MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
|
|
uint32x4_t signmask = vdupq_n_u32(0x80000000);
|
|
float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
|
|
vdupq_n_f32(0.5f)); /* +/- 0.5 */
|
|
int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
|
|
vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
|
|
int32x4_t r_trunc = vcvtq_s32_f32(
|
|
vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
|
|
int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
|
|
vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
|
|
int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
|
|
vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
|
|
float32x4_t delta = vsubq_f32(
|
|
vreinterpretq_f32_m128(a),
|
|
vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
|
|
uint32x4_t is_delta_half =
|
|
vceqq_f32(delta, half); /* delta == +/- 0.5 */
|
|
return vreinterpretq_m128_f32(
|
|
vcvtq_f32_s32(vbslq_s32(is_delta_half, r_even, r_normal)));
|
|
} else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
|
|
(rounding == _MM_FROUND_CUR_DIRECTION &&
|
|
_MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
|
|
return _mm_floor_ps(a);
|
|
} else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
|
|
(rounding == _MM_FROUND_CUR_DIRECTION &&
|
|
_MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
|
|
return _mm_ceil_ps(a);
|
|
}
|
|
return _mm_set_ps(v_float[3] > 0 ? floorf(v_float[3]) : ceilf(v_float[3]),
|
|
v_float[2] > 0 ? floorf(v_float[2]) : ceilf(v_float[2]),
|
|
v_float[1] > 0 ? floorf(v_float[1]) : ceilf(v_float[1]),
|
|
v_float[0] > 0 ? floorf(v_float[0]) : ceilf(v_float[0]));
|
|
#endif
|
|
}
|
|
|
|
// Round the lower double-precision (64-bit) floating-point element in b using
|
|
// the rounding parameter, store the result as a double-precision floating-point
|
|
// element in the lower element of dst, and copy the upper element from a to the
|
|
// upper element of dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd
|
|
FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding)
|
|
{
|
|
return _mm_move_sd(a, _mm_round_pd(b, rounding));
|
|
}
|
|
|
|
// Round the lower single-precision (32-bit) floating-point element in b using
|
|
// the rounding parameter, store the result as a single-precision floating-point
|
|
// element in the lower element of dst, and copy the upper 3 packed elements
|
|
// from a to the upper elements of dst. Rounding is done according to the
|
|
// rounding[3:0] parameter, which can be one of:
|
|
// (_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and
|
|
// suppress exceptions
|
|
// (_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC) // round down, and
|
|
// suppress exceptions
|
|
// (_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC) // round up, and suppress
|
|
// exceptions
|
|
// (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress
|
|
// exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see
|
|
// _MM_SET_ROUNDING_MODE
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss
|
|
FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding)
|
|
{
|
|
return _mm_move_ss(a, _mm_round_ps(b, rounding));
|
|
}
|
|
|
|
// Load 128-bits of integer data from memory into dst using a non-temporal
|
|
// memory hint. mem_addr must be aligned on a 16-byte boundary or a
|
|
// general-protection exception may be generated.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128
|
|
FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p)
|
|
{
|
|
#if __has_builtin(__builtin_nontemporal_store)
|
|
return __builtin_nontemporal_load(p);
|
|
#else
|
|
return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p));
|
|
#endif
|
|
}
|
|
|
|
// Compute the bitwise NOT of a and then AND with a 128-bit vector containing
|
|
// all 1's, and return 1 if the result is zero, otherwise return 0.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones
|
|
FORCE_INLINE int _mm_test_all_ones(__m128i a)
|
|
{
|
|
return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) ==
|
|
~(uint64_t) 0;
|
|
}
|
|
|
|
// Compute the bitwise AND of 128 bits (representing integer data) in a and
|
|
// mask, and return 1 if the result is zero, otherwise return 0.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros
|
|
FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
|
|
{
|
|
int64x2_t a_and_mask =
|
|
vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask));
|
|
return !(vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1));
|
|
}
|
|
|
|
// Compute the bitwise AND of 128 bits (representing integer data) in a and
|
|
// mask, and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute
|
|
// the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is
|
|
// zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
|
|
// otherwise return 0.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_test_mix_ones_zero
|
|
// Note: Argument names may be wrong in the Intel intrinsics guide.
|
|
FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask)
|
|
{
|
|
uint64x2_t v = vreinterpretq_u64_m128i(a);
|
|
uint64x2_t m = vreinterpretq_u64_m128i(mask);
|
|
|
|
// find ones (set-bits) and zeros (clear-bits) under clip mask
|
|
uint64x2_t ones = vandq_u64(m, v);
|
|
uint64x2_t zeros = vbicq_u64(m, v);
|
|
|
|
// If both 128-bit variables are populated (non-zero) then return 1.
|
|
// For comparison purposes, first compact each var down to 32-bits.
|
|
uint32x2_t reduced = vpmax_u32(vqmovn_u64(ones), vqmovn_u64(zeros));
|
|
|
|
// if folding minimum is non-zero then both vars must be non-zero
|
|
return (vget_lane_u32(vpmin_u32(reduced, reduced), 0) != 0);
|
|
}
|
|
|
|
// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
|
|
// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
|
|
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
|
|
// otherwise set CF to 0. Return the CF value.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128
|
|
FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b)
|
|
{
|
|
int64x2_t s64 =
|
|
vbicq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a));
|
|
return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
|
|
}
|
|
|
|
// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
|
|
// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
|
|
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
|
|
// otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
|
|
// otherwise return 0.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128
|
|
#define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b)
|
|
|
|
// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
|
|
// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
|
|
// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
|
|
// otherwise set CF to 0. Return the ZF value.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128
|
|
FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b)
|
|
{
|
|
int64x2_t s64 =
|
|
vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b));
|
|
return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
|
|
}
|
|
|
|
/* SSE4.2 */
|
|
|
|
static const uint16_t ALIGN_STRUCT(16) _sse2neon_cmpestr_mask16b[8] = {
|
|
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
|
|
};
|
|
static const uint8_t ALIGN_STRUCT(16) _sse2neon_cmpestr_mask8b[16] = {
|
|
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
|
|
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
|
|
};
|
|
|
|
/* specify the source data format */
|
|
#define _SIDD_UBYTE_OPS 0x00 /* unsigned 8-bit characters */
|
|
#define _SIDD_UWORD_OPS 0x01 /* unsigned 16-bit characters */
|
|
#define _SIDD_SBYTE_OPS 0x02 /* signed 8-bit characters */
|
|
#define _SIDD_SWORD_OPS 0x03 /* signed 16-bit characters */
|
|
|
|
/* specify the comparison operation */
|
|
#define _SIDD_CMP_EQUAL_ANY 0x00 /* compare equal any: strchr */
|
|
#define _SIDD_CMP_RANGES 0x04 /* compare ranges */
|
|
#define _SIDD_CMP_EQUAL_EACH 0x08 /* compare equal each: strcmp */
|
|
#define _SIDD_CMP_EQUAL_ORDERED 0x0C /* compare equal ordered */
|
|
|
|
/* specify the polarity */
|
|
#define _SIDD_POSITIVE_POLARITY 0x00
|
|
#define _SIDD_MASKED_POSITIVE_POLARITY 0x20
|
|
#define _SIDD_NEGATIVE_POLARITY 0x10 /* negate results */
|
|
#define _SIDD_MASKED_NEGATIVE_POLARITY \
|
|
0x30 /* negate results only before end of string */
|
|
|
|
/* specify the output selection in _mm_cmpXstri */
|
|
#define _SIDD_LEAST_SIGNIFICANT 0x00
|
|
#define _SIDD_MOST_SIGNIFICANT 0x40
|
|
|
|
/* specify the output selection in _mm_cmpXstrm */
|
|
#define _SIDD_BIT_MASK 0x00
|
|
#define _SIDD_UNIT_MASK 0x40
|
|
|
|
/* Pattern Matching for C macros.
|
|
* https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms
|
|
*/
|
|
|
|
/* catenate */
|
|
#define SSE2NEON_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__
|
|
#define SSE2NEON_CAT(a, b) SSE2NEON_PRIMITIVE_CAT(a, b)
|
|
|
|
#define SSE2NEON_IIF(c) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_IIF_, c)
|
|
/* run the 2nd parameter */
|
|
#define SSE2NEON_IIF_0(t, ...) __VA_ARGS__
|
|
/* run the 1st parameter */
|
|
#define SSE2NEON_IIF_1(t, ...) t
|
|
|
|
#define SSE2NEON_COMPL(b) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_COMPL_, b)
|
|
#define SSE2NEON_COMPL_0 1
|
|
#define SSE2NEON_COMPL_1 0
|
|
|
|
#define SSE2NEON_DEC(x) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_DEC_, x)
|
|
#define SSE2NEON_DEC_1 0
|
|
#define SSE2NEON_DEC_2 1
|
|
#define SSE2NEON_DEC_3 2
|
|
#define SSE2NEON_DEC_4 3
|
|
#define SSE2NEON_DEC_5 4
|
|
#define SSE2NEON_DEC_6 5
|
|
#define SSE2NEON_DEC_7 6
|
|
#define SSE2NEON_DEC_8 7
|
|
#define SSE2NEON_DEC_9 8
|
|
#define SSE2NEON_DEC_10 9
|
|
#define SSE2NEON_DEC_11 10
|
|
#define SSE2NEON_DEC_12 11
|
|
#define SSE2NEON_DEC_13 12
|
|
#define SSE2NEON_DEC_14 13
|
|
#define SSE2NEON_DEC_15 14
|
|
#define SSE2NEON_DEC_16 15
|
|
|
|
/* detection */
|
|
#define SSE2NEON_CHECK_N(x, n, ...) n
|
|
#define SSE2NEON_CHECK(...) SSE2NEON_CHECK_N(__VA_ARGS__, 0, )
|
|
#define SSE2NEON_PROBE(x) x, 1,
|
|
|
|
#define SSE2NEON_NOT(x) SSE2NEON_CHECK(SSE2NEON_PRIMITIVE_CAT(SSE2NEON_NOT_, x))
|
|
#define SSE2NEON_NOT_0 SSE2NEON_PROBE(~)
|
|
|
|
#define SSE2NEON_BOOL(x) SSE2NEON_COMPL(SSE2NEON_NOT(x))
|
|
#define SSE2NEON_IF(c) SSE2NEON_IIF(SSE2NEON_BOOL(c))
|
|
|
|
#define SSE2NEON_EAT(...)
|
|
#define SSE2NEON_EXPAND(...) __VA_ARGS__
|
|
#define SSE2NEON_WHEN(c) SSE2NEON_IF(c)(SSE2NEON_EXPAND, SSE2NEON_EAT)
|
|
|
|
/* recursion */
|
|
/* deferred expression */
|
|
#define SSE2NEON_EMPTY()
|
|
#define SSE2NEON_DEFER(id) id SSE2NEON_EMPTY()
|
|
#define SSE2NEON_OBSTRUCT(...) __VA_ARGS__ SSE2NEON_DEFER(SSE2NEON_EMPTY)()
|
|
#define SSE2NEON_EXPAND(...) __VA_ARGS__
|
|
|
|
#define SSE2NEON_EVAL(...) \
|
|
SSE2NEON_EVAL1(SSE2NEON_EVAL1(SSE2NEON_EVAL1(__VA_ARGS__)))
|
|
#define SSE2NEON_EVAL1(...) \
|
|
SSE2NEON_EVAL2(SSE2NEON_EVAL2(SSE2NEON_EVAL2(__VA_ARGS__)))
|
|
#define SSE2NEON_EVAL2(...) \
|
|
SSE2NEON_EVAL3(SSE2NEON_EVAL3(SSE2NEON_EVAL3(__VA_ARGS__)))
|
|
#define SSE2NEON_EVAL3(...) __VA_ARGS__
|
|
|
|
#define SSE2NEON_REPEAT(count, macro, ...) \
|
|
SSE2NEON_WHEN(count) \
|
|
(SSE2NEON_OBSTRUCT(SSE2NEON_REPEAT_INDIRECT)()( \
|
|
SSE2NEON_DEC(count), macro, \
|
|
__VA_ARGS__) SSE2NEON_OBSTRUCT(macro)(SSE2NEON_DEC(count), \
|
|
__VA_ARGS__))
|
|
#define SSE2NEON_REPEAT_INDIRECT() SSE2NEON_REPEAT
|
|
|
|
#define SSE2NEON_SIZE_OF_byte 8
|
|
#define SSE2NEON_NUMBER_OF_LANES_byte 16
|
|
#define SSE2NEON_SIZE_OF_word 16
|
|
#define SSE2NEON_NUMBER_OF_LANES_word 8
|
|
|
|
#define SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE(i, type) \
|
|
mtx[i] = vreinterpretq_m128i_##type(vceqq_##type( \
|
|
vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)), \
|
|
vreinterpretq_##type##_m128i(a)));
|
|
|
|
#define SSE2NEON_FILL_LANE(i, type) \
|
|
vec_b[i] = \
|
|
vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i));
|
|
|
|
#define PCMPSTR_RANGES(a, b, mtx, data_type_prefix, type_prefix, size, \
|
|
number_of_lanes, byte_or_word) \
|
|
do { \
|
|
SSE2NEON_CAT( \
|
|
data_type_prefix, \
|
|
SSE2NEON_CAT(size, \
|
|
SSE2NEON_CAT(x, SSE2NEON_CAT(number_of_lanes, _t)))) \
|
|
vec_b[number_of_lanes]; \
|
|
__m128i mask = SSE2NEON_IIF(byte_or_word)( \
|
|
vreinterpretq_m128i_u16(vdupq_n_u16(0xff)), \
|
|
vreinterpretq_m128i_u32(vdupq_n_u32(0xffff))); \
|
|
SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, SSE2NEON_FILL_LANE, \
|
|
SSE2NEON_CAT(type_prefix, size))) \
|
|
for (int i = 0; i < number_of_lanes; i++) { \
|
|
mtx[i] = SSE2NEON_CAT(vreinterpretq_m128i_u, \
|
|
size)(SSE2NEON_CAT(vbslq_u, size)( \
|
|
SSE2NEON_CAT(vreinterpretq_u, \
|
|
SSE2NEON_CAT(size, _m128i))(mask), \
|
|
SSE2NEON_CAT(vcgeq_, SSE2NEON_CAT(type_prefix, size))( \
|
|
vec_b[i], \
|
|
SSE2NEON_CAT( \
|
|
vreinterpretq_, \
|
|
SSE2NEON_CAT(type_prefix, \
|
|
SSE2NEON_CAT(size, _m128i(a))))), \
|
|
SSE2NEON_CAT(vcleq_, SSE2NEON_CAT(type_prefix, size))( \
|
|
vec_b[i], \
|
|
SSE2NEON_CAT( \
|
|
vreinterpretq_, \
|
|
SSE2NEON_CAT(type_prefix, \
|
|
SSE2NEON_CAT(size, _m128i(a))))))); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define PCMPSTR_EQ(a, b, mtx, size, number_of_lanes) \
|
|
do { \
|
|
SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, \
|
|
SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE, \
|
|
SSE2NEON_CAT(u, size))) \
|
|
} while (0)
|
|
|
|
#define SSE2NEON_CMP_EQUAL_ANY_IMPL(type) \
|
|
static int _sse2neon_cmp_##type##_equal_any(__m128i a, int la, __m128i b, \
|
|
int lb) \
|
|
{ \
|
|
__m128i mtx[16]; \
|
|
PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
|
|
SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \
|
|
return SSE2NEON_CAT( \
|
|
_sse2neon_aggregate_equal_any_, \
|
|
SSE2NEON_CAT( \
|
|
SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
|
|
SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \
|
|
type))))(la, lb, mtx); \
|
|
}
|
|
|
|
#define SSE2NEON_CMP_RANGES_IMPL(type, data_type, us, byte_or_word) \
|
|
static int _sse2neon_cmp_##us##type##_ranges(__m128i a, int la, __m128i b, \
|
|
int lb) \
|
|
{ \
|
|
__m128i mtx[16]; \
|
|
PCMPSTR_RANGES( \
|
|
a, b, mtx, data_type, us, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
|
|
SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), byte_or_word); \
|
|
return SSE2NEON_CAT( \
|
|
_sse2neon_aggregate_ranges_, \
|
|
SSE2NEON_CAT( \
|
|
SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
|
|
SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \
|
|
type))))(la, lb, mtx); \
|
|
}
|
|
|
|
#define SSE2NEON_CMP_EQUAL_ORDERED_IMPL(type) \
|
|
static int _sse2neon_cmp_##type##_equal_ordered(__m128i a, int la, \
|
|
__m128i b, int lb) \
|
|
{ \
|
|
__m128i mtx[16]; \
|
|
PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
|
|
SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \
|
|
return SSE2NEON_CAT( \
|
|
_sse2neon_aggregate_equal_ordered_, \
|
|
SSE2NEON_CAT( \
|
|
SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
|
|
SSE2NEON_CAT(x, \
|
|
SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type))))( \
|
|
SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx); \
|
|
}
|
|
|
|
static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16])
|
|
{
|
|
int res = 0;
|
|
int m = (1 << la) - 1;
|
|
uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
|
|
uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask);
|
|
uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask);
|
|
uint8x16_t vec = vcombine_u8(t_lo, t_hi);
|
|
for (int j = 0; j < lb; j++) {
|
|
mtx[j] = vreinterpretq_m128i_u8(
|
|
vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j])));
|
|
mtx[j] = vreinterpretq_m128i_u8(
|
|
vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7));
|
|
int tmp = _sse2neon_vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0;
|
|
res |= (tmp << j);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16])
|
|
{
|
|
int res = 0;
|
|
int m = (1 << la) - 1;
|
|
uint16x8_t vec =
|
|
vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b));
|
|
for (int j = 0; j < lb; j++) {
|
|
mtx[j] = vreinterpretq_m128i_u16(
|
|
vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j])));
|
|
mtx[j] = vreinterpretq_m128i_u16(
|
|
vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15));
|
|
int tmp = _sse2neon_vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0;
|
|
res |= (tmp << j);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* clang-format off */
|
|
#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(prefix) \
|
|
prefix##IMPL(byte) \
|
|
prefix##IMPL(word)
|
|
/* clang-format on */
|
|
|
|
SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_)
|
|
|
|
static int _sse2neon_aggregate_ranges_16x8(int la, int lb, __m128i mtx[16])
|
|
{
|
|
int res = 0;
|
|
int m = (1 << la) - 1;
|
|
uint16x8_t vec =
|
|
vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b));
|
|
for (int j = 0; j < lb; j++) {
|
|
mtx[j] = vreinterpretq_m128i_u16(
|
|
vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j])));
|
|
mtx[j] = vreinterpretq_m128i_u16(
|
|
vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15));
|
|
__m128i tmp = vreinterpretq_m128i_u32(
|
|
vshrq_n_u32(vreinterpretq_u32_m128i(mtx[j]), 16));
|
|
uint32x4_t vec_res = vandq_u32(vreinterpretq_u32_m128i(mtx[j]),
|
|
vreinterpretq_u32_m128i(tmp));
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
int t = vaddvq_u32(vec_res) ? 1 : 0;
|
|
#else
|
|
uint64x2_t sumh = vpaddlq_u32(vec_res);
|
|
int t = vgetq_lane_u64(sumh, 0) + vgetq_lane_u64(sumh, 1);
|
|
#endif
|
|
res |= (t << j);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16])
|
|
{
|
|
int res = 0;
|
|
int m = (1 << la) - 1;
|
|
uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
|
|
uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask);
|
|
uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask);
|
|
uint8x16_t vec = vcombine_u8(t_lo, t_hi);
|
|
for (int j = 0; j < lb; j++) {
|
|
mtx[j] = vreinterpretq_m128i_u8(
|
|
vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j])));
|
|
mtx[j] = vreinterpretq_m128i_u8(
|
|
vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7));
|
|
__m128i tmp = vreinterpretq_m128i_u16(
|
|
vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8));
|
|
uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]),
|
|
vreinterpretq_u16_m128i(tmp));
|
|
int t = _sse2neon_vaddvq_u16(vec_res) ? 1 : 0;
|
|
res |= (t << j);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#define SSE2NEON_CMP_RANGES_IS_BYTE 1
|
|
#define SSE2NEON_CMP_RANGES_IS_WORD 0
|
|
|
|
/* clang-format off */
|
|
#define SSE2NEON_GENERATE_CMP_RANGES(prefix) \
|
|
prefix##IMPL(byte, uint, u, prefix##IS_BYTE) \
|
|
prefix##IMPL(byte, int, s, prefix##IS_BYTE) \
|
|
prefix##IMPL(word, uint, u, prefix##IS_WORD) \
|
|
prefix##IMPL(word, int, s, prefix##IS_WORD)
|
|
/* clang-format on */
|
|
|
|
SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_)
|
|
|
|
#undef SSE2NEON_CMP_RANGES_IS_BYTE
|
|
#undef SSE2NEON_CMP_RANGES_IS_WORD
|
|
|
|
static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb)
|
|
{
|
|
uint8x16_t mtx =
|
|
vceqq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b));
|
|
int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb));
|
|
int m1 = 0x10000 - (1 << la);
|
|
int tb = 0x10000 - (1 << lb);
|
|
uint8x8_t vec_mask, vec0_lo, vec0_hi, vec1_lo, vec1_hi;
|
|
uint8x8_t tmp_lo, tmp_hi, res_lo, res_hi;
|
|
vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
|
|
vec0_lo = vtst_u8(vdup_n_u8(m0), vec_mask);
|
|
vec0_hi = vtst_u8(vdup_n_u8(m0 >> 8), vec_mask);
|
|
vec1_lo = vtst_u8(vdup_n_u8(m1), vec_mask);
|
|
vec1_hi = vtst_u8(vdup_n_u8(m1 >> 8), vec_mask);
|
|
tmp_lo = vtst_u8(vdup_n_u8(tb), vec_mask);
|
|
tmp_hi = vtst_u8(vdup_n_u8(tb >> 8), vec_mask);
|
|
|
|
res_lo = vbsl_u8(vec0_lo, vdup_n_u8(0), vget_low_u8(mtx));
|
|
res_hi = vbsl_u8(vec0_hi, vdup_n_u8(0), vget_high_u8(mtx));
|
|
res_lo = vbsl_u8(vec1_lo, tmp_lo, res_lo);
|
|
res_hi = vbsl_u8(vec1_hi, tmp_hi, res_hi);
|
|
res_lo = vand_u8(res_lo, vec_mask);
|
|
res_hi = vand_u8(res_hi, vec_mask);
|
|
|
|
int res = _sse2neon_vaddv_u8(res_lo) + (_sse2neon_vaddv_u8(res_hi) << 8);
|
|
return res;
|
|
}
|
|
|
|
static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb)
|
|
{
|
|
uint16x8_t mtx =
|
|
vceqq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b));
|
|
int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb));
|
|
int m1 = 0x100 - (1 << la);
|
|
int tb = 0x100 - (1 << lb);
|
|
uint16x8_t vec_mask = vld1q_u16(_sse2neon_cmpestr_mask16b);
|
|
uint16x8_t vec0 = vtstq_u16(vdupq_n_u16(m0), vec_mask);
|
|
uint16x8_t vec1 = vtstq_u16(vdupq_n_u16(m1), vec_mask);
|
|
uint16x8_t tmp = vtstq_u16(vdupq_n_u16(tb), vec_mask);
|
|
mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx);
|
|
mtx = vbslq_u16(vec1, tmp, mtx);
|
|
mtx = vandq_u16(mtx, vec_mask);
|
|
return _sse2neon_vaddvq_u16(mtx);
|
|
}
|
|
|
|
#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1
|
|
#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD 0
|
|
|
|
#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IMPL(size, number_of_lanes, data_type) \
|
|
static int _sse2neon_aggregate_equal_ordered_##size##x##number_of_lanes( \
|
|
int bound, int la, int lb, __m128i mtx[16]) \
|
|
{ \
|
|
int res = 0; \
|
|
int m1 = SSE2NEON_IIF(data_type)(0x10000, 0x100) - (1 << la); \
|
|
uint##size##x8_t vec_mask = SSE2NEON_IIF(data_type)( \
|
|
vld1_u##size(_sse2neon_cmpestr_mask##size##b), \
|
|
vld1q_u##size(_sse2neon_cmpestr_mask##size##b)); \
|
|
uint##size##x##number_of_lanes##_t vec1 = SSE2NEON_IIF(data_type)( \
|
|
vcombine_u##size(vtst_u##size(vdup_n_u##size(m1), vec_mask), \
|
|
vtst_u##size(vdup_n_u##size(m1 >> 8), vec_mask)), \
|
|
vtstq_u##size(vdupq_n_u##size(m1), vec_mask)); \
|
|
uint##size##x##number_of_lanes##_t vec_minusone = vdupq_n_u##size(-1); \
|
|
uint##size##x##number_of_lanes##_t vec_zero = vdupq_n_u##size(0); \
|
|
for (int j = 0; j < lb; j++) { \
|
|
mtx[j] = vreinterpretq_m128i_u##size(vbslq_u##size( \
|
|
vec1, vec_minusone, vreinterpretq_u##size##_m128i(mtx[j]))); \
|
|
} \
|
|
for (int j = lb; j < bound; j++) { \
|
|
mtx[j] = vreinterpretq_m128i_u##size( \
|
|
vbslq_u##size(vec1, vec_minusone, vec_zero)); \
|
|
} \
|
|
unsigned SSE2NEON_IIF(data_type)(char, short) *ptr = \
|
|
(unsigned SSE2NEON_IIF(data_type)(char, short) *) mtx; \
|
|
for (int i = 0; i < bound; i++) { \
|
|
int val = 1; \
|
|
for (int j = 0, k = i; j < bound - i && k < bound; j++, k++) \
|
|
val &= ptr[k * bound + j]; \
|
|
res += val << i; \
|
|
} \
|
|
return res; \
|
|
}
|
|
|
|
/* clang-format off */
|
|
#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(prefix) \
|
|
prefix##IMPL(8, 16, prefix##IS_UBYTE) \
|
|
prefix##IMPL(16, 8, prefix##IS_UWORD)
|
|
/* clang-format on */
|
|
|
|
SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_)
|
|
|
|
#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE
|
|
#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD
|
|
|
|
/* clang-format off */
|
|
#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(prefix) \
|
|
prefix##IMPL(byte) \
|
|
prefix##IMPL(word)
|
|
/* clang-format on */
|
|
|
|
SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_)
|
|
|
|
#define SSE2NEON_CMPESTR_LIST \
|
|
_(CMP_UBYTE_EQUAL_ANY, cmp_byte_equal_any) \
|
|
_(CMP_UWORD_EQUAL_ANY, cmp_word_equal_any) \
|
|
_(CMP_SBYTE_EQUAL_ANY, cmp_byte_equal_any) \
|
|
_(CMP_SWORD_EQUAL_ANY, cmp_word_equal_any) \
|
|
_(CMP_UBYTE_RANGES, cmp_ubyte_ranges) \
|
|
_(CMP_UWORD_RANGES, cmp_uword_ranges) \
|
|
_(CMP_SBYTE_RANGES, cmp_sbyte_ranges) \
|
|
_(CMP_SWORD_RANGES, cmp_sword_ranges) \
|
|
_(CMP_UBYTE_EQUAL_EACH, cmp_byte_equal_each) \
|
|
_(CMP_UWORD_EQUAL_EACH, cmp_word_equal_each) \
|
|
_(CMP_SBYTE_EQUAL_EACH, cmp_byte_equal_each) \
|
|
_(CMP_SWORD_EQUAL_EACH, cmp_word_equal_each) \
|
|
_(CMP_UBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \
|
|
_(CMP_UWORD_EQUAL_ORDERED, cmp_word_equal_ordered) \
|
|
_(CMP_SBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \
|
|
_(CMP_SWORD_EQUAL_ORDERED, cmp_word_equal_ordered)
|
|
|
|
enum {
|
|
#define _(name, func_suffix) name,
|
|
SSE2NEON_CMPESTR_LIST
|
|
#undef _
|
|
};
|
|
typedef int (*cmpestr_func_t)(__m128i a, int la, __m128i b, int lb);
|
|
static cmpestr_func_t _sse2neon_cmpfunc_table[] = {
|
|
#define _(name, func_suffix) _sse2neon_##func_suffix,
|
|
SSE2NEON_CMPESTR_LIST
|
|
#undef _
|
|
};
|
|
|
|
FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound)
|
|
{
|
|
switch (imm8 & 0x30) {
|
|
case _SIDD_NEGATIVE_POLARITY:
|
|
res ^= 0xffffffff;
|
|
break;
|
|
case _SIDD_MASKED_NEGATIVE_POLARITY:
|
|
res ^= (1 << lb) - 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return res & ((bound == 8) ? 0xFF : 0xFFFF);
|
|
}
|
|
|
|
FORCE_INLINE int _sse2neon_clz(unsigned int x)
|
|
{
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
unsigned long cnt = 0;
|
|
if (_BitScanReverse(&cnt, x))
|
|
return 31 - cnt;
|
|
return 32;
|
|
#else
|
|
return x != 0 ? __builtin_clz(x) : 32;
|
|
#endif
|
|
}
|
|
|
|
FORCE_INLINE int _sse2neon_ctz(unsigned int x)
|
|
{
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
unsigned long cnt = 0;
|
|
if (_BitScanForward(&cnt, x))
|
|
return cnt;
|
|
return 32;
|
|
#else
|
|
return x != 0 ? __builtin_ctz(x) : 32;
|
|
#endif
|
|
}
|
|
|
|
FORCE_INLINE int _sse2neon_ctzll(unsigned long long x)
|
|
{
|
|
#ifdef _MSC_VER
|
|
unsigned long cnt;
|
|
#if defined(SSE2NEON_HAS_BITSCAN64)
|
|
if (_BitScanForward64(&cnt, x))
|
|
return (int) (cnt);
|
|
#else
|
|
if (_BitScanForward(&cnt, (unsigned long) (x)))
|
|
return (int) cnt;
|
|
if (_BitScanForward(&cnt, (unsigned long) (x >> 32)))
|
|
return (int) (cnt + 32);
|
|
#endif /* SSE2NEON_HAS_BITSCAN64 */
|
|
return 64;
|
|
#else /* assume GNU compatible compilers */
|
|
return x != 0 ? __builtin_ctzll(x) : 64;
|
|
#endif
|
|
}
|
|
|
|
#define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y)
|
|
|
|
#define SSE2NEON_CMPSTR_SET_UPPER(var, imm) \
|
|
const int var = (imm & 0x01) ? 8 : 16
|
|
|
|
#define SSE2NEON_CMPESTRX_LEN_PAIR(a, b, la, lb) \
|
|
int tmp1 = la ^ (la >> 31); \
|
|
la = tmp1 - (la >> 31); \
|
|
int tmp2 = lb ^ (lb >> 31); \
|
|
lb = tmp2 - (lb >> 31); \
|
|
la = SSE2NEON_MIN(la, bound); \
|
|
lb = SSE2NEON_MIN(lb, bound)
|
|
|
|
// Compare all pairs of character in string a and b,
|
|
// then aggregate the result.
|
|
// As the only difference of PCMPESTR* and PCMPISTR* is the way to calculate the
|
|
// length of string, we use SSE2NEON_CMP{I,E}STRX_GET_LEN to get the length of
|
|
// string a and b.
|
|
#define SSE2NEON_COMP_AGG(a, b, la, lb, imm8, IE) \
|
|
SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); \
|
|
SSE2NEON_##IE##_LEN_PAIR(a, b, la, lb); \
|
|
int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); \
|
|
r2 = _sse2neon_sido_negative(r2, lb, imm8, bound)
|
|
|
|
#define SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8) \
|
|
return (r2 == 0) ? bound \
|
|
: ((imm8 & 0x40) ? (31 - _sse2neon_clz(r2)) \
|
|
: _sse2neon_ctz(r2))
|
|
|
|
#define SSE2NEON_CMPSTR_GENERATE_MASK(dst) \
|
|
__m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \
|
|
if (imm8 & 0x40) { \
|
|
if (bound == 8) { \
|
|
uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), \
|
|
vld1q_u16(_sse2neon_cmpestr_mask16b)); \
|
|
dst = vreinterpretq_m128i_u16(vbslq_u16( \
|
|
tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); \
|
|
} else { \
|
|
uint8x16_t vec_r2 = \
|
|
vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); \
|
|
uint8x16_t tmp = \
|
|
vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); \
|
|
dst = vreinterpretq_m128i_u8( \
|
|
vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); \
|
|
} \
|
|
} else { \
|
|
if (bound == 16) { \
|
|
dst = vreinterpretq_m128i_u16( \
|
|
vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); \
|
|
} else { \
|
|
dst = vreinterpretq_m128i_u8( \
|
|
vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); \
|
|
} \
|
|
} \
|
|
return dst
|
|
|
|
// Compare packed strings in a and b with lengths la and lb using the control
|
|
// in imm8, and returns 1 if b did not contain a null character and the
|
|
// resulting mask was zero, and 0 otherwise.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestra
|
|
FORCE_INLINE int _mm_cmpestra(__m128i a,
|
|
int la,
|
|
__m128i b,
|
|
int lb,
|
|
const int imm8)
|
|
{
|
|
int lb_cpy = lb;
|
|
SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
|
|
return !r2 & (lb_cpy > bound);
|
|
}
|
|
|
|
// Compare packed strings in a and b with lengths la and lb using the control in
|
|
// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrc
|
|
FORCE_INLINE int _mm_cmpestrc(__m128i a,
|
|
int la,
|
|
__m128i b,
|
|
int lb,
|
|
const int imm8)
|
|
{
|
|
SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
|
|
return r2 != 0;
|
|
}
|
|
|
|
// Compare packed strings in a and b with lengths la and lb using the control
|
|
// in imm8, and store the generated index in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri
|
|
FORCE_INLINE int _mm_cmpestri(__m128i a,
|
|
int la,
|
|
__m128i b,
|
|
int lb,
|
|
const int imm8)
|
|
{
|
|
SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
|
|
SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8);
|
|
}
|
|
|
|
// Compare packed strings in a and b with lengths la and lb using the control
|
|
// in imm8, and store the generated mask in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm
|
|
FORCE_INLINE __m128i
|
|
_mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8)
|
|
{
|
|
SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
|
|
SSE2NEON_CMPSTR_GENERATE_MASK(dst);
|
|
}
|
|
|
|
// Compare packed strings in a and b with lengths la and lb using the control in
|
|
// imm8, and returns bit 0 of the resulting bit mask.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestro
|
|
FORCE_INLINE int _mm_cmpestro(__m128i a,
|
|
int la,
|
|
__m128i b,
|
|
int lb,
|
|
const int imm8)
|
|
{
|
|
SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
|
|
return r2 & 1;
|
|
}
|
|
|
|
// Compare packed strings in a and b with lengths la and lb using the control in
|
|
// imm8, and returns 1 if any character in a was null, and 0 otherwise.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrs
|
|
FORCE_INLINE int _mm_cmpestrs(__m128i a,
|
|
int la,
|
|
__m128i b,
|
|
int lb,
|
|
const int imm8)
|
|
{
|
|
(void) a;
|
|
(void) b;
|
|
(void) lb;
|
|
SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
|
|
return la <= (bound - 1);
|
|
}
|
|
|
|
// Compare packed strings in a and b with lengths la and lb using the control in
|
|
// imm8, and returns 1 if any character in b was null, and 0 otherwise.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrz
|
|
FORCE_INLINE int _mm_cmpestrz(__m128i a,
|
|
int la,
|
|
__m128i b,
|
|
int lb,
|
|
const int imm8)
|
|
{
|
|
(void) a;
|
|
(void) b;
|
|
(void) la;
|
|
SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
|
|
return lb <= (bound - 1);
|
|
}
|
|
|
|
#define SSE2NEON_CMPISTRX_LENGTH(str, len, imm8) \
|
|
do { \
|
|
if (imm8 & 0x01) { \
|
|
uint16x8_t equal_mask_##str = \
|
|
vceqq_u16(vreinterpretq_u16_m128i(str), vdupq_n_u16(0)); \
|
|
uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \
|
|
uint64_t matches_##str = \
|
|
vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \
|
|
len = _sse2neon_ctzll(matches_##str) >> 3; \
|
|
} else { \
|
|
uint16x8_t equal_mask_##str = vreinterpretq_u16_u8( \
|
|
vceqq_u8(vreinterpretq_u8_m128i(str), vdupq_n_u8(0))); \
|
|
uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \
|
|
uint64_t matches_##str = \
|
|
vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \
|
|
len = _sse2neon_ctzll(matches_##str) >> 2; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define SSE2NEON_CMPISTRX_LEN_PAIR(a, b, la, lb) \
|
|
int la, lb; \
|
|
do { \
|
|
SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); \
|
|
SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); \
|
|
} while (0)
|
|
|
|
// Compare packed strings with implicit lengths in a and b using the control in
|
|
// imm8, and returns 1 if b did not contain a null character and the resulting
|
|
// mask was zero, and 0 otherwise.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistra
|
|
FORCE_INLINE int _mm_cmpistra(__m128i a, __m128i b, const int imm8)
|
|
{
|
|
SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
|
|
return !r2 & (lb >= bound);
|
|
}
|
|
|
|
// Compare packed strings with implicit lengths in a and b using the control in
|
|
// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrc
|
|
FORCE_INLINE int _mm_cmpistrc(__m128i a, __m128i b, const int imm8)
|
|
{
|
|
SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
|
|
return r2 != 0;
|
|
}
|
|
|
|
// Compare packed strings with implicit lengths in a and b using the control in
|
|
// imm8, and store the generated index in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistri
|
|
FORCE_INLINE int _mm_cmpistri(__m128i a, __m128i b, const int imm8)
|
|
{
|
|
SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
|
|
SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8);
|
|
}
|
|
|
|
// Compare packed strings with implicit lengths in a and b using the control in
|
|
// imm8, and store the generated mask in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrm
|
|
FORCE_INLINE __m128i _mm_cmpistrm(__m128i a, __m128i b, const int imm8)
|
|
{
|
|
SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
|
|
SSE2NEON_CMPSTR_GENERATE_MASK(dst);
|
|
}
|
|
|
|
// Compare packed strings with implicit lengths in a and b using the control in
|
|
// imm8, and returns bit 0 of the resulting bit mask.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistro
|
|
FORCE_INLINE int _mm_cmpistro(__m128i a, __m128i b, const int imm8)
|
|
{
|
|
SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
|
|
return r2 & 1;
|
|
}
|
|
|
|
// Compare packed strings with implicit lengths in a and b using the control in
|
|
// imm8, and returns 1 if any character in a was null, and 0 otherwise.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrs
|
|
FORCE_INLINE int _mm_cmpistrs(__m128i a, __m128i b, const int imm8)
|
|
{
|
|
(void) b;
|
|
SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
|
|
int la;
|
|
SSE2NEON_CMPISTRX_LENGTH(a, la, imm8);
|
|
return la <= (bound - 1);
|
|
}
|
|
|
|
// Compare packed strings with implicit lengths in a and b using the control in
|
|
// imm8, and returns 1 if any character in b was null, and 0 otherwise.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrz
|
|
FORCE_INLINE int _mm_cmpistrz(__m128i a, __m128i b, const int imm8)
|
|
{
|
|
(void) a;
|
|
SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
|
|
int lb;
|
|
SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8);
|
|
return lb <= (bound - 1);
|
|
}
|
|
|
|
// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
|
|
// in b for greater than.
|
|
FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
return vreinterpretq_m128i_u64(
|
|
vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
|
|
#else
|
|
return vreinterpretq_m128i_s64(vshrq_n_s64(
|
|
vqsubq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)),
|
|
63));
|
|
#endif
|
|
}
|
|
|
|
// Starting with the initial value in crc, accumulates a CRC32 value for
|
|
// unsigned 16-bit integer v, and stores the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u16
|
|
FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v)
|
|
{
|
|
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
|
|
__asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t"
|
|
: [c] "+r"(crc)
|
|
: [v] "r"(v));
|
|
#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \
|
|
(defined(_M_ARM64) && !defined(__clang__))
|
|
crc = __crc32ch(crc, v);
|
|
#else
|
|
crc = _mm_crc32_u8(crc, v & 0xff);
|
|
crc = _mm_crc32_u8(crc, (v >> 8) & 0xff);
|
|
#endif
|
|
return crc;
|
|
}
|
|
|
|
// Starting with the initial value in crc, accumulates a CRC32 value for
|
|
// unsigned 32-bit integer v, and stores the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u32
|
|
FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v)
|
|
{
|
|
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
|
|
__asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t"
|
|
: [c] "+r"(crc)
|
|
: [v] "r"(v));
|
|
#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \
|
|
(defined(_M_ARM64) && !defined(__clang__))
|
|
crc = __crc32cw(crc, v);
|
|
#else
|
|
crc = _mm_crc32_u16(crc, v & 0xffff);
|
|
crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff);
|
|
#endif
|
|
return crc;
|
|
}
|
|
|
|
// Starting with the initial value in crc, accumulates a CRC32 value for
|
|
// unsigned 64-bit integer v, and stores the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u64
|
|
FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
|
|
{
|
|
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
|
|
__asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t"
|
|
: [c] "+r"(crc)
|
|
: [v] "r"(v));
|
|
#elif (defined(_M_ARM64) && !defined(__clang__))
|
|
crc = __crc32cd((uint32_t) crc, v);
|
|
#else
|
|
crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff);
|
|
crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff);
|
|
#endif
|
|
return crc;
|
|
}
|
|
|
|
// Starting with the initial value in crc, accumulates a CRC32 value for
|
|
// unsigned 8-bit integer v, and stores the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u8
|
|
FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
|
|
{
|
|
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
|
|
__asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t"
|
|
: [c] "+r"(crc)
|
|
: [v] "r"(v));
|
|
#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \
|
|
(defined(_M_ARM64) && !defined(__clang__))
|
|
crc = __crc32cb(crc, v);
|
|
#else
|
|
crc ^= v;
|
|
#if defined(__ARM_FEATURE_CRYPTO)
|
|
// Adapted from: https://mary.rs/lab/crc32/
|
|
// Barrent reduction
|
|
uint64x2_t orig =
|
|
vcombine_u64(vcreate_u64((uint64_t) (crc) << 24), vcreate_u64(0x0));
|
|
uint64x2_t tmp = orig;
|
|
|
|
// Polynomial P(x) of CRC32C
|
|
uint64_t p = 0x105EC76F1;
|
|
// Barrett Reduction (in bit-reflected form) constant mu_{64} = \lfloor
|
|
// 2^{64} / P(x) \rfloor = 0x11f91caf6
|
|
uint64_t mu = 0x1dea713f1;
|
|
|
|
// Multiply by mu_{64}
|
|
tmp = _sse2neon_vmull_p64(vget_low_u64(tmp), vcreate_u64(mu));
|
|
// Divide by 2^{64} (mask away the unnecessary bits)
|
|
tmp =
|
|
vandq_u64(tmp, vcombine_u64(vcreate_u64(0xFFFFFFFF), vcreate_u64(0x0)));
|
|
// Multiply by P(x) (shifted left by 1 for alignment reasons)
|
|
tmp = _sse2neon_vmull_p64(vget_low_u64(tmp), vcreate_u64(p));
|
|
// Subtract original from result
|
|
tmp = veorq_u64(tmp, orig);
|
|
|
|
// Extract the 'lower' (in bit-reflected sense) 32 bits
|
|
crc = vgetq_lane_u32(vreinterpretq_u32_u64(tmp), 1);
|
|
#else // Fall back to the generic table lookup approach
|
|
// Adapted from: https://create.stephan-brumme.com/crc32/
|
|
// Apply half-byte comparison algorithm for the best ratio between
|
|
// performance and lookup table.
|
|
|
|
// The lookup table just needs to store every 16th entry
|
|
// of the standard look-up table.
|
|
static const uint32_t crc32_half_byte_tbl[] = {
|
|
0x00000000, 0x105ec76f, 0x20bd8ede, 0x30e349b1, 0x417b1dbc, 0x5125dad3,
|
|
0x61c69362, 0x7198540d, 0x82f63b78, 0x92a8fc17, 0xa24bb5a6, 0xb21572c9,
|
|
0xc38d26c4, 0xd3d3e1ab, 0xe330a81a, 0xf36e6f75,
|
|
};
|
|
|
|
crc = (crc >> 4) ^ crc32_half_byte_tbl[crc & 0x0F];
|
|
crc = (crc >> 4) ^ crc32_half_byte_tbl[crc & 0x0F];
|
|
#endif
|
|
#endif
|
|
return crc;
|
|
}
|
|
|
|
/* AES */
|
|
|
|
#if !defined(__ARM_FEATURE_CRYPTO) && (!defined(_M_ARM64) || defined(__clang__))
|
|
/* clang-format off */
|
|
#define SSE2NEON_AES_SBOX(w) \
|
|
{ \
|
|
w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \
|
|
w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \
|
|
w(0xab), w(0x76), w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), \
|
|
w(0x59), w(0x47), w(0xf0), w(0xad), w(0xd4), w(0xa2), w(0xaf), \
|
|
w(0x9c), w(0xa4), w(0x72), w(0xc0), w(0xb7), w(0xfd), w(0x93), \
|
|
w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc), w(0x34), w(0xa5), \
|
|
w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15), w(0x04), \
|
|
w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a), \
|
|
w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), \
|
|
w(0x75), w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), \
|
|
w(0x5a), w(0xa0), w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), \
|
|
w(0xe3), w(0x2f), w(0x84), w(0x53), w(0xd1), w(0x00), w(0xed), \
|
|
w(0x20), w(0xfc), w(0xb1), w(0x5b), w(0x6a), w(0xcb), w(0xbe), \
|
|
w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf), w(0xd0), w(0xef), \
|
|
w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85), w(0x45), \
|
|
w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8), \
|
|
w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), \
|
|
w(0xf5), w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), \
|
|
w(0xf3), w(0xd2), w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), \
|
|
w(0x97), w(0x44), w(0x17), w(0xc4), w(0xa7), w(0x7e), w(0x3d), \
|
|
w(0x64), w(0x5d), w(0x19), w(0x73), w(0x60), w(0x81), w(0x4f), \
|
|
w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88), w(0x46), w(0xee), \
|
|
w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb), w(0xe0), \
|
|
w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c), \
|
|
w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), \
|
|
w(0x79), w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), \
|
|
w(0x4e), w(0xa9), w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), \
|
|
w(0x7a), w(0xae), w(0x08), w(0xba), w(0x78), w(0x25), w(0x2e), \
|
|
w(0x1c), w(0xa6), w(0xb4), w(0xc6), w(0xe8), w(0xdd), w(0x74), \
|
|
w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a), w(0x70), w(0x3e), \
|
|
w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e), w(0x61), \
|
|
w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e), \
|
|
w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), \
|
|
w(0x94), w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), \
|
|
w(0x28), w(0xdf), w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), \
|
|
w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \
|
|
w(0xb0), w(0x54), w(0xbb), w(0x16) \
|
|
}
|
|
#define SSE2NEON_AES_RSBOX(w) \
|
|
{ \
|
|
w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), \
|
|
w(0x38), w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), \
|
|
w(0xd7), w(0xfb), w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), \
|
|
w(0x2f), w(0xff), w(0x87), w(0x34), w(0x8e), w(0x43), w(0x44), \
|
|
w(0xc4), w(0xde), w(0xe9), w(0xcb), w(0x54), w(0x7b), w(0x94), \
|
|
w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d), w(0xee), w(0x4c), \
|
|
w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e), w(0x08), \
|
|
w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2), \
|
|
w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), \
|
|
w(0x25), w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), \
|
|
w(0x98), w(0x16), w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), \
|
|
w(0x65), w(0xb6), w(0x92), w(0x6c), w(0x70), w(0x48), w(0x50), \
|
|
w(0xfd), w(0xed), w(0xb9), w(0xda), w(0x5e), w(0x15), w(0x46), \
|
|
w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84), w(0x90), w(0xd8), \
|
|
w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a), w(0xf7), \
|
|
w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06), \
|
|
w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), \
|
|
w(0x02), w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), \
|
|
w(0x8a), w(0x6b), w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), \
|
|
w(0x67), w(0xdc), w(0xea), w(0x97), w(0xf2), w(0xcf), w(0xce), \
|
|
w(0xf0), w(0xb4), w(0xe6), w(0x73), w(0x96), w(0xac), w(0x74), \
|
|
w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85), w(0xe2), w(0xf9), \
|
|
w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e), w(0x47), \
|
|
w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89), \
|
|
w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), \
|
|
w(0x1b), w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), \
|
|
w(0x79), w(0x20), w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), \
|
|
w(0xcd), w(0x5a), w(0xf4), w(0x1f), w(0xdd), w(0xa8), w(0x33), \
|
|
w(0x88), w(0x07), w(0xc7), w(0x31), w(0xb1), w(0x12), w(0x10), \
|
|
w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f), w(0x60), w(0x51), \
|
|
w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d), w(0x2d), \
|
|
w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef), \
|
|
w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), \
|
|
w(0xb0), w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), \
|
|
w(0x99), w(0x61), w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), \
|
|
w(0x77), w(0xd6), w(0x26), w(0xe1), w(0x69), w(0x14), w(0x63), \
|
|
w(0x55), w(0x21), w(0x0c), w(0x7d) \
|
|
}
|
|
/* clang-format on */
|
|
|
|
/* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */
|
|
#define SSE2NEON_AES_H0(x) (x)
|
|
static const uint8_t _sse2neon_sbox[256] = SSE2NEON_AES_SBOX(SSE2NEON_AES_H0);
|
|
static const uint8_t _sse2neon_rsbox[256] = SSE2NEON_AES_RSBOX(SSE2NEON_AES_H0);
|
|
#undef SSE2NEON_AES_H0
|
|
|
|
/* x_time function and matrix multiply function */
|
|
#if !defined(__aarch64__) && !defined(_M_ARM64)
|
|
#define SSE2NEON_XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b))
|
|
#define SSE2NEON_MULTIPLY(x, y) \
|
|
(((y & 1) * x) ^ ((y >> 1 & 1) * SSE2NEON_XT(x)) ^ \
|
|
((y >> 2 & 1) * SSE2NEON_XT(SSE2NEON_XT(x))) ^ \
|
|
((y >> 3 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))) ^ \
|
|
((y >> 4 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x))))))
|
|
#endif
|
|
|
|
// In the absence of crypto extensions, implement aesenc using regular NEON
|
|
// intrinsics instead. See:
|
|
// https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/
|
|
// https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and
|
|
// for more information.
|
|
FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i RoundKey)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
static const uint8_t shift_rows[] = {
|
|
0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
|
|
0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
|
|
};
|
|
static const uint8_t ror32by8[] = {
|
|
0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
|
|
0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
|
|
};
|
|
|
|
uint8x16_t v;
|
|
uint8x16_t w = vreinterpretq_u8_m128i(a);
|
|
|
|
/* shift rows */
|
|
w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
|
|
|
|
/* sub bytes */
|
|
// Here, we separate the whole 256-bytes table into 4 64-bytes tables, and
|
|
// look up each of the table. After each lookup, we load the next table
|
|
// which locates at the next 64-bytes. In the meantime, the index in the
|
|
// table would be smaller than it was, so the index parameters of
|
|
// `vqtbx4q_u8()` need to be added the same constant as the loaded tables.
|
|
v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w);
|
|
// 'w-0x40' equals to 'vsubq_u8(w, vdupq_n_u8(0x40))'
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0);
|
|
|
|
/* mix columns */
|
|
w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
|
|
w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
|
|
w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
|
|
|
|
/* add round key */
|
|
return vreinterpretq_m128i_u8(w) ^ RoundKey;
|
|
|
|
#else /* ARMv7-A implementation for a table-based AES */
|
|
#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \
|
|
(((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \
|
|
((uint32_t) (b1) << 8) | (uint32_t) (b0))
|
|
// multiplying 'x' by 2 in GF(2^8)
|
|
#define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */))
|
|
// multiplying 'x' by 3 in GF(2^8)
|
|
#define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x)
|
|
#define SSE2NEON_AES_U0(p) \
|
|
SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p))
|
|
#define SSE2NEON_AES_U1(p) \
|
|
SSE2NEON_AES_B2W(SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p, p)
|
|
#define SSE2NEON_AES_U2(p) \
|
|
SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p)
|
|
#define SSE2NEON_AES_U3(p) \
|
|
SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p))
|
|
|
|
// this generates a table containing every possible permutation of
|
|
// shift_rows() and sub_bytes() with mix_columns().
|
|
static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = {
|
|
SSE2NEON_AES_SBOX(SSE2NEON_AES_U0),
|
|
SSE2NEON_AES_SBOX(SSE2NEON_AES_U1),
|
|
SSE2NEON_AES_SBOX(SSE2NEON_AES_U2),
|
|
SSE2NEON_AES_SBOX(SSE2NEON_AES_U3),
|
|
};
|
|
#undef SSE2NEON_AES_B2W
|
|
#undef SSE2NEON_AES_F2
|
|
#undef SSE2NEON_AES_F3
|
|
#undef SSE2NEON_AES_U0
|
|
#undef SSE2NEON_AES_U1
|
|
#undef SSE2NEON_AES_U2
|
|
#undef SSE2NEON_AES_U3
|
|
|
|
uint32_t x0 = _mm_cvtsi128_si32(a); // get a[31:0]
|
|
uint32_t x1 =
|
|
_mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); // get a[63:32]
|
|
uint32_t x2 =
|
|
_mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xAA)); // get a[95:64]
|
|
uint32_t x3 =
|
|
_mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); // get a[127:96]
|
|
|
|
// finish the modulo addition step in mix_columns()
|
|
__m128i out = _mm_set_epi32(
|
|
(aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^
|
|
aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]),
|
|
(aes_table[0][x2 & 0xff] ^ aes_table[1][(x3 >> 8) & 0xff] ^
|
|
aes_table[2][(x0 >> 16) & 0xff] ^ aes_table[3][x1 >> 24]),
|
|
(aes_table[0][x1 & 0xff] ^ aes_table[1][(x2 >> 8) & 0xff] ^
|
|
aes_table[2][(x3 >> 16) & 0xff] ^ aes_table[3][x0 >> 24]),
|
|
(aes_table[0][x0 & 0xff] ^ aes_table[1][(x1 >> 8) & 0xff] ^
|
|
aes_table[2][(x2 >> 16) & 0xff] ^ aes_table[3][x3 >> 24]));
|
|
|
|
return _mm_xor_si128(out, RoundKey);
|
|
#endif
|
|
}
|
|
|
|
// Perform one round of an AES decryption flow on data (state) in a using the
|
|
// round key in RoundKey, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128
|
|
FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey)
|
|
{
|
|
#if defined(__aarch64__)
|
|
static const uint8_t inv_shift_rows[] = {
|
|
0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb,
|
|
0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3,
|
|
};
|
|
static const uint8_t ror32by8[] = {
|
|
0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
|
|
0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
|
|
};
|
|
|
|
uint8x16_t v;
|
|
uint8x16_t w = vreinterpretq_u8_m128i(a);
|
|
|
|
// inverse shift rows
|
|
w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows));
|
|
|
|
// inverse sub bytes
|
|
v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0);
|
|
|
|
// inverse mix columns
|
|
// multiplying 'v' by 4 in GF(2^8)
|
|
w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
|
|
w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b);
|
|
v ^= w;
|
|
v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w);
|
|
|
|
w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) &
|
|
0x1b); // multiplying 'v' by 2 in GF(2^8)
|
|
w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
|
|
w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
|
|
|
|
// add round key
|
|
return vreinterpretq_m128i_u8(w) ^ RoundKey;
|
|
|
|
#else /* ARMv7-A NEON implementation */
|
|
/* FIXME: optimized for NEON */
|
|
uint8_t i, e, f, g, h, v[4][4];
|
|
uint8_t *_a = (uint8_t *) &a;
|
|
for (i = 0; i < 16; ++i) {
|
|
v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]];
|
|
}
|
|
|
|
// inverse mix columns
|
|
for (i = 0; i < 4; ++i) {
|
|
e = v[i][0];
|
|
f = v[i][1];
|
|
g = v[i][2];
|
|
h = v[i][3];
|
|
|
|
v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^
|
|
SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09);
|
|
v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^
|
|
SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d);
|
|
v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^
|
|
SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b);
|
|
v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^
|
|
SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e);
|
|
}
|
|
|
|
return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey;
|
|
#endif
|
|
}
|
|
|
|
// Perform the last round of an AES encryption flow on data (state) in a using
|
|
// the round key in RoundKey, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128
|
|
FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
|
|
{
|
|
#if defined(__aarch64__)
|
|
static const uint8_t shift_rows[] = {
|
|
0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
|
|
0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
|
|
};
|
|
|
|
uint8x16_t v;
|
|
uint8x16_t w = vreinterpretq_u8_m128i(a);
|
|
|
|
// shift rows
|
|
w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
|
|
|
|
// sub bytes
|
|
v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0);
|
|
|
|
// add round key
|
|
return vreinterpretq_m128i_u8(v) ^ RoundKey;
|
|
|
|
#else /* ARMv7-A implementation */
|
|
uint8_t v[16] = {
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 0)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 5)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 10)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 15)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 4)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 9)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 14)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 3)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 8)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 13)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 2)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 7)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 12)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 1)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 6)],
|
|
_sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 11)],
|
|
};
|
|
|
|
return vreinterpretq_m128i_u8(vld1q_u8(v)) ^ RoundKey;
|
|
#endif
|
|
}
|
|
|
|
// Perform the last round of an AES decryption flow on data (state) in a using
|
|
// the round key in RoundKey, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128
|
|
FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey)
|
|
{
|
|
#if defined(__aarch64__)
|
|
static const uint8_t inv_shift_rows[] = {
|
|
0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb,
|
|
0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3,
|
|
};
|
|
|
|
uint8x16_t v;
|
|
uint8x16_t w = vreinterpretq_u8_m128i(a);
|
|
|
|
// inverse shift rows
|
|
w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows));
|
|
|
|
// inverse sub bytes
|
|
v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0);
|
|
|
|
// add round key
|
|
return vreinterpretq_m128i_u8(v) ^ RoundKey;
|
|
|
|
#else /* ARMv7-A NEON implementation */
|
|
/* FIXME: optimized for NEON */
|
|
uint8_t v[4][4];
|
|
uint8_t *_a = (uint8_t *) &a;
|
|
for (int i = 0; i < 16; ++i) {
|
|
v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]];
|
|
}
|
|
|
|
return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey;
|
|
#endif
|
|
}
|
|
|
|
// Perform the InvMixColumns transformation on a and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128
|
|
FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a)
|
|
{
|
|
#if defined(__aarch64__)
|
|
static const uint8_t ror32by8[] = {
|
|
0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
|
|
0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
|
|
};
|
|
uint8x16_t v = vreinterpretq_u8_m128i(a);
|
|
uint8x16_t w;
|
|
|
|
// multiplying 'v' by 4 in GF(2^8)
|
|
w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
|
|
w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b);
|
|
v ^= w;
|
|
v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w);
|
|
|
|
// multiplying 'v' by 2 in GF(2^8)
|
|
w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
|
|
w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
|
|
w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
|
|
return vreinterpretq_m128i_u8(w);
|
|
|
|
#else /* ARMv7-A NEON implementation */
|
|
uint8_t i, e, f, g, h, v[4][4];
|
|
vst1q_u8((uint8_t *) v, vreinterpretq_u8_m128i(a));
|
|
for (i = 0; i < 4; ++i) {
|
|
e = v[i][0];
|
|
f = v[i][1];
|
|
g = v[i][2];
|
|
h = v[i][3];
|
|
|
|
v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^
|
|
SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09);
|
|
v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^
|
|
SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d);
|
|
v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^
|
|
SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b);
|
|
v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^
|
|
SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e);
|
|
}
|
|
|
|
return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v));
|
|
#endif
|
|
}
|
|
|
|
// Assist in expanding the AES cipher key by computing steps towards generating
|
|
// a round key for encryption cipher using data from a and an 8-bit round
|
|
// constant specified in imm8, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128
|
|
//
|
|
// Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist.
|
|
// This instruction generates a round key for AES encryption. See
|
|
// https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/
|
|
// for details.
|
|
FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
|
|
{
|
|
#if defined(__aarch64__)
|
|
uint8x16_t _a = vreinterpretq_u8_m128i(a);
|
|
uint8x16_t v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), _a);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), _a - 0x40);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), _a - 0x80);
|
|
v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), _a - 0xc0);
|
|
|
|
uint32x4_t v_u32 = vreinterpretq_u32_u8(v);
|
|
uint32x4_t ror_v = vorrq_u32(vshrq_n_u32(v_u32, 8), vshlq_n_u32(v_u32, 24));
|
|
uint32x4_t ror_xor_v = veorq_u32(ror_v, vdupq_n_u32(rcon));
|
|
|
|
return vreinterpretq_m128i_u32(vtrn2q_u32(v_u32, ror_xor_v));
|
|
|
|
#else /* ARMv7-A NEON implementation */
|
|
uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55));
|
|
uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF));
|
|
for (int i = 0; i < 4; ++i) {
|
|
((uint8_t *) &X1)[i] = _sse2neon_sbox[((uint8_t *) &X1)[i]];
|
|
((uint8_t *) &X3)[i] = _sse2neon_sbox[((uint8_t *) &X3)[i]];
|
|
}
|
|
return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3,
|
|
((X1 >> 8) | (X1 << 24)) ^ rcon, X1);
|
|
#endif
|
|
}
|
|
#undef SSE2NEON_AES_SBOX
|
|
#undef SSE2NEON_AES_RSBOX
|
|
|
|
#if defined(__aarch64__)
|
|
#undef SSE2NEON_XT
|
|
#undef SSE2NEON_MULTIPLY
|
|
#endif
|
|
|
|
#else /* __ARM_FEATURE_CRYPTO */
|
|
// Implements equivalent of 'aesenc' by combining AESE (with an empty key) and
|
|
// AESMC and then manually applying the real key as an xor operation. This
|
|
// unfortunately means an additional xor op; the compiler should be able to
|
|
// optimize this away for repeated calls however. See
|
|
// https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a
|
|
// for more details.
|
|
FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b)
|
|
{
|
|
return vreinterpretq_m128i_u8(veorq_u8(
|
|
vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
|
|
vreinterpretq_u8_m128i(b)));
|
|
}
|
|
|
|
// Perform one round of an AES decryption flow on data (state) in a using the
|
|
// round key in RoundKey, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128
|
|
FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey)
|
|
{
|
|
return vreinterpretq_m128i_u8(veorq_u8(
|
|
vaesimcq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
|
|
vreinterpretq_u8_m128i(RoundKey)));
|
|
}
|
|
|
|
// Perform the last round of an AES encryption flow on data (state) in a using
|
|
// the round key in RoundKey, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128
|
|
FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
|
|
{
|
|
return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8(
|
|
vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
|
|
RoundKey);
|
|
}
|
|
|
|
// Perform the last round of an AES decryption flow on data (state) in a using
|
|
// the round key in RoundKey, and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128
|
|
FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey)
|
|
{
|
|
return vreinterpretq_m128i_u8(
|
|
veorq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)),
|
|
vreinterpretq_u8_m128i(RoundKey)));
|
|
}
|
|
|
|
// Perform the InvMixColumns transformation on a and store the result in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128
|
|
FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a)
|
|
{
|
|
return vreinterpretq_m128i_u8(vaesimcq_u8(vreinterpretq_u8_m128i(a)));
|
|
}
|
|
|
|
// Assist in expanding the AES cipher key by computing steps towards generating
|
|
// a round key for encryption cipher using data from a and an 8-bit round
|
|
// constant specified in imm8, and store the result in dst."
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128
|
|
FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
|
|
{
|
|
// AESE does ShiftRows and SubBytes on A
|
|
uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0));
|
|
|
|
#if !defined(_MSC_VER) || defined(__clang__)
|
|
uint8x16_t dest = {
|
|
// Undo ShiftRows step from AESE and extract X1 and X3
|
|
u8[0x4], u8[0x1], u8[0xE], u8[0xB], // SubBytes(X1)
|
|
u8[0x1], u8[0xE], u8[0xB], u8[0x4], // ROT(SubBytes(X1))
|
|
u8[0xC], u8[0x9], u8[0x6], u8[0x3], // SubBytes(X3)
|
|
u8[0x9], u8[0x6], u8[0x3], u8[0xC], // ROT(SubBytes(X3))
|
|
};
|
|
uint32x4_t r = {0, (unsigned) rcon, 0, (unsigned) rcon};
|
|
return vreinterpretq_m128i_u8(dest) ^ vreinterpretq_m128i_u32(r);
|
|
#else
|
|
// We have to do this hack because MSVC is strictly adhering to the CPP
|
|
// standard, in particular C++03 8.5.1 sub-section 15, which states that
|
|
// unions must be initialized by their first member type.
|
|
|
|
// As per the Windows ARM64 ABI, it is always little endian, so this works
|
|
__n128 dest{
|
|
((uint64_t) u8.n128_u8[0x4] << 0) | ((uint64_t) u8.n128_u8[0x1] << 8) |
|
|
((uint64_t) u8.n128_u8[0xE] << 16) |
|
|
((uint64_t) u8.n128_u8[0xB] << 24) |
|
|
((uint64_t) u8.n128_u8[0x1] << 32) |
|
|
((uint64_t) u8.n128_u8[0xE] << 40) |
|
|
((uint64_t) u8.n128_u8[0xB] << 48) |
|
|
((uint64_t) u8.n128_u8[0x4] << 56),
|
|
((uint64_t) u8.n128_u8[0xC] << 0) | ((uint64_t) u8.n128_u8[0x9] << 8) |
|
|
((uint64_t) u8.n128_u8[0x6] << 16) |
|
|
((uint64_t) u8.n128_u8[0x3] << 24) |
|
|
((uint64_t) u8.n128_u8[0x9] << 32) |
|
|
((uint64_t) u8.n128_u8[0x6] << 40) |
|
|
((uint64_t) u8.n128_u8[0x3] << 48) |
|
|
((uint64_t) u8.n128_u8[0xC] << 56)};
|
|
|
|
dest.n128_u32[1] = dest.n128_u32[1] ^ rcon;
|
|
dest.n128_u32[3] = dest.n128_u32[3] ^ rcon;
|
|
|
|
return dest;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* Others */
|
|
|
|
// Perform a carry-less multiplication of two 64-bit integers, selected from a
|
|
// and b according to imm8, and store the results in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128
|
|
FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm)
|
|
{
|
|
uint64x2_t a = vreinterpretq_u64_m128i(_a);
|
|
uint64x2_t b = vreinterpretq_u64_m128i(_b);
|
|
switch (imm & 0x11) {
|
|
case 0x00:
|
|
return vreinterpretq_m128i_u64(
|
|
_sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b)));
|
|
case 0x01:
|
|
return vreinterpretq_m128i_u64(
|
|
_sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b)));
|
|
case 0x10:
|
|
return vreinterpretq_m128i_u64(
|
|
_sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b)));
|
|
case 0x11:
|
|
return vreinterpretq_m128i_u64(
|
|
_sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b)));
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
|
|
FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode(void)
|
|
{
|
|
union {
|
|
fpcr_bitfield field;
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
uint64_t value;
|
|
#else
|
|
uint32_t value;
|
|
#endif
|
|
} r;
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
r.value = _sse2neon_get_fpcr();
|
|
#else
|
|
__asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
|
|
#endif
|
|
|
|
return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF;
|
|
}
|
|
|
|
// Count the number of bits set to 1 in unsigned 32-bit integer a, and
|
|
// return that count in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u32
|
|
FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
#if __has_builtin(__builtin_popcount)
|
|
return __builtin_popcount(a);
|
|
#elif defined(_MSC_VER)
|
|
return _CountOneBits(a);
|
|
#else
|
|
return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a)));
|
|
#endif
|
|
#else
|
|
uint32_t count = 0;
|
|
uint8x8_t input_val, count8x8_val;
|
|
uint16x4_t count16x4_val;
|
|
uint32x2_t count32x2_val;
|
|
|
|
input_val = vld1_u8((uint8_t *) &a);
|
|
count8x8_val = vcnt_u8(input_val);
|
|
count16x4_val = vpaddl_u8(count8x8_val);
|
|
count32x2_val = vpaddl_u16(count16x4_val);
|
|
|
|
vst1_u32(&count, count32x2_val);
|
|
return count;
|
|
#endif
|
|
}
|
|
|
|
// Count the number of bits set to 1 in unsigned 64-bit integer a, and
|
|
// return that count in dst.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u64
|
|
FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
#if __has_builtin(__builtin_popcountll)
|
|
return __builtin_popcountll(a);
|
|
#elif defined(_MSC_VER)
|
|
return _CountOneBits64(a);
|
|
#else
|
|
return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a)));
|
|
#endif
|
|
#else
|
|
uint64_t count = 0;
|
|
uint8x8_t input_val, count8x8_val;
|
|
uint16x4_t count16x4_val;
|
|
uint32x2_t count32x2_val;
|
|
uint64x1_t count64x1_val;
|
|
|
|
input_val = vld1_u8((uint8_t *) &a);
|
|
count8x8_val = vcnt_u8(input_val);
|
|
count16x4_val = vpaddl_u8(count8x8_val);
|
|
count32x2_val = vpaddl_u16(count16x4_val);
|
|
count64x1_val = vpaddl_u32(count32x2_val);
|
|
vst1_u64(&count, count64x1_val);
|
|
return count;
|
|
#endif
|
|
}
|
|
|
|
FORCE_INLINE_OPTNONE void _sse2neon_mm_set_denormals_zero_mode(
|
|
unsigned int flag)
|
|
{
|
|
// AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
|
|
// regardless of the value of the FZ bit.
|
|
union {
|
|
fpcr_bitfield field;
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
uint64_t value;
|
|
#else
|
|
uint32_t value;
|
|
#endif
|
|
} r;
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
r.value = _sse2neon_get_fpcr();
|
|
#else
|
|
__asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
|
|
#endif
|
|
|
|
r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON;
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
_sse2neon_set_fpcr(r.value);
|
|
#else
|
|
__asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */
|
|
#endif
|
|
}
|
|
|
|
// Return the current 64-bit value of the processor's time-stamp counter.
|
|
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc
|
|
FORCE_INLINE uint64_t _rdtsc(void)
|
|
{
|
|
#if defined(__aarch64__) || defined(_M_ARM64)
|
|
uint64_t val;
|
|
|
|
/* According to ARM DDI 0487F.c, from Armv8.0 to Armv8.5 inclusive, the
|
|
* system counter is at least 56 bits wide; from Armv8.6, the counter
|
|
* must be 64 bits wide. So the system counter could be less than 64
|
|
* bits wide and it is attributed with the flag 'cap_user_time_short'
|
|
* is true.
|
|
*/
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
val = _ReadStatusReg(ARM64_SYSREG(3, 3, 14, 0, 2));
|
|
#else
|
|
__asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val));
|
|
#endif
|
|
|
|
return val;
|
|
#else
|
|
uint32_t pmccntr, pmuseren, pmcntenset;
|
|
// Read the user mode Performance Monitoring Unit (PMU)
|
|
// User Enable Register (PMUSERENR) access permissions.
|
|
__asm__ __volatile__("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren));
|
|
if (pmuseren & 1) { // Allows reading PMUSERENR for user mode code.
|
|
__asm__ __volatile__("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset));
|
|
if (pmcntenset & 0x80000000UL) { // Is it counting?
|
|
__asm__ __volatile__("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr));
|
|
// The counter is set up to count every 64th cycle
|
|
return (uint64_t) (pmccntr) << 6;
|
|
}
|
|
}
|
|
|
|
// Fallback to syscall as we can't enable PMUSERENR in user mode.
|
|
struct timeval tv;
|
|
gettimeofday(&tv, NULL);
|
|
return (uint64_t) (tv.tv_sec) * 1000000 + tv.tv_usec;
|
|
#endif
|
|
}
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma pop_macro("ALIGN_STRUCT")
|
|
#pragma pop_macro("FORCE_INLINE")
|
|
#pragma pop_macro("FORCE_INLINE_OPTNONE")
|
|
#endif
|
|
|
|
#if defined(__GNUC__) && !defined(__clang__)
|
|
#pragma GCC pop_options
|
|
#endif
|
|
|
|
#endif
|